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Abstract: In many technical applications, such as automatic control or supervision of systems, 
on-line predictions are required. Since the system of interest might change as time is passing, the 
model used for predictions must follow these changes. The estimation method therefore has to be 
adaptive implying the use of a recursive estimation algorithm. Furthermore, because of the 
possibility of outliers among the observations, it must be required that the applied estimation 
algorithm minimizes the influence of any sort of outliers. 

In this paper two recursive robust estimation algorithms for estimation of AR models are 
derived. One of them implements a recursive minimization of a criterion function, in which 
prediction errors enter through the weight function proposed by Huber (1964). The other 
algorithm is a recursive version of the bounded-influence estimator proposed by Krasker and 
Welsch (1982). This estimator is an extension of the Huber estimator where a measure of the 
amount of aberrant information in each observation is used to down-weight the influence of 
observations that stand out among the rest. By these derivations a general procedure for obtaining 
recursive algorithms is demonstrated. In a simulation study the proposed methods are compared 
with ordinary recursive least squares, as well as a modification of this, in which classified outliers 
imply the corresponding observations to be left out of the estimation. 

Keywords: Recursive estimation; Robust estimation; Bounded-influence estimation; Time series 
analysis; Additive and innovation outliers 

1. Introduction 

In many different engineering situations, like adaptive control of an industrial 
process, on-line prediction of power demand or predictive coding in adaptive 
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speech transmission, it is necessary to carry out on-line estimation of parametric 
models in order to have the parameters in the model follow the changes in the 
system. However, gross errors in the observations can occur. A desirable quality 
of the algorithm used to estimate the parameters is that it is able to protect the 
estimates from the destructive influence from such gross errors, while retaining 
the ability to track changes in the system. Indeed, this is a demanding quality, 
since it can obviously be difficult to separate abnormal prediction errors caused 
by gross errors in the data from prediction errors arising as a consequence of 
abrupt changes in the system. 

Solutions to the robustness issue have mainly appeared as off-line estimation 
methods. Due to the nonlinear nature of the estimation problem, these robust 
algorithms turn out to be iterative. Such off-line techniques are discussed in, 
e.g., Martin and Yohai (19851, Huber (1981) and Hampel et al. (1986). The fact 
that these methods utilize the whole batch of data implies that all past data, 
possibly numerous, must be stored in order to obtain new robust estimates when 
also the effect of added measurements is to be included. 

The time-variation of the system and/or the abundance of data motivate a 
study of recursive algorithms. Such algorithms are adaptable to time-varying 
systems, and they also have considerable computational advantages compared to 
off-line techniques. Recursive algorithms are thoroughly investigated in Ljung 
and Sijderstriim (1983). They are also discussed in Soderstriim and Stoica (1989) 
and Ljung (1987). However, in these references the robustness issue is only 
briefly discussed in connection with choice of criterion function. 

Robust estimation based on stochastic approximation is studied in Martin and 
Masreliez (1975), and used in Campbell (1982) for M-estimation of the parame- 
ters in an AR process. Recursive robust estimation of static systems is discussed 
by Poljak and Tsypkin (1980). In Kuh and Samarov (1986) recursive robust 
estimation is used in connection with detection of shifts in a regression. 
Masreliez (1975) introduces a certain robustification of the Kalman filter, and 
his results are used by West (1981) in a study of sequential estimation of a 
location vector in linear regression. 

Recently Allende and Heiler (1992) have proposed a multi-stage procedure 
for robust estimation of ARMA processes in the presence of additive outliers. 
In the first stage innovation estimates are found as the residuals of a robust 
autoregressive fit of high order. These residuals are then cleaned through a 
weight function, and subsequently a generalized M-estimation is carried out 
repeatedly, inserting the residuals found in the preceding step in the MA part of 
the regressor vector, until the parameter estimates have stabilized. 

Recursive M-estimators of location and scale are treated in the papers by 
Englund et al. (1988, 1989). The results are mostly theoretical concerning the 
asymptotic behaviour of the estimators. In Englund (1991) linear regression 
models are studied, and, by using stochastic approximation, recursive algo- 
rithms, based on the bounded-influence estimator in Krasker and Welsch (19821, 
are proposed. Poulsen and J. Holst (1982) study recursive robust estimation of 
parameters and scale in adaptive control systems. They use a recursive version 
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of the Huber Criterion for the parameter estimation, and show that it is possible 
to separate the effects of outliers from systematic changes in the system 
description. 

Cipra (1992) considers robust modifications of simple and double exponential 
smoothing by use of the L, norm, as well as recursive M-estimation with 
exponential forgetting of AR processes. The recursive M-estimation is obtained 
by introducing approximations in the off-line estimator, which allows for the 
formulation of the algorithm as the recursive solution to a set of normal 
equations. 

In this paper a general method for obtaining recursive robust parameter 
estimation algorithms is used to derive two different recursive robust estimation 
algorithms. The method, which is a generalization of a method proposed in 
Sejling (1987), originates from a formulation of the estimation problem as a 
recursive minimization of a criterion with respect to the parameters. The two 
algorithms are based on the M-estimator proposed by Huber (1973) and the 
bounded-influence estimator by Krasker and Welsch (1982), respectively. These 
algorithms are compared both to the recursive least squares (RLS) algorithm 
and a modified RLS algorithm, in which observations are treated as missing if 
the corresponding prediction errors exceed a specified bound. 

2. Outlier models and robust estimation 

Traditionally two distinct kinds of outlier models are considered, viz. the 
innovation outlier model (IO) and the additive outlier model (AO), see e.g., 
Denby and Martin (1979). The two kinds of outliers can both be described by 
the following model 

Y(f) =z(f) + w(t), (1) 

where {y(t)) is the observations and {z(t)} is the process, which is restricted to 
the class of pure autoregressive processes. That is, {z(t)} is given by 

t(t) - 8,z(t - 1) - * * * -0,z(t -p) = e(t), (2) 
where p is the order of the AR process. {w(t)) and {e(t)) are mutually 
independent sequences of independent random variables. Innovation outliers 
are present when the distribution of the innovations is different from the 
assumed distribution, and the process is observed perfectly (w(t) = 0). For 
instance, when e(t) has a heavy-tailed non-Gaussian density, such as a mixture 
of two Gaussian densities, innovation outliers are traditionally assumed to be 
present due to the inconsistence with the assumption of Gaussian innovations. 
Additive outliers are present when the observations can differ from the process 
due to additive effects. A model describing the situation where additive outliers 
are present can be that e(t) is Gaussian, and w(t) is zero most of the time and 
when different from zero given by a suitable density function, for instance, a 
zero mean Gaussian density. Of course, both kinds of outliers can be present. 
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Indeed, this is an idealized description of outliers occurring in real systems. For 
instance, single outliers cannot always be classified to be either IO or AO, and 
often outliers occur in bursts or are correlated in some way. In model (l)-(2) 
this can be described by allowing the outliers to follow some dependence 
structure. 

Additive outliers in data cause severe problems for the estimation of model 
parameters. For traditional estimation techniques, e.g., least squares (LS), the 
result will be estimates with bias, and, as demonstrated in Allende and Heiler 
(19921, iterative methods involving detection and filtering of the additive effects 
are required. 

Several results exist in the area of off-line robust estimation in linear 
regression models and ARMA models. In Martin and Yohai (1985) the M- 
estimate of the parameters in an ARMA(p, 4) model is discussed, where the fi 
estimate, 8, minimizes the criterion 

(3) 

l (i, 0) is the prediction error, e(i, 0) = y(i) - xT(i)f3, and u is the scale parame- 
ter. p,(u) is a weight function, which, for instance, could be chosen as proposed 
by Huber (1964) 

PC(U) = 

i 

iU2, IUIG, 

c(ul-+2, 1upc. 
(4) 

c is the parameter which determines the level of influence of large prediction 
errors. Different alternative weight functions are suggested in the literature 
(Martin and Yohai, 1985). For a simultaneous estimation of the scale parameter, 
U, Huber (1964) proposes to use the equation (Proposal 2) 

(5) 

where 

x,(u) = hw - b (6) 
with 

&(u) = &P&4 = max(min(c, u), -c); 

b =E{@:(z)}, z N N(O, 1). (7) 

This choice of correction term, b, ensures that, if u is N(0, 1) the scale estimate 
is consistent. 

In IQ-asker and Welsch (1982) the more elaborate bounded-influence estima- 
tor (0,, v~, A,) is considered, where A, is the dispersion of the regressors. This 
estimator applies to the linear regression model 

y(t) =x’(t)0 +e(t), (8) 
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where (y(i), x(i)> are independent samples and the innovations are zero mean 
Gaussian variables. In this investigation we apply the following form of the 
off-line estimator 

(9) 

E(i, e^) 
0 = ; .g xc ~ 

r-l i 1 6 ’ 

a,=&1 r_l pj$&) x(i)xT(i)7 l I 
(10) 

(11) 

with 

gl(u) =E{min(z2, u’)}, zwN(O, 1). (12) 

Instead of having only one tuning parameter for all three parts of the estimator 
(Krasker and Welsch, 1982) we use one parameter, c, in the part of the 
estimator which measures the prediction error (9)~(10) and another tuning 
parameter, a, in the covariance estimation. Furthermore, in (10) we have 
decided upon Huber’s Proposal 2 for estimation of the scale parameter. 

(9)~(10) can be considered as the estimator of Huber (1973), in which a 

measure of information in the regressor vector, ijn’oa,, has been 
introduced to impose an upper limit on the influence of each observation. (11) 
defines a robust estimate of the covariance of the regressors, A,, by means of a 
down-weighting of aberrant regressors through g,(u). 

Krasker and Welsch (1982) analyze the appropriate choice of the boundary 
parameter a (when used in all three estimator equations) with respect to 
asymptotic efficiency compared to the LS estimator for Gaussian error structure 
(relative efficiency). To obtain a relative efficiency of, e.g., 0.95 or 0.99, they 
propose to choose u as 1.596 or 2.093 times \/dim, respectively. However, 
this cannot be carried over directly to the situation of dependent sequences and 
recursive estimation. 

3. Recursive and adaptive estimation 

The recursive estimation algorithms, considered in this paper, demand that the 
model, in which we wish to estimate the parameters, is linear in these parame- 
ters. Hence the model can be written as in (8). In addition, it is assumed that 
x(t) and e(t) are mutually independent. 

Four algorithms for recursive estimation of an AR model are considered: 

RLS, the traditional Recursive Least Squares algorithm. 
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RMO, a modification of the RLS algorithm in which large prediction errors, 
classified as outliers, imply the corresponding observations to be treated as 
missing. 

RHU, an algorithm based on recursive minimization of Huber’s criterion (3) 
combined with a recursive solution to Huber’s Proposal 2 (5) for scale estima- 
tion. 

RKW, an algorithm based on a recursive solution to the estimator by Krasker 
and Welsch (9)-(12). 

For all of them a forgetting factor has been introduced to obtain exponential 
discounting of remote information. 

RLS. In the off-line case the LS estimates are found as the minimizing argument 
of the LS criterion function, i.e., 

f?(t) = argmin, $ i *‘-‘e2(i, 0). (13) 
i=l 

The parameter estimates can be found analytically as the explicit solution to the 
derivative of the criterion (the Normal Equations), see Ljung and Soderstrijm 
(1983). This solution can easily be transformed into a recursive formulation, thus 
appearing as the algorithm 

40 - 1) 1 PA(f - l)x(t)xT(t)P*(t - 1) 
PA(t)= * -; A +x-yt)P*(t - 1)x(t) ’ 

(14) 

i(t) = e^(t - 1) + P*(t)x(t)e(t, e^(t - 1)). (15) 

PA(t) is a matrix containing information about the covariance of the regressors 
observed until time t. The inverse of P,(t) is given by 

P,-‘(t) = /VP,-‘(O) + i *‘-‘x(i)xT(i) (16) 
i=l 

with P,(O) being the initial value. 

RMO. This algorithm is an extension of RLS. Each residual is compared to a 
recursive estimate of the residual variance. If the numerical value of the residual 
exceeds c times the variance estimate, neither the estimate of the models 
parameters, the estimate of the P-matrix nor the residual variance estimate are 
updated. Hence, the algorithm is 

1 
k,(t)=max 7,1--h , 

i i 

P(t) =G2(t - 1) +k,(t)(d& &t - 1)) -k2(t - 1)) 

X&,&-l)), <cc+(t-1))’ 

(17) 

(18) 
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w - 1) 1 P*(t - l)x(t)xT(t)P,(t - 1) I 
PA(t)= * -: h +xT(t)pA(t _ I)+) (Idf,k~--l))l <C%-1))’ 

(19) 

e”(t) = e^(t - 1) +w>,w+~ e^(t - l&r,&-l)), <c&(j-1))’ (20) 
The gain k,(t) is introduced to enable tracking of a slowly varying scale. 
Likewise, the scale factor d, is used to obtain a consistent scale estimate, when 
the residuals are zero mean Gaussian random variables. This is obtained with 

d,’ =E{$$(z)}, 2 N N(O, 1) 

This method has the obvious disadvantage that if the estimates are too far from 
the true parameter values, then the prediction errors will always be too big, and 
neither the parameters nor the P-matrix will be updated. 

RHU. The RLS algorithm can be regarded either as a recursive formulation of 
the off-line estimator (the Normal Equations) or as the solution to the recursive 
minimization of the LS criterion. The two approaches are equivalent since they 
both give exact solutions for the LS criterion and the model assumptions given 
above. However, when considering non-quadratic criterion functions the two 
approaches can lead to different algorithms depending on the nature of the 
approximations made. In the recursive minimization of Huber’s criterion 

with p,(u) defined in (4), our approach is to minimize (22) using approximations, 
which are justifiable, when the parameter estimates are close to their optimum. 
These approximations and the change of the criterion between consecutive steps 
are then used to obtain the connection between the parameter estimates at 
consecutive steps. The derivation of the RHU algorithm is found in Section 3.1 
below. 

RKW. The Recursive Krasker and Welsch algorithm is obtained using the same 
approach as for RHU by recursive minimization of the criterion 

vk,(t, e> = &’ “,z i /qjp+!A. 
i=l xT(i)A;‘x(i)Pc u I 

It is necessary to supplement this by a recursive estimation of the 
matrix. The RKW algorithm is derived in Section 3.2. 

3.1. Recursive minimization of the Huber Criterion 

(23) 

covariance 

In this section the algorithm, implementing a recursive approximative minimiza- 
tion of the Huber Criterion (221, is derived. It is assumed that the scale 
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parameter, u, is known. In Section 3.3 it is shown how a recursive estimation of 
the scale parameter is obtained from the off-line estimator (5)-(7). 

Let $t - 1) be the estimate at time t - 1. Then the result of applying the 
algorithm on an observation at time t should be the estimate O(t) making an 
approximative minimization of the criterion VA,(t, 0) (22). A Taylor expansion 
of the criterion around &t - 1) gives 

V$,(t, 8) = vA,(t, act - 1)) + [e - i(t - l)]Tv,v;,(t, 8),&_,, 

+;[e - i(t - l)]Tv&v;“(t, B),&,,[e - e^(t - l)] 

+ 0(le - ri(t - i)i”), (24) 

where V, denotes differentiation with respect to 8, and o(x) is a function for 
which o(x)/ ( x I + 0 as 1 x 1 + 0. Taking the derivative of this expression with 
respect to 8, and applying the assumption of the gradient of the criterion being 
zero in every time step when evaluated at the recursively obtained parameter 
estimates, i.e., 

Vt : wk(f, 0) Ii(r) = 0, 

lead to the following parameter update 

e”(t) = i(t - I) - [o,v,Jf;,(t, e),i(,, 

+ o(li(t) - tqt - 1)i). 

_ 

Taking the derivative of the criterion (22) written as a recursion, 

Ek e> 
vA,(t, e) =w;,(t - 1, e) +pc ~ u 

i 1 2 

2 

u 

and using the assumption (25) at t - 1 gives 

wh(t, %bl, = -Wk ( l (t, i(t - 1)) 

1 
u. 

u 

Evaluation of the second derivative of (27) in e^<t - 1) gives 

v,v,v;,(t, e),~,,~,,=~v~vo~~,(t - 1, oh-,, 

++)~‘(tM 
i 

l (t, e^(t - 1)) 

(T 1 

(26) 

(27) 

(28) 

(29) 

with 9,‘(u) = (d/du)$C(F). 
If it is assumed that O(t) is close to 6(t - 1) the following two approximations 

can be justified: 
. The term o( I k(t) - e^< t - 1) I) in (26) can be neglected. 
l V&,V~,< t - 1, e) , 9t_ 1j can be replaced by V,V,V~,< t - 1, 01, E(~-~) in (2% 
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Finally, by denoting the inverse of the second-order derivative of the criterion 
as 

P*(t) = [o,v,%(& ~)I&-“1 -I, (30) 

and using the Matrix Inversion Lemma on (29), the algorithm is 

P*(t-1) 1 
P*(f) = h - $ 

i 

+, s^(t - 1)) 

u 1 

P*(t - l)x(t)xT(t)P*(t - 1) 

A +.XT(t)P& - 1)x(t) ’ 

(31) 

i(t) = e^(t - 1) +P,(t)x(t)cCI, 
i 

+, e^(t - 1)) 

1 
u. 

Cr (32) 

Note that the expression in (31) has been simplified by use of $,‘(u> being either 
zero or one. 

3.2. Recursive minimization of the Krasker and Welsch Criterion 

In this section a recursive algorithm based on the off-line estimator by Krasker 
and Welsch (1982) is derived. The algorithm is obtained as the recursive and 
approximative minimization of the criterion (23) accompanied by a recursive and 
approximative expression for update of the robust covariance estimator (11). As 
for the RHU algorithm, the scale estimation is separated from the model 
parameter estimation. 

The recursive minimization of (23) is derived using the same procedure as in 
the derivation of RHU. The first step is to write down the second order Taylor 
expansion of the criterion and use the assumption that the criterion derivative at 
time t is zero when evaluated at g(t). As outlined below, however, it will be 
necessary to introduce a modified criterion, V$,(t, 01, to be able to obtain a 
recursive expression for the criterion. For this reason the second order expan- 
sion is applied on the modified criterion leading to the following expression for 
the parameter update 

e^(t) = e^(t - 1) - [v&@&c& e),&C,-,,]-‘o,I$&&(t, ~),6((,-‘, 

+ o(le^(t) - e^(t - 1)1). (33) 
To obtain expressions for the first- and second-order derivative of the criterion 
in (33), the criterion (23) must be writLen as a recursive expression. This requires 
that the batch covariance estimate A -l(t) in the criterion (23) is replaced by 
the, at time i, available covariance estimate, i.e., 

V&(t, e) = $, A’_’ 
a2 4, 0) 

i=l x’(i)2l(i)x(i) 
pc /x’(i)A-‘(i)x(i) (T 

i I 
* (34) 
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This criterion can be written recursively as 

V&(t, 0) = /Wk&(t - 1, 0) 

u2 
+ (” l (t, 0) 

xT(t)kl(t)x(t) pc xT(t)P(t)x(t) - 1 u * 

Computing the gradients in (351, and using the assumption of the 
gradient being zero in the parameter estimate gives 

u 
y$$&(t, O)l6((,-1, = -x(t) 

xT(t)LP(t)x(t) 

x $, 
ii 

xT(t)P(t)x(t) 
t(t, i(t - 1)) 

u 

The second-order derivative of the criterion expression, evaluated at 
becomes 

(35) 

criterion 

(36) 

i(t - 11, 

+x(t)xT(t)+i xT(t)P(t)x(t) 
ii 

t(t, H”(t - 1)) 

u I 

(37) 

As in the deriva$on ofPHU the following approximations are made 
l The term o( I O(t) - O(t - 1) I> in (33) can be neglected. 
l VoVJ&(t - 1, O),,-,,_,, can be replaced by V,VJ&&<t - 1, 0),icct_2j (37). 
Applying the Matrix Inversion Formula on (37) and introducing the notation 

&(t) = [v,W&(L O),&-,,I -l (38) 

yields (42). Inserting the expression (36) in (33) gives the final expression of the 
parameter update (43). 

To obtain the recursive formula for the covariance estimate, the batch 
estimate, a,, entering g, in summand i in (11) is replaced by the estimate 
which is available at time i - 1. This gives 

A”(t) = ; % g, iv a 

I 
x(i)x’(i), 

1=1 xT(i)k’(i - 1)x(i) 

which can be written recursively as 

(39) 

A(t) =A(t - 1) + f g, 
I ii 

a 

xT(t)A-‘(t - 1)x(t) I 
x(t)x-qt) -act - 1) . 

I 

(40) 
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By use of the Matrix Inversion Formula (40 is transformed into (41). This 
completes the derivation of the RKW algorithm. 

a-l(t) = t ~[d’tt-l’-gl(~x’(t)~-~~_~)x(r) j 
a-y t - 1)x( t)S( t)P(t - 1) 

x t +S(t)P(t - l)x(t)g,(a/P(t)P(t - 1)x(t)) 
I 

’ 

(41) 

qt-1) 1 
P*(t) = h - p; &)k’(t)x(t) 

i 

t(t, e^(t - 1)) 

(T I 

x P*(t - l)x(t)xT(t)P,(t - 1) 

A +x’(t)&(t - 1)x(t) ’ 
(42) 

f?(t) = e^(t - 1) +P*(t)x(t) 
u 

S(t)A-‘(t&x(t) 

x 4, (II xT(t)P(t)x(t) 
l (t, e^(t - 1)) 

I 
(43) 

u 

Note that (42) has been simplified by using that q+,‘(u) is either zero or one. 

3.3. Recursive estimation of scale 

The algorithm for recursive estimation of scale is based on Huber’s Proposal 2 
given in (5). To develop the recursive scale estimation the function 

X*(t, a) = i A’-‘& ~ 
+, 0) 

i=l i I u 

is introduced, in which the set of model parameters, 8, is assumed to be known. 
The function X, can be written recursively as 

+, 0) 
X*(t, a) =AX*(t - 1, u) +,& ~ 

i I u * 
(45) 

By applying a first-order Taylor expansion of the X,-function around G(t - l), 
and assuming that the scale estimate at time t satisfies the estimator definition, 
i.e., Xh(t, G(t)) = 0, give 

0=X&, &(t - 1)) + [f_+(t) -qt - l)]VflX*(t, a),+l) 

+0(/3(t) -a(t - 1)j). (46) 
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The first term on the right-hand side of (46) is found by evaluating (45) in 
$(t - 1) and using the assumption Xh(t - 1, &(t - 1)) = 0. This gives 

(47) 

Evaluating the derivative of (45) in &(t - 1) gives 

l 2(t, 0) 

Now the following approximations are made 
l The term o( ( C;(t) - &( t - 1) ( ) in (46) can be neglected. 
l VJ(f - 1, u&-r) can be replaced by V,Xx,<t - 1, c),~~~_~) in (48). 
By introducing h,(t) = - VcXh(t, a) ,6(t_ 1j this completes the derivation of the 
recursive scale estimator 

h*(t) = Ah& - 1) + 2 
l 2(t, 0) 

&3(f _ 1) 4I~um G4-1)) 

t?(t) = &(t - 1) + 
X,(+7 q/w - 1)) 

W) . 

(49) 

(50) 

Due to the symmetry of XC the scale estimate can converge to both a positive 
value and its negative counterpart. To avoid a negative scale estimate the set of 
permissible values is restricted to the positive real line. In practice this is only of 
significance in the initial phase. 

4. Simulation and estimation results 

All programming in the simulation and estimation study was performed in 
Pascal on a HP-9000/835 using double precision arithmetic. For the generation 
of Gaussian and uniform random variables the pseudo random number genera- 
tors of the IMSL Stat/Library (1987) DRNNOF and DRNUNF were used. For 
calculation of the solution to the off-line estimation using (9)-(12) the nonlin- 
ear-equation solver DNEQNF of the IMSL Math/Library (1987) was used. 

4.1. Simulation of data 

The simulation results in the present paper are all based on data simulated from 
the following two pure autoregressive models 

(1 - 0.8q-*)z(t) = e(t) (51) 

and 

(1 - 1.2Oq-’ + 0.52qp2)z(t) = e(t) (52) 
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with the poles 

t = 0.6 f 0.4i 121 = 0.72. (53) 

Each data sequence has a length of 3005 observations and is simulated either 
without outliers, with innovation outliers or with additive outliers. If the se- 
quence is simulated with outliers, these will not occur in the first 5 observations. 
Due to this and the way the estimation algorithms are applied, the observations 
are numbered from -4 to 3000. The three types of simulated noise acting on 
the models are described in the following three paragraphs. 

No Outliers. When the observations are computed without outliers, the innova- 
tions {e(t)} are independent and identically distributed Gaussian random vari- 
ables with zero mean and variance a2 = 1. 

Innovation Outliers. When the observations (y(t)} are simulated with innovation 
outliers they are still identical to the process values {z(t)}, but the innovations 
{e(t)} are created from a contaminated Gaussian distribution. The innovations 
are independent, but with some minor probability p they are sampled from a 
distribution with a larger variance. In this simulation study, the sequences of 
innovations with outliers are computed from the following density 

e(t) N 0.95 x “NID(0, l)“+ 0.05 X “NID(0, 6.25)“, (54) 

where NID(p, a2> denotes independent Gaussian random variables with mean 
Al. and variance c2. 

Additive Outliers. When the observations are contaminated with additive out- 
liers, they can differ from the process due to additive noise {w(t)}, 

y(t) =2(t) +w(t). (55) 

{z(t)} is simulated as in the situation without outliers, and the additive noise 
{w(t)) is zero with probability 0.95 and NID(0, 6.25) with probability 0.05, 

w(t) - 0.95 x “O”+ 0.05 x “NID(0, 6.25)“. (56) 

Figure 1 shows an example of observations created with the first-order model 
(51) and with the three schemes outlined above. With both kinds of outliers (IO 
or AO), it is possible to observe the existence of some outlying observations. 
Also the different characteristics of the influence on the observations resulting 
from the different types of outliers can be observed. The innovation outliers 
affect the process itself and hereby imply a lasting excitation, whereas the 
additive outliers are additive spikes in the very moment they occur. 

4.2. Application of algorithms 

For each simulated data sequence the four estimation algorithms RLS, RHU(c), 
RKW(c, a> and RMO(c), with the parameters c and a as specified in earlier 
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Observations without Outliers 
I I 

Observations with Innovation Outliers 
6 , I I I 

I I I 
0 

6 

4 

2 

0 

-2 

250 500 750 1000 
NO. 

Observations with Additive Outliers 
I I 

Fig. 1. Observations simulated with the first order model and using the three different outlier 
types with the same basic noise realization. 

sections, are applied. The recursive estimation in all of the algorithms is started 
by using RLS on the first 5 observ?tions. At t = 1 the algorithm to be studied is 
initialized with the parameters, 8(O),,,, and covariance matrix, P(O),,,, ob- 
tained from RLS. RLS is initialized with the covariance matrix equal to 100 
times the unit matrix, and so is the robust covariance estimate of RKW, i.e., 
d-‘(0) = 1001. 
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The starting value of g2(O> is the known simulation variance of the outlier 
free innovations, and the starting value of h(0) in the recursive version of 
Huber’s Proposal 2 is set to 1. For the first order model (511, RHU(c), 
RKW(c, a> and RMO(c) is applied with c = 2, 3 and for each value of c, 
RKW(c, a> is applied with a = 2, 3, 4. For comparison the off-line Krasker and 
Welsch estimator (9)-(12), denoted KW(c, a), is applied with the combinations 
(c, a> = (2, 3), (3, 3) and (3, 4). The off-line estimation is based on observations 
for t E (1, 3000), and is applied to all three types of data sequences. 

Estimation of the second-order model (52) is carried out with the recursive 
algorithms with c = 2 and a = 5 on all three types of data sequences. 

Since the data are simulated with constant parameters, all algorithms are 
applied with the forgetting factor A = 1. 

The performance of the algorithms is illustrated in Figure 2, which shows the 
trajectories of the estimated parameter in the first-order model (51) for different 
kinds of observations and different estimation algorithms. The basic sequence of 
innovations was the same in all of the estimations shown. The upper part of the 
figure shows RLS and RKW(2, 3) applied to a data sequence without outliers. 
There is almost no difference to be observed between RLS and RKW(2, 31, and 
the estimates converge nicely to the simulation parameter. The same pattern 
applies to RHU(2) and RMO(2) (not shown). 

The following two plots show the same algorithms used on an observation 
sequence simulated with innovation outliers as given in Section 4.1. Again there 
is almost no difference between RLS and RKW(2, 3). There is a slight tendency 
that the estimates from both algorithms lie even closer to the simulation 
parameters, than when data were simulated without outliers. This harmonize 
with the fact that the higher variability allows for an increased efficiency. Again 
the same pattern applies for RHU(2) and RMO(2) (not shown). 

The bottom half of the figure shows the application of all four algorithms on a 
sequence simulated with additive outliers. Clearly the additive outliers have a 
rather drastic effect on the estimates for all algorithms. The most clear effect is 
observed on the RLS estimates, but also the RHU(2) algorithm seems to allow 
rather considerable steps in the estimates. On the contrary the RKW(2, 3) 
algorithm shows a smooth course of the estimates, and it gives a considerable 
improvement compared to RHU(2). The RMO(2) algorithm is in this case doing 
even better than RKW(2, 3) although more clear steps are seen. RMO(2) is 
obviously doing an easy job here classifying some of the additive outliers, but 
this simple algorithm still suffers from the possibility of the estimates becoming 
that bad that the prediction residuals are too big compared to the estimated 
variance of the prediction errors, implying that the estimates will not be 
updated. 

The trajectories in Figure 2 were obtained using a basic innovation sequence, 
which was chosen at random among the simulation sequences. Although the 
specific trajectories have a clear dependence on the set of innovations and 
outliers, Figure 2 gives a representative illustration of the performance of the 
algorithms. The general experience from the simulation study is that the 
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Fig. 2. Trajectories of the parameter estimates in the first order system for different outlier types 
and algorithms. The basic innovation sequence was the same in all simulations and the same as in 

Figure 1. The off-line Krasker and Welsch result is also marked on the figures. 
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algorithms, for the chosen initializations, in all cases performed nicely showing 
convergence to limit values. 

4.3. Performance evaluation 

To evaluate the performance of the algorithms six experiments were carried out. 
One experiment consists of 1000 simulations with one of the models and one of 
the three noise simulation algorithms. All of the estimation algorithms are 
applied to each data sequence. For each sequence the sum of squared deviations 
SSD from the true parameter from observation no. 2001 till no. 3000 is 
computed 

3000 

SSD = C (e”(i) - B)2. (57) 
i=2001 

as is the average SSD of the 1000 values of SSD. Likewise, the average e^(t>, the 
standard deviation s,jCct, 

$ t&J5 

and the 5, 50 and 95% fractiles 6(t)0,05, O(t&, and 
of the recursively obtained estimates at t = 2000 and t = 3000 are 

computed. The average, the standard deviation and the same fractiles are also 
computed for the estimates obtained from the off-line Krasker and Welsch 
algorithm. 

To give a visual interpretation of the distribution of parameter estimates a 
non-parametric kernel density estimator (Silverman, 1986) 

f(u)=-ggK(g 
l-l 

has been applied. h is the bandwidth (smoothing parameter), n is the number of 
estimates used in calculation and K is the kernel (weight function). In this study 
the Epanechnikov Kernel is used 

K(u) = 
$(l - fu’)/G, IUI < 5, 

0, 1+5. 
(59) 

4.4. Discussion of the results 

Table 1 shows the results of estimations carried out on data simulated with the 
first-order model without outliers. There is almost no difference in the results 
for the different algorithms, but it can be seen that there is a slight deterioration 
for lower values of c and a. This is reasonable since no erroneous information is 
present. Figure 3 shows the kernel estimate of the density of the estimates at 
t = 3000 obtained with c = 2 and a = 3. RLS obviously has the most narrow 
density, but RHU(2) is only slightly inferior. RKW(2, 3), however, shows a 
density with a little wider tails and a lower top level, and this is even more 
pronounced for RMO(2). This can be ascribed to the down-weighting or 
exclusion of information that actually is in accordance with the model. 
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Fig. 3. Kernel estimate of the density of the parameter estimate at t = 3000 for data without 
outliers. The kernel is Epanechnikov with bandwidth h = 0.004. 

In Table 2 is seen that with innovation outliers in data RHU, RKW and 
RMO improve compared to the situation with no outliers, whereas for RLS the 
result is very much the same without outliers and with innovation outliers. This 
is in accordance with Martin and Yohai (1985), who show that the asymptotic 
covariance of the LS estimates of AR and MA parameters is independent of the 
innovation distribution. However, for a heavy-tailed innovation distribution LS 
estimates can be inefficient compared to maximum likelihood (ML) estimates 
for the reason that LS does not make the most out of the increased precision 
attainable with heavy-tailed innovation distributions. When the distribution is 
not known, the M-estimator (3) can be applied for better utilization of the 
increased excitation for generally not known heavy-tailed innovation distribu- 
tions (Martin and Yohai, 1985). Certainly, this is the reason that RHU, RKW 
and RMO, for some values of c and a, do better than RLS. 

Kernel estimates of the recursive parameter estimates at t = 3000 in the 
first-order system with innovation outliers present is given in Figure 4. The 

6.75 0.76 0.77 0.78 0.79 0_.8 0.81 0.82 0.83 0.84 0.85 

Innovation outliers 01 

Fig. 4. Kernel estimate of the density of the parameter estimate at t = 3000 for data with 
innovation outliers. The kernel is Epanechnikov with bandwidth h = 0.004. 
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picture is almost the same as without outliers, except that RHU(2) is slightly 
superior to RLS. 

Turning to the results for the estimation on data simulated with additive 
outliers in Table 3, a large bias is seen with all algorithms. The smallest bias is 
obtained with RMO(2). A plausible reason for this is that it is easy for the 
algorithm to classify the outliers as such. RKW(2, 3) also shows a good perfor- 
mance evidently because it takes care of the outliers both by comparing the 
residuals to estimated variance and by calculating the length of the regressor, 
x(t), measured in the Euclidean norm in the space expanded by the estimated 
dispersion, a-‘(t). RHU(2) also reduces the effect of additive outliers but not 
quite enough, and as expected the bias is largest for RLS. It is evident that 
smaller values of c and a now give the best results. Comparing the results for 
the different types of outliers a reasonable choice seems to be (c, a) = (2, 3). 
Note that a large amount of SSD stems from the bias in the estimates. 

Obviously, it seems to be impossible to completely remove the bias of the 
parameter estimates with any of these recursive methods when additive outliers 
are present. In the off-line setting multi-stage methods, involving outlier detec- 
tion and filtering, can be applied. However, it is problematic to carry this over to 
a recursive estimation algorithm. 

It is seen that the estimated parameter corresponds to a faster system than 
the simulation system. This seems reasonable, because the additive outliers 
occur without being affected by the dynamics of the system, and therefore the 
contaminated observations seems to belong to a system with a smaller time 
constant. 

The non-parametric density estimates of the parameter estimates given in 
Figure 5 for the case with additive outliers clearly show the improvement 
obtained by using RKW and RMO. 

In Figure 6 the density of the RKW(2, 3) estimates is compared to the density 
of its off-line counterpart. The similarity between the densities is evident 
indicating that the approximations in the recursive version of the estimator by 

30 I I I I I I I 

RLS - 
25 - RHU(2) - - 

20 - 

15 - 

10 - 

0 
0.65 0.675 0.7 0.725 0.75 0.775 0.8 0.825 0.85 _ 

Additive outliers 01 

Fig. 5. Kernel estimate of the density of the parameter estimate at t = 3000 for data with additive 
outliers. The kernel is Epanechnikov with bandwidth h = 0.005. 
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RKW(2,3) - 
25 - KW(2,3) - 

20 - 

15 - 

10 - 

0.7 0.725 0.75 0.775 0.8 0.825 
Additive outliers @I 

Fig. 6. Kernel estimate of the density of the recursive and off-line Krasker and Welsch parameter 
estimate for data with additive outliers. The kernel is Epanechnikov with bandwidth h = 0.005. 

Krasker and Welsch is vanishing for an increasing number of observations. The 
same agreement is found between the densities of the estimates obtained with 
RlSW(2, 3) and KW(2, 31, respectively, for both cases without outliers and with 
innovation outliers (not shown). The results in Table 4 confirm that the 
estimates for all three outher settings are very much the same whether the 
off-line estimator proposed by Krasker and Welsch (1982) or the recursive 
algorithm is used. 

To illustrate the performance of the recursive scale estimator proposed in 
Section 3.3, kernel estimates of the density of both the recursive (t = 3000) and 
the off-line scale estimates obtained with the Krasker and Welsch estimator for 
(c, a) = (2, 3) are shown in Figures 7-9. It is seen that the recursive estimates 
have densities being similar to the densities of the off-line estimates. For data 
without outliers, the method gives a reasonable estimate of the scale. However, 
with innovation outliers in data the estimated dispersion is larger than for the 
outlier free observations, and this is even more distinct with additive outliers. 

By determining G in EfXz(e/g)] = 0 for e given by the three noise models, 
respectively (assuming that the model parameter is known), the expected scale 
parameter estimates, a,, = 1.0, Gto = 1.054 and GAO = 1.088, are obtained. For 
no outliers and for innovation outliers the center of the densities of the scale 
parameter estimates are close to the corresponding expected values. However, 
for additive outliers the center lies above the expected value. The explanation is 
most likely that for additive outliers the model parameter estimate is biased for 
which reason the prediction errors differ from the simulated noise components 
and therefore give rise an increased scale parameter estimate. 

Since our interest is to use the standard deviation of the outlier free 
innovations in measuring the prediction errors in the RHU and RKW algo-’ 
rithms it is not desirable that the scale parameter estimate is different from this 
standard deviation. Neither is it desirable that the scale parameter estimate 
increases with increasing outlier contamination since the optimal value of c thus 
depends on the contamination degree. However, for little contamination the 
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Fig. 

RKW(2,3) - 
KW(2,3) - - 

b.95 I 1.05 1.1 1.15 

No outliers 
6 

7. Kernel estimate of the density of the recursive and off-line Krasker and Welsch scale 
estimate for data without outliers. The kernel is Epanechnikov with bandwidth h = 0.004. 

35 I I I I 
30 - RKW(2,3) - _ 

KW(2,3) - 
25 - 

0.95 1 1.05 1.1 1.15 
Innovation outliers 6 

Fig. 8. Kernel estimate of the density of the recursive and off-line Krasker and Welsch scale 
estimate for data with innovation outliers. The kernel is Epanechnikov with bandwidth h = 0.004. 

35 ) I I I I I 
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KW(2,3) - 
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Addit,ive outliers k 

Fig. 9. Kernel estimate of the density of the recursive and off-line Krasker and Welsch scale 
estimate for data with additive outliers. The kernel is Epanechnikov with bandwidth h = 0.005. 

bias will be small and the optimal c-value will not change too much. It might be 
appropriate to search for methods with smaller bias, for instance, a $(u)-func- 
tion being zero for large values of u could be used in (61, but it is clear that 
when the model parameters are biased this will also be the case for the scale 
parameter estimate. 
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Table 5 shows the results obtained, when estimating the parameters of the 
second-order model. When innovation outliers are exciting the system, the 
RMO(2) algorithm gives a more flat distribution of the parameter estimates and 
a more disturbed parameter estimate trajectory than the rest of the algorithms. 
The differences are, however, small, and all of the algorithms are obviously 
working well. In the additive outlier case, however, the low value of the cut-off 
limit in RMO(2) forces the algorithm to expel of that large a part of the data 
that what remains is enough to make a good performance. The RLS estimates 
are brought far away from the true values of the parameters and hence, as is 
well known, RLS is a dangerous algorithm when applied to data with additive 
outliers. Irrespective of the nature of the outliers, the RKW algorithm performs 
satisfactorily. 

5. Conclusion 

The successful application of parameter estimation algorithms to real data 
demands that the algorithms are robust in order to reduce errors in the 
estimates originating from outliers of different kinds. The traditionally formu- 
lated methods for robust estimation only consider the off-line situation. How- 
ever, for several purposes, e.g., adaptive forecasting and control or efficient 
treatment of large amounts of data, on-line estimation is desirable. 

This paper describes a method for obtaining recursive robust on-line estima- 
tion algorithms. It is used to derive two recursive robust algorithms based on the 
minimization of robustified criteria, the Huber and the Krasker and Welsch 
criteria. 

A simulation study is carried out to investigate the performance of the 
estimators, when innovation and additive outliers are considered. Among the 
conclusions, which can be drawn from the simulation results, is that the RLS 
algorithm is not suitable for parameter estimation when the outliers are addi- 
tive, but when extended with a facility for treating the detected outliers as 
missing observations, it can handle also the additive outlier case. Furthermore, 
the recursive Huber method is sensitive to additive outliers, whereas the 
recursive Krasker and Welsch algorithm implies a considerable reduction of the 
bias which is due to the presence of additive outliers. 

It should be noted that the RMO algorithm that cuts away parts of the data 
possibly can get stuck in situations where all data are considered outliers and 
the estimates do not change. This cannot happen for any of the other algo- 
rithms. 
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