
Pergamon 0005-1098(94)E0042-G 
A u t o m a t i c a ,  Vol. 30, No. 12, pp. 1991-1997, 1994 

Copyright <~ 1994 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0005-1098194 $7.00 + 0.00 

B r i e f  P a p e r  

Generalized Predictive Control for 
Non-stationary Systems* 

O L A F U R  P. P A L S S O N , t : ~  H E N R I K  M A D S E N ~ ;  a n d  H E N N I N G  T.  S O G A A R D : ~ §  

Key Words--Generalized predictive control (GPC); time-varying systems; impulse response; filtering. 

Abstract--This paper shows how the generalized predictive 
control (GPC) can be extended to non-stationary (time- 
varying) systems. If the time-variation is slow, then the 
classical GPC can be used in context with an adaptive 
estimation procedure of a time-invariant ARIMAX model. 
However, in this paper prior knowledge concerning the 
nature of the parameter variations is assumed available. The 
GPC is based on the assumption that the prediction of the 
system output can be expressed as a linear combination of 
present and future controls. Since the Diophantine equation 
cannot  be  used due to the time-variation of the parameters, 
the optimal prediction is found as the general conditional 
expectation of the system output. 

The underlying model is of an ARMAX-type instead of an 
ARIMAX-type as in the original version of the GPC 
(Clarke, D. W., C. Mohtadi and P. S. Tufts (1987). 
Automat ica ,  23,  137-148) and almost all later references. 
This implies some further modifications of the classical GPC. 

1. Introduct ion 
MOST FREQUENTLY, when generalized predictive control 
(GPC) is used for time-varying systems, an adaptive 
estimation procedure is used for an ordinary ARIMAX 
model with constant parameters. Hence, the model 
parameters are assumed to be constant over the prediction 
horizon applied. The predictions are then, beneficially, 
obtained by solving the Diophantine equation, e.g. 
recursively as in Clarke et aL (1987). This procedure is 
reasonable only if the underlying time-variation is relatively 
slow. In general, it is more reasonble to consider 
time-varying models and then extend the GPC to handle 
these models. This allows for control of both slow and fast 
changing systems, and the time-variation can be used for an 
improved prediction, and hence for an improved control. 

In this paper a GPC for time-varying systems is proposed. 
This procedure allows for control of systems where, for 
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instance, the parameter variations are so fast that the 
assumption of the parameters being constant over the 
prediction horizon is no longer valid. In that case the 
Diophantine equation is useless. Instead the prediction of the 
future output is computed directly as the conditional 
expectations, conditioned on known observations. 

In the literature, see e.g. Clarke et al. (1987) and Bitmead 
et al. (T.090), the GPC is formulated by using an 
ARIMAX-type model. One of the main arguments for the 
integrating factor (integral part) is that it guarantees an offset 
free control, but it also gives a more straightforward 
formulation of the optimization problem. However, from a 
model building viewpoint this integral part may seem to be 
somewhat artificial. Therefore, in this paper the GPC is 
based on an ARMAX model rather than an ARIMAX 
model, and the offset control is guaranteed by filtering the 
control signal. 

The paper is organized as follows. In Section 2 the model 
structure is described and in Section 3 the optimal prediction 
for non-stationary systems is derived. Section 4 deals with the 
cost function and the optimization problem. In Section 5 
some simulation experiments are presented to illustrate the 
performance of the controller, and finally the conclusions are 
drawn in Section 6. 

2. M o d e l  structure 
It is assumed that the system can be described by a 

time-varying ARMAX model 

A , ( q - t ) y ,  = B , (q -~)u ,  + C,(q t)e,, (1) 

where y, and u, are the output and the control signal, 
respectively, e, is white noise with mean zero and variance o -2 
and A,,  B, and C~ are polynomials in q - i  (the back shift 
operator) with time-varying coefficients: 

A,(q - t )  = 1 + a I j q  - t  + • • • -F anA.tq -hA 

B , ( q - l ) = b l . t q  l + . . . + b h B . ,  q "B (2) 

C,(q l ) = l + c z . , q - I + ' " + c  ,~-"c n c , t , . l  • 

The nature of the parameter variations are assumed known. 
Consider, as an example, the periodical variation 

a/., = a/.o + t~/.j sin (to(t - j ) )  + a/.e cos (to(t - ] ) )  

b/.,= flj.o + ~ j . , s i n ( t o ( t - j ) ) +  ~ / . 2 c o s ( t o ( t - ] ) )  (3) 

cj., = 3'i.o + Y/.~ sin ((o(t - j)) + 3'j.2 cos (to(t - j)), 

which could, e.g., represent the dirunal variation in an energy 
system, see e.g. Madsen et al. (1992). The parameters a, /3 
and 2' may also be time-varying and then they can be 
estimated adaptively using recursive methods. 

3. Ou tpu t  predict ion 
The GPC is based on the assumption that the output 

predictions can be expressed as a linear combination of 
present and future controls. In Clarke et al. (1987) and many 
other references this is obtained by solving the Diophantine 
equation (sometimes recursively). However, in the time- 
varying case the Diophantine equation cannot  be used due to 
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the time-variation of the model parameters• Instead, the 
j-step predictor, 9,+~1, is found as the conditional expectation 
of y,+i conditioned on observations of the output up to time t 
(Madsen, 1989) 

n A  rill 

~,+,1, : Y~ a,,.~,+~ ,I, + ~ b , , ,+ , . , .  , 
i I i I 

t l (  

+ ~" cc'+,e'+J '1" J > 1 
i o 

where 
~f~+il'=Yt+J' J < 1, 

(4) 

(5) 

(6) 
0, i f l ~ - I  

e '~/ l '=  e,+/. i f l < l .  

A simple example illustrates the method• 

E x a m p l e .  Consider the ARX model [equations (1) and (2)] 
( n  A = 1, na = 2, nc  = 0) 

y, + al. ,y,  - 1 = b~.,u, i + b2.rut 2 + e,. (7) 

The 1-step predictor is derived from equations (4)-(6) as 

'),+1 I' = - a l . r + l y t  + bl . ,+lu,  + bz . ,+ lu , - i  

= h l . t+W,  + v,.,, (8) 

where r E , = - a ~ , , . ~ y , + b 2 . , + ~ u ,  ~ is known and h~.,+~u,= 
bl . ,+lu,  is unknown until the control signal is chosen at time 
t. Note, that h l , , + l = b l , , + l  is the first weight of the 
time-varying impulse response function. 

In general, the j-step predictor is given as 

9,+fl, = -al.,+j~,+j tl, + b~.,+ju,+j t + b2.t+ju,+j -2 

= - a l , t + j ( h j  -. 1 , l+]  - j a t  4~ " " " + h l . t + j  - l U t + l  2 

+ 1)j 1.t) -+- bl.,+jU,+i" 1 + be.,+ju,+j 2 

= h j . t + j u t  + " " " + h t , t + j u t + j  t + 1Jj,t 

= 2 hct+ju,+J ~ + vj.,. (9) 
/ - ' 1  

For the given model the h~.~ and v~., values can be computed 
recursively as 

~ b,.t. if i = 1 

hi ,  t = ) b i . , - a l , t h i - l . t  I ,  i f i = 2  (10) 
I k _ a L , h  j 1., t i f i ->3  

and 

~ - a l . , + i y ,  + b2. ,+iut - l ,  i f / =  1 (11) Ui,t ] L--al.t+ioi i . t ,  if i >-- 2. 

The coefficients he,+ j (i = 1, 2 . . . .  ) are the weights of the 
time-varying impulse response function describing the 
dynamic relation between the input and the output, i.e. h~., is 
the marginal change of y, changing u, ,. [] 

It can be shown that a j-step predictor for an arbitrary 
A R M A X  process can be written in the form shown in 
equation (9). This can, for instance, be shown by substitution 
as illustrated in the previous example. 

An alternative scheme for calculating h~.,+j and vi. , follows 
directly from equation (9): 

(1) to find vi.,, set the present and future control to zero 
(u,+~ , = 0  for i = 1 , 2  . . . . .  j). Then compute v~., as the 
conditional expectation, Y'÷JI" using equation (4); and 

(2) to find h~.,+j (i = 1, 2 . . . . .  j), set the present and past 
output and past control to zero (v~., = 0). Feed an impulse 
into the system at time t + j  - i 

1, i f / = /  (12) 
u , ~  ~= 0, otherwise. 

Then compute hi, t+ j a s  the conditional expectation, ~t+jlt, 
using equation (4). 
Now introduce a maximum prediction horizon N(>I) .  
Considering equation (9) it is seen that the j-step predictions, 

j running from 1 up to N, can be written as a linear matrix 
expression: 

~, = H,u,  + v,, (13) 
where 

g : [Y'÷' I . . . . . .  Y,+NI,] T 

u,= [u ...... U,+N d T 

V t ~ [ l ] l , t ,  . . . , "ON,t]7" 

l hl.,~ i 0 .. h 2 , t  + 2  h i . t + 2  • . 

h N  l . t + N  I h N -  2 . t + N  I " " 

h N ,  t + N  h N - I . t + N  . . ° ° 1 

0 0 

h~.,+N ~ 0 

h 2 . t + N  h l . / + N  

In equation (13) it has been assumed that the same model is 
applied for all prediction horizons. Actually, this need not be 
the case. If different models are used, then the j th  row of  H, 
and the j th element of v, belongs to a special model designed 
for j-step prediction. Making use of an individual model for 
each horizon is often relevant if a non-linear system is 
approximated by a family of linear models (e.g. threshold 
models), that is if the optimal linearization of the system 
depends on the prediction horizon. 

4. Cost  f unc t ion  a n d  op t imi za t ion  
Consider a cost function of the form 

N2 N U  ] 

[ 2 ( 2 2 2 (14) J = E Y,+j - Y,+flt) Aj.tut+j_ t , 
L1 = NI  j = I 

where N1 is the minimum costing horizon, N2 is the maximum 
costing horizon, Aj., is a control-weighting (or penalty) 
sequence, N U  is the control horizon and ref Y t + j ] t  i s  the future 
reference output. The expectation in equation (14) is 
conditioned on observations available at time t. 

The cost function expressed in equation (14) is almost 
identical to the original GPC cost function presented in 
Clarke et al. (1987). The only exception is that in Clarke et al. 
(1987) the control increments, Au,, are used instead of the 
absolute control values, u,. The incremental version of the 
cost function will he discussed later. 

Introducing matrix notation the cost function is written as 

J = E[(y, - y~e~)r(y, _ y:ef) + ufA,u,], (15) 

where 
y, = [Y,÷ Nv . . . .  Y,+N_,] r 
r e f  - -  r e f  

Y, - [Y,+N,I . . . . . .  Y:%%2t,]' 
u, = [u . . . . . .  u, ~ u u _  ,] r 

:r o ] 

By the projection theorem (Brockwell and Davis, 1987)the 
output vector, y,, is decomposed into two (stochastic) 
independent parts 

y, = ~t + ~,, (16) 

where .% is a vector containing the output predictions 
described in the previous section, and ~, is a vector 
containing the prediction errors 

~, = [yt+N, I . . . . . .  9,+ N21,] T. (17) 

The cost function can then be written as 

j = [(~, - yrc')r(9 , - y[Cf) + u[A,u,] + E[~[~,]. (18) 

Note that the last term in this expression does not depend on 
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u,. Using equation (13)* the cost function becomes 

J = [(H,u, + v, - y[ef)r(H,u, + v, - y~'¢') + urA,u,] + E[~r~,]. 

(19) 

The G PC control law is then obtained by minimizing the 
resulting cost function. This is done by setting the derivative 
of the cost function with respect to u, to zero, i.e. 

M 
- - = 0 .  
OU t 

That  is 
2H,r(H,u,  + v, - y ~ ' )  + 2 A , u ,  = 0 ( 2 0 )  

o r  

2(n,~n,  + A,)u, + 2nT(v, - y~Or) = 0. (21) 

Solving for a,, results in 

u, = - [ H r H ,  + A, ] - lHr(v ,  - y r e f ) .  (22) 

Only the first e lement  of the control vector, u ,  is 
implemented (recording horizon control) so the control law 
can be written as 

u, = - 0 [ n f H ,  + A, ] - 'Hr (v ,  - y[~f). (23) 

where 
0 = [1, 0 . . . . .  0].  ( 2 4 )  

4.1. The filtered version. The control law in equation (23) 
may give an offset for A , > 0 .  This is coped with by 
introducing a filtered version of the control signal in the cost 
function• 

The filter is defined as 

- = e N ( q  l )  u ( 2 5 )  
u, eo (q_ l )  ,, 

where PN(q -I)  and Po(q - j )  are polynomials in the back shift 
operator  q -  i. 

The filtered control signal can be decomposed into a sum 
of two terms: one term containing past control signals, and 
another  containing the present and future control signals. 
This can be done by means of solving the Diophantine 
equation (since the filter is time-invariant). 

OAq- '  ) 
ff,+j = p n ( q _ l )  u, + E/(q ')u,+/. (26) 

By introducing matrix notat ion this can be rewritten as 

i ,  = Fu, + g~, (27) 
where 

~,= [a, . . . . .  a ,+N._,]  ~ 

lit = [U . . . . . .  U t+NU_I]  T 

gt = ~t,l~,=o 

v =  ~ f' " 

. f N . - ,  . . .  ~ 

F contains the impulse response weights for the filter. 

*The  time-varying impulse response matrix is now written, 

H,  = 

N2 > N U  + Nl), as 

Using the filtered control signal equation (27) instead of 
the unfiltered in the cost function, equation (15), leads to 

J = [ ( H , u ,  + v,  - y[~f)r(H,u, + v, - y~'~f) 

+ (Fu, + g , )TA, (Fu ,  + g,)]  + e f f , ~ , ] .  (28)  

Minimization of this expression results in the control vector 

u, = -[H,rH,  + VrA,Fl- ' IU,r(v,  - y[ef) + FTA,g,] (29) 

and the implemented control at time t 

u, = -O[HTH, + FrA,F]-I[Hf(v, - y~'e,) + FTA,g,] (30) 

with 0 as in equation (24). 
For the important  special case if, = 8u, = u, - u , - t ,  F and 

g, in equation (27) are given by 

1 0 " -  0 0 ]  

- 1  1 " .  0 0 

F =  0 - 1  . . -  0 0 
• . " • .  

0 0 . . . .  1 1 

(31) 

and 
g, = I - u , - 1 ,  0 . . . . .  0]  r. ( 3 2 )  

Remark. The main purpose of introducing the filter is to 
eliminate the offset, induced by the cost function in equation 
(14) for positive penalties, since the underlying model does 
not have an integration. 

The filter choice depends on which variations in the 
control signal should be penalized. For instance the high 
frequent variations are penalized by using the incremental 
filter as defined by F and g in equations (31) and (32). The 
steady-state gain of the chosen filter should be equal to zero 
(in order to eliminate the offset). 

5. Simulation experiments 
For the simulation studies the following AR X model is 

used 

y, : - a l  Y,-1 + bl.tut 2 + b2.tut 3 at- b3.tut-4 + e,, 
(33) 

where al is constant and bt., (l = 2, 3, 4) are given by 

b2., =/32.0 +/32.1 sin (too - 2)) +/3z.2 cos (to(t - 2)) 

b3., =/33.0 +/33: sin (to(t - 3)) +/33.2 cos (aJ(t - 3)) 

b4., =/34.0 +/34.1 sin (to(t - 4)) +/34,2 cos (too - 4)), 

with t0=27r /24= l r /12 .  The following values are used: 
al = - 0 . 5 6 ,  /32.o = 0.35, /32.1 = 0.32, /32.2 = - 0 . 2 4 ,  /33.o =0.18, 
/ 3 3 : = - 0 . 3 1 ,  /33.2=0.25, /34.1)=0.18, /34:=0.09,  /34.2 = 
-0.25, and e , - N ( 0 , 1 ) .  The horizons NI, N2 and N U  
are set to 2, 5 and 2, respectively• A, is assumed constant  and 
A, = AI. 

Figures 1 and 2 show the output,  the reference output  and 
the control signal for A = 0.0 and 0.05, respectively. The 
incremental filter [equations (31) and (32)] is used. The 

according to the horizons N1, N2 and N U  (assuming that 

h l , , , + N  t 0 " • • 0 

h2,t+NI+ I h l . t+Nl+l  " " • 0 

h N U . t + N I + N U - I  h N U - I . t + N I + N U - 1  • . . h l , t + N I + N U _  I 

h N U + I . t + N I + N U  hNU. t+NI+NU • • . h2 , t+NI+NU W h l . t + N I + N U  

N 2 - N  I -NIJ+2 

h~-N~+l. l+~ hN2-N~.r+ ~ " " " ~ hot+N2 

The summation in the last column results from the assumption Au,+i_~ = O , i > N U  (Bjerre, 1992). The vector v, is now 
v, = [ON, . . . . . . .  V~ . , ]L  
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(b) 

FIG. 1. (a) The output y, and the reference output yy~f, (b) The control signal u,, A = 0.0. 

changes in the reference output, yICf, are made in steps as 
indicated in the figures. Changing a from 0 to 0.05 reduces 
the amplitude of the control signal noticeably, without any 
visible change in the output. This is also illustrated in Figs 3 
and 4, which expresses the control performance (~t=5o ( Y , -  
y~ef)2) and the control effort (~t=5o (Au,) 2) as a function of 
the time t, It is seen that for A = 0.05 the control effort is 
much lesser than for A = 0.0, wthout any markable decrease 
in the control performance. 

Figures 5 and 6 show simulations where the knowledge of 
the explicit time-variations in the model parameters are not 
used in prediction (13), i.e. when computing the impulse 
response matrix H, and the vector vt. The same time-varying 
model with the same parameters is used, but instead of using 
the knowledge of the explicit time-variations, the parameters 
are assumed to be constant and equal to their value at time t, 
i.e. b2.,+j= b2.t, b3,t+ j = b3. t and ba.,+j = b4., for j = 
N1 . . . . .  N2. It is seen that this increases the control effort for 
A = 0, but the control performance is unchanged. Both the 
control performance and the control effort are nearly the 
same as before, for A = 0.05. This is explained by the fact 
that the prediction is not as accurate as it is in the previous 
case (Figs 1-4) and therefore it affects the control 

increments, Au, in a negative way. This effect is deleted when 
the control increments are penalized, i.e. A > 0. 

The effect of using an unfiltered control signal is shown in 
Fig. 7, i.e. the controller expressed in equation (23) is used. If 
Figs 4 and 7 are compared it is clearly seen, as expected, that 
if the control signal is not filtered this may result in an offset 
control for A > 0. Obviously there is no difference when h. = 0 
[compare equations (23) and (30) for A ~ 0], and therefore 
this case is not shown. 

6. Conclusion 
In this paper the classical GPC is extended to cope with 

time-varying systems, where the nature of the parameter 
variations is assumed known. This is done by using the 
knowledge of the explicit parameter variations when 
computing the prediction of the future output as a 
conditional expectation. This is reflected in the resulting 
time-varying impulse response matrix. 

The GPC is based on an A R M A X  model instead of an 
A R I M A X  model as in almost all GPC references. This is 
advantageous from a model building point of view if the 
system does not contain an integration. The offset free 
control is achieved by filtering the control signal. 
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FIG. 5. rel 2 Y..,=5o ( Y , -  Yr ) (I) and Nt=.~ (Au,) 2 (II) as a function of the time t, ~ = 0. The parameters are 
assumed constant when computing the impulse response matrix. 
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F I G .  6 .  r e f  2 ~,=5o ( Y , -  Y, ) (I) and ~,=5o (~u,)  (II) as a function of the time t, A = 0.05. The parameters are 
assumed constant when computing the impulse response matrix. 
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FIG. 7. Y--,=5o (Y~ _y~'ef)2 (I) and Y,,=5o (Au,) 2 (II) as a function of the time t, A = 0.05. Unfiltered control 
signal. 

A simulation study shows the effect of the above- 
mentioned extensions and modification. 

The proposed GPC for time-varying systems keeps all of 
the advantages of the classical GPC, but the stability and the 
convergence properties of the proposed GPC must be 
studied further. 
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