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Abstract 

This paper describes a method for estimation of continuous-time models for the heat dynamics of buildings based on discrete- 
time building performance data. The parameters in the continuous-time model are estimated by the maximum likelihood 
method where a Kalman filter is used in calculating the likelihood function. The modeling procedure is illustrated by using 
measurements from an experiment where the heat input from electrical heaters is controlled by a pseudorandom binary signal. 
For the considered building a rather simple model containing two time constants is found adequate. Owing to the continuous- 
time formulation the parameters of the model are directly physically interpretable. The performance of the model for both 
forecasting and simulation is illustrated. 
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1. Introduction 

In order to derive a total model for the heat dynamics 
of a building two different approaches can be used. 
The traditional approach is simply to use the knowledge 
of physical characteristics and well-established models 
of subprocesses. An alternative approach is to use 
building performance data and statistical methods. 

A serious drawback of the traditional approach is 
the difficulties involved with obtaining a reasonable 
parameterization. Generally the total model ends with 
a rather large number of parameters, and, owing to 
the unavoidable idealizations and simplifications, in- 
troduced both into the models of each of the individual 
subprocesses and into the coupling between the various 
subprocesses, it is very difficult to predict the accuracy 
of the total model. This problem is not present with 
the alternative approach since it is possible, by statistical 
methods, to deduce whether a given parameterization 
is reasonable, and, if not, how it can be improved. 

A special problem of the traditional approach is to 
achieve a reasonable description of the short-time dy- 
namical properties. Such a description is essential if 
the short-time variations of the room air temperature 
are important, as for instance when controllers con- 
taining a feedback from the room air temperature are 

considered. By using the alternative, statistical approach 
it is possible to describe variations on the whole time 
scale covered by the experimental data, and thus also 
the short-time dynamical properties provided the sam- 
piing time is chosen properly. 

In the last decades the alternative approach to ob- 
taining equations describing the heat dynamics of build- 
ings has been used still more frequently. Kusuda et al. 
[1] have used experimental data and ordinary least 
squares estimation to obtain a first-order difference 
equation for the dynamics of the thermal mass of a 
building, and Letherman et al. [2] have used experi- 
mental data based on pseudorandom binary sequences 
of the input to determine the heat dynamics. A rather 
flexible type of model is treated by Troelsghrd [3], who 
has used ARMAX processes when discussing dynamical 
models of the variations of the room air temperature 
in an occupied office building. Furthermore, Troelsg~ird 
discusses in Ref. [3] the importance of the various 
internal and environmental parameters for the variations 
of the room air temperature on a short time scale. 
ARMAX models are also discussed by Crawford and 
Woods [4], who consider a single-family residence with 
electric heating. A review on methods for estimating 
heat dynamic models of buildings in both the time and 
frequency domain is found in Ref. [5]. 
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Since the building performance data are sampled at 
discrete times, the model is most frequently formulated 
in discrete time as a difference equation. However, one 
serious drawback of the discrete-time formulation is 
that information about the physical parameters is par- 
tially hidden in the discrete-time parameterization. Fur- 
thermore it is frequently impossible, based on a discrete- 
time formulation, to find a reasonable continuous-time 
model, owing to observational errors or limitation in 
the flexibility of the model. When it is impossible to 
obtain a suitable continuous-time formulation it is also 
impossible to change the sampling time properly. Hence 
it is desirable to use an estimation method, where the 
parameterization is kept in continuous time. Further- 
more, this procedure ensures a more reasonable physical 
interpretation of the parameters, and it allows us to 
use the knowledge of, for example, physical constants 
or balance relations to improve the parameterization. 
Finally, if the estimation takes place in continuous time, 
information about the uncertainty due to quantization 
of physical characteristics may appear directly as a part 
of the estimation procedure. Models in continuous time 
have previously been proposed in Refs. [6-8]. However, 
these papers only consider deterministic models. 

The main purpose of the present paper is to discuss 
the estimation of a simple continuous-time stochastic 
model for an experimental building, which explicitly 
describes how the measurement and model errors enter 
into the model. Due to the continuous-time formulation 
it is possible to give a direct physical interpretation of 
the estimated parameters. It is believed that the ap- 
proach may contribute to a reduction of the gap between 
the conventional models based on physical character- 
istics and the pure empirical discrete-time approach. 
The relation between the stochastic continuous-time 
model and ARMAX models is outlined. As a secondary 
objective the paper discusses statistical methods for 
deducing whether any given model contains a reasonable 
description of the observed heat dynamics. Based on 
these methods it is demonstrated that the very simple 
model suggested gives a reasonable description of both 
the observed short- and long-time dynamical behavior 
of the considered experiment building. 

The method described in the paper is selected as 
the so-called advanced test method in the PASSYS 
project, which is a common European project related 
to passive solar energy research [9]. 

2. The test building and the experiment 

The data are from an experiment carried out by the 
Thermal Insulation Laboratory at the Technical Uni- 
versity of Denmark in the period during October 10-14, 
1983. The goal of the experiment was to form the basis 
for an investigation of statistical methods for identi- 

fication of building equivalent parameters. The data 
were previously analyzed in Refs. [10,11]. 

The test building is a single-story wood-built house 
with crawl and roof space. The floor and the walls are 
lightweight sandwich constructions based on a masonite 
beam insulated with 300 mm of mineral wool. The 
ground floor, which is the test space, is divided into 
an east and a west room, each of 60 m 2, by a partition 
wall insulated with 95 mm of mineral wool. The window 
area makes up 15% of the floor area, 10% facing south 
and 5% facing north. All the windows are triple glazed. 
The building is extremely tight. The air change rate 
has been measured to 0.005 ach by means of a tracer-gas 
decay method. Electrical heaters are used in both rooms. 
This form of energy supply makes it possible to consider 
rather flexible input signals. 

In the considered experiment, the room facing east 
is made thermally heavy by adding 92 m 2 of concrete 
flags with a thickness of 50 mm. The concrete flags 
are placed on racks, which ensure a very easy heat 
transfer by convection between the flags and the sur- 
rounding air. In the present context, only measurements 
from the east room are considered. 

Electrical heaters of 3 × 500 W are used for the 
energy supply in both rooms. For controlling the supply 
an on--off control has been used. The actual supply - 
either on or off - is determined by a pseudorandom 
binary sequence [12] (PRBS signal) with time period 
T= 1 h and order 6, as indicated in Fig. 1. The signal 
is a deterministic signal with white-noise properties, 
and shows no correlation with other external signals. 
Since the signal is deterministic, it can be selected in 
accordance with the interesting part of the frequency 
scale of variation. 

For the actual experiment the sampling time is 10 
min and the following variables are measured: 
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Fig. 1. The  m e a s u r e m e n t s  of  the indoor  a i r  t empe ra tu r e ,  T~, the 
solar  rad ia t ion ,  4's, the  amb ien t  a i r  t empe ra tu r e ,  T., and  the  PRBS 
con t ro l l ed  input  f rom the  e lec t r ica l  bea ters ,  ~bh. P R B S  signal:  N = 6 ,  
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Fig. 2. The measurements of incident solar radiation, input from 
the electrical heaters and room air temperature during a single day 
(October 12, 1983). 

• Ti room air temperature (°C); 
• To surface temperature (°C); 
• T. ambient (outdoor) dry-bulb temperature (°C); 
• ~bh energy input from the electrical heaters (W); 
• ~bs solar radiation on a vertical surface facing south 
(W/mS). 

Furthermore, some measurements from the first floor 
of the test building, which is used as an ordinary office, 
are recorded. 

The most interesting measurements are shown in 
Fig. 1; 534 observations of each variable are collected. 
In order to illustrate the covariation of the room air 
temperature, the solar radiation and the input from 
the electrical heaters, measurements of these variables 
are depicted together in Fig. 2 during a single day. 
The Figure shows that the room air temperature is 
profoundly affected by variations of both the solar 
radiation and the input from the electrical heaters. 
Considering the variation of the room air temperature, 
both a rather quick response just after the input is 
shifted and a more persistent response are recognized. 
This indicates that at least a second-order dynamical 
model is required for describing the variations of the 
room air temperature. 

The experiments are more deeply discussed in Ref. 
[13], and the test building in Ref. [14]. 

3. Formulation of a model  

In this Section the formulation of a simple model 
for the variations of the room air temperature is de- 
scribed. The model is set up in continuous time and 
the so-called equivalent thermal parameters (ETPs) are 
introduced. The final model is illustrated by electrical 
symbols in accordance with the commonly used ther- 
mal--electrical analogy. 

In the traditional approach the formulation of the 
model is based on knowledge of physical characteristics 
for the materials used and of suhmodels for heat 
conduction, convection and radiation. The total model 
of the heat transfer is thus (mostly) based on a simplified 
diffusion equation for the heat conduction in the walls, 
an equation for convectional heat transfer between the 
air and the surfaces, and some equations for the radiative 
transfer between surfaces. In a commonly used sim- 
plification, which is originally found in Ref. [15], the 
entire heat capacity of the materials is concentrated 
in a single heat-storing medium. Frequently this medium 
is thought of as a thin layer in the middle of the walls. 
If we define the following vector containing the external 
variables 

U = (Ta, ~ ,  ~bs)' (1) 

then a very simple total model for the indoor tem- 
perature T can be written as 

dT T 
c d t  r + b U  (2) 

where c is the entire heat capacity of the building, and 
r is a constant. The constant vector b determines how 
the external influence, U, enters the system. The model, 
Eq. (2), contains only a single time constant which is 
equal to rc. Since the single heat capacity in the model 
is supposed to describe the entire heat capacity of the 
building, the model is able only to describe the long- 
time variations. 

Without influence from the sun and the electrical 
heaters, it is natural to assume that at stationary con- 
ditions in Eq. (2), the indoor temperature T is equal 
to the ambient air temperature. This implies that the 
first element in the vector b is equal to 1/r. In this 
case r can be regarded as the resistance against heat 
flux between the indoor air and the ambient air. 

The very simple model, Eq. (2), is frequently con- 
sidered in the literature, for example, in Refs. [5,16,17]. 
Others have used a slightly modified version of Eq. 
(2), for instance in Ref. [10] it is found that the simple 
model was unable to describe the short-time dynamics. 
In order to overcome this problem they have modeled 
the short-time dynamics as a step change just after a 
shift in the heat input, but they suggest that an improved 
model must consider two time constants. 

Also in the present investigation the observed vari- 
ation of the room air temperature suggests at least two 
time constants - cf. Fig. 2. The heat capacity is 
dominated by the concrete flags placed on the floor 
of the building in the middle of the room. Since the 
outer wall of the considered test building is a very 
lightweight construction, it may then be reasonable to 
consider its heat capacity to be negligible. The heat 
supply from the sun and the radiators either reaches 
the indoor air by convection or the surfaces by radiation. 
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The above-mentioned facts and assumptions lead to 
the model suggested in Fig. 3. The states of the model 
are given by the temperature Tm of the large heat- 
accumulating medium with the heat capacity c=, and 
by the temperature Ti of the room air and possibly the 
inner part of the walls with the capacity ci. r~ is the 
resistance against heat transfer between the room air 
and the large heat-accumulating medium, while r, is 
the resistance against heat transfer from the room air 
to the ambient air with the temperature T,. 

The input energy is supplied by the electrical heaters, 
4'h, and the solar radiation which penetrates through 
the windows facing south, Aw 4)~, whereAw is the effective 
window area. The effective window area is the window 
area corrected for shade effects, absorption and re- 
flection by the triple-glazed windows. 

Based on Fig. 3 and the comments above about the 
energy supplies, the following model is proposed for 
the heat dynamics of the building: 

['mill 1 ]i m - -d -  r, cm 

dTi --- 1 1 1 

" - ~  ric---~ -- r(ci + rici-- T, 

Considering buildings where the heat capacity of the 
outer wall is negligible compared to the heat capacities 
inside the building, the above model describes an obvious 
extension to a model containing the two time constants 
of the simple model given in Eq. (2). If it is necessary 
to consider the heat capacity of the outer wall separately, 
it is possible to reformulate the model. 

Since the model proposed in Eq. (3) contains two 
time constants, it is theoretically able to describe both 
the long- and the short-term dynamics. In Section 5 
(Results and discussion), statistical methods are used 
to illustrate whether the model in Eq. (3) also in 
practice can describe the observed long- and short- 
time variation. 

In matrix notation the equations can be concatenated 
in the deterministic linear state space model in continuous 
time: 

dT 
- -  =AT+BU (4) 
dt 

where T is the state vector and U is the input vector. 
The dynamical behavior of the system is characterized 
by the matrix A, and B is a matrix which specifies how 
the input signals (outdoor air temperature, solar ra- 
diation, heat supply, etc.) enter the system. 

Most frequently, however, Eq. (4) is not able to 

[00''Cm l Ja 
+ 4.. (3) 

1 1 Aw(1 -p )  6~ 
raCi Ci Ci 

The temperature, Ti, of the room air (and the inner 
part of the walls) and the temperature, Tin, of the large 
heat-accumulating medium are the two states in the 
model. The constants cm, % r,, r~,Aw andp are equivalent 
thermal parameters, which describe the dynamical be- 
havior of the building, p is the part of the solar radiation 
which is directly affecting Tin. 

describe the deviation between Eq. (4) and the true 
variation of the states, an additive noise term is in- 
troduced. Then the model of the heat dynamics is 
described by the stochastic differential equation 

dT= AT dt + BU dt+ dw(t) (5) 

where the stochastic process w(t) is assumed to be a 
process with independent increments. Eq. (5) is the 
stochastic linear state space model in continuous time. 

There are many reasons for introducing such a noise 
term: 
• modeling approximations - for instance the dynam- 
ics, as described by the matrix A in Eq. (5), might be 
an approximation to the true system; 

\I/ /rQ 

/ca 
Fig. 3. A two-time-constant model of the heat dynamics of a building. 

Ti 

? Ch 
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• unrecognized and unmodeled inputs - some vari- 
ables which are not considered, e.g., wind speed, may 
affect the system; 
• measurements of the input are noise-corrupted - 
in this case the measured input is regarded as the 
actual input to the system, and the deviation from the 
true input contributes to w(t). 

Eq. (5) describes the evolution of all states in the 
system, but it is most likely that only some of the states 
are measured. If, for instance, we consider the state 
space model, Eq. (3), it is reasonable to assume that 
the temperature of the indoor air is measured, but not 
the temperature of the large heat-accumulating medium 
(it might also be difficult to find a reasonable tem- 
perature to measure in order to represent the tem- 
perature of the large heat-accumulating medium). In 
the general case we assume that only a linear com- 
bination of the states is measured, and if we introduce 
Tr to denote the measured or recorded variables we 
can write 

T~(t) = CT(t) + DU(t) + e(t) (6) 

where C is a constant matrix which specifies the linear 
combinations of the states that actually are measured, 
and D is a constant matrix which accounts for input 
variables which directly affect the output. The equation 
is, for obvious reasons, called the measurement equation. 

The term e(t) is the measurement error. The sensors 
that measure the output signals are affected by noise 
and drift. In the following it is assumed that w(t) and 
e(t) are mutually uncorrelated, which seems to be quite 
reasonable. 

For the considered experiment, where the system is 
described by Eq. (3), and only the indoor air temperature 
is measured, the measurement equation simply becomes 

Tr(t) = [0 1] iTm(t)i +e(t) (7) 
LT,(t) J 

where e(t) is the measurement error which accompanies 
the measurement of the indoor air temperature. 

4. A maximum likelihood method for parameter 
estimation 

In this Section it is shown how the parameters in a 
linear stochastic differential equation, such as the pre- 
viously formulated model for the heat transfer, can be 
estimated by using discrete-time measurements and the 
maximum likelihood method. This Section may be omit- 
ted without problems in understanding the subsequent 
Sections. 

It is assumed that the model of the heat dynamics 
is described by the stochastic differential equation, Eq. 
(5), where the state vector T is m-dimensional. With 
the purpose of calculating the likelihood function, the 

m-dimensional stochastic process w(t) is restricted to 
be a Wiener process with the incremental covariance 
R (0 dr. 

The measured variables are given by Eq. (6). It is 
assumed that the measurement error e(t) is normally 
distributed white noise with zero mean and variance 
R2. Furthermore, it is assumed that w(t) and e(t) are 
mutually independent. 

It is a crucial question whether the parameters of 
a specified state space model can be identified. If a 
nonidentifiable model is specified, the methods for 
estimation will not converge. The problem of identi- 
liability arises from the fact that for a given transfer 
function model, there corresponds, in general, a whole 
continuum of possible state space models. Therefore, 
we must introduce a restriction on the structure of the 
state space model, in order to provide a unique relation 
between the unknown parameters of the state space 
model and those of the transfer function. It can be 
shown that the model given in Eq. (3) can be identified 
- see Ref. [13]. 

4.1. From continuous to discrete time 

Since it is assumed that the system is described by 
the stochastic differential equation, Eq. (5), it is possible 
analytically to perform an integration which, under 
some assumptions, exactly specifies the system evolution 
between discrete time instants. 

The discrete-time model corresponding to the con- 
tinuous-time model in Eq. (5) is obtained by integrating 
the differential equation through the sample interval 
[t, t + 0- Thus the sampled version of Eq. (5) can be 
written as 

T(t + ¢) = exp[A(t + ~'- t)]T(t) 

+ J exp[A(t+z-s)]BU(s) ds 
t 

t + ' r  

+ J exp[A(t+ r - s ) ]  dw(s) (8) 
t 

Under the assumption that U(t) is constant in the 
sample interval, the sampled version can be written as 
the following discrete-time model in state space form: 

T(t + r) = ~i~(¢)T(t) + F(~)U(t) + v(t; z) (9) 

where 

~lr~(~-) = exp(AT); 

7); f 
t 

T 

F(~-)---f exp(As)B (Is 
0 

exp[A(t + z -  s)] dw(s) 

(10) 

(11) 
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Using the assumption that w(t) is a Wiener process, 
v(t; z) becomes normally distributed white noise with 
zero mean and covariance 

,r 

RI(z)=E[v(t; ~')v(t; ~)']= Jq~(s)R~q~(s)' ds (12) 
0 

If the sampling time is constant (equally spaced ob- 
servations), the stochastic difference equation can be 
written 

T(t + 1) = qt/'(t) +/ 'U(t)  + v(t) (13) 

where the time scale now is transformed such that the 
sampling time becomes equal to one time unit. 

4.2. Maximum likelihood estimates 

In the following it is assumed that the observations 
are obtained at regularly spaced time intervals, and 
hence that the time index t belongs to the set {0, 1, 
2, ..., N}. N is the number of observations. In order 
to obtain the likelihood function we further introduce 

Tr(t) = [T~(t), Tr(t-1) . . . . .  Tr(1), Tr(0)]' (14) 

i.e., Tr(t) is a matrix containing all the observations up 
to and including time t. Finally, let 0 denote a vector 
of all the unknown parameters - including the unknown 
variance and covariance parameters in R1 and R2. 

The likelihood function is the joint probability density 
of all the observations assuming that the parameters 
are known, i.e., 

L'(~, Tr(N))--p(T~(N)]O ) 

=p(T~(N)]T~(N- 1), O)p(%(N- 1)10 ) 

=( ~=p(T~(t)[Tr(t-1), O)~(T~(O)[O ) (15) 

where successive applications of the rule 
P(A riB) =P(A~)P(B) are used to express the likelihood 
function as a product of conditional densities. 

Since both v(t) and e(t) are normally distributed the 
conditional density is also normal. The normal distri- 
bution is completely characterized by the mean and 
the variance. Hence, in order to parameterize the 
conditional distribution, we introduce the conditional 
mean and the conditional variance as 

L(t[t- 1)=E[Tr(t)[T~(t- 1), 0] (16) 

and 

R(t[ t -  1) = V[T~(t)ITr(t- 1), 0] (17) 

respectively. Note that Eq. (16) is the one-step prediction 
and Eq. (17) is the associated variance. Furthermore, 
it is convenient to introduce the one-step prediction 
error (or innovation): 

< t )  = Tr(t) - L(tlt- 1) (18) 

Using Eqs. (16)-(18) the conditional likelihood func- 
tion (conditioned on Tr(0)) becomes 

Z(O; Tr(N))=t= (2~-) -m'2 det R( t l t -1 )  -1/2 

×exp[-~e'( t ) 'R(t l t -1)- le( t)]}  (19) 

where m is the dimension of the vector Tr. Most 
frequently the logarithm of the conditional likelihood 
function is considered. It is written 

1 N 
log L(~, Tr(N)) = - ~ ,+~l[log det R(tlt - 1) 

+ ¢(t)'R(t[t- 1)-1¢(t)] + const. (20) 

The conditional mean Jr(tit--1) and the conditional 
variance R(t[t - 1) can be calculated recursively by using 
a Kalman filter - see Refs. [18] or [19]. The Kalman 
filter is most easy to understand as formulas for re- 
cursively calculating a one-step prediction (or estimate) 
of the state of the system, together with formulas for 
updating (or reconstructing) this estimate. In the present 
case, where the transfer of the states of the system in 
discrete time is described by Eq. (13) and the obser- 
vations by Eq. (6), the equations for updating the estimate 
of the state T become: 

J'(t]t) = J'(tlt- 1) + Lt[Tr(t) - Cl"(tlt- 1)] (21) 

P(t[t) = P(t[t - 1) - LaR(ttt - 1)L't (22) 

where 

Lt = P(t[t - 1)C'R(t[t - 1) -1 (23) 

The predictive Kalman gain Kt is 

K, = qcL~ (24) 

The formulas for prediction become: 

7"(t + lit ) = q~(tlt) + l-U(t) (25) 

g ( t  + 1 It) -- C/'(t + 1 It) + DU(t + 1) (26) 

P(t + lit ) = t/~P(t[t)q~' + R1 (27) 

R(t + lit ) = CP(t + 1]t)C' + Ra (28) 

The filter requires some initial values, which describe 
the prior knowledge about the states of the system in 
terms of the prior mean and variance: 

/'(110 ) = e[ r (1) ]  =/Lo (29) 

P(1]0) = V[T(1)] = Vo (30) 

The matrix P ( t+ l l t  ) is the variance of the one-step 
prediction of the state T of the system. In the considered 
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case the value of / to  is equal to the first observation 
(for both state variables), and Vo = 104. 

The recursive use of the Kalman filter as it is for- 
mulated above can be explained in the following way: 
assume that the time is ( t -1 ) ,  and we have calculated 
the prediction and the associated variance for the state 
at time t. When the next observation (Tr( t ) )  at time t 
becomes available, Eqs. (21)-(23) can be used for 
updating the estimate of the state. Using the updated 
values it is then possible to calculate the prediction 
and the associated variance for the state at time (t+ 1). 

The maximum likelihood estimate (ML estimate) is 
the set 0 which maximizes the conditional likelihood 
function. The IMSL-routine DBCONF [20] was used 
in the maximization of the likelihood function. 

An estimate of the uncertainty of the parameters is 
obtained by the fact that the ML estimator is asymp- 
totically normally distributed with mean 0 and variance 

D = H  -1 (31) 

where the matrix H is given by 

E[  02 logL(~  Tr(N))] 
{h~} = - taO--O~ (32) 

An estimate of D is obtained by equating the observed 
value with its expectation and applying 

{hjk} = - a o ~  log L(0; Tr(N)) (33) 

The above equation is thus used for estimating the 
variance of the parameter estimates. If an estimated 
variance is large compared to the actual estimated value 
for a parameter, this indicates that probably this pa- 
rameter can be eliminated from the model (the pa- 
rameter is assumed to be equal to zero). 

The method can be extended to cases where the 
noise is not perfectly normally distributed. In that case 
the method is a prediction error method (PEM) - 
see Ref. [21]. 

Table 1 
Maximum likelihood estimates for the east room with approximate 
standard errors of the estimates (SEE) shown in parentheses 

Parameter Estimate 

p free p =0 

ei (SEE) 
e~. (SEE) 
f, (SEE) 
f. (SEE) 
A. (SEE) 
p (SEE) 
/~ll. 1 (SEE) 
/~22, I (SEE) 
/~2 (SEE) 

1.183 (0.090) kWh/°C 
4.005 (0.514) kWh/*C 
0.4789 (0.0479) *C/kW 
29.25 (13.55) *C/kW 
2.866 (0.552) m 2 
0.0101 (0.1317) 
0.00266 (0.00171) *C a 
0.00468 (0.oo3o9) *Ca 
0.00019 (0.00016) °C 2 

1.183 (0.030) kWh/*C 
3.987 (0.218) kWh/*C 
0.4788 (0.0154) *C/kW 
29.38 (9.37) °C/kW 
2.845 (0.139) m 2 

0.00265 (0.00084) °C 2 
0.00469 (0.00090) °C 2 
0.00019 (0.00006) °C 2 

A description of the numerical details can be found 
in Ref. [22]. The method has formed the basis for a 
general software system for continuous-time linear sys- 
tem modeling [23]. 

5. Results  and discuss ion 

It was argued previously that the lumped model in 
Eq. (34) is expected to be reasonable for the considered 
test building: [_1 (1) 
I dT~ I riCm riCm 

= 1 1 1 
dT~ - + 

rici raCi 

0 0 Awp 
Cm 

+ 
1 1 Aw(1-p) 

raci Ci cl 

[ dwm(t) 1 

+ dwi(t) 

4~ dt 

4,s 

(34) 

Tr(t) = CT(t) + e( t )  (35) 

The constants Cm, el, r,, ri, A ,  and p are the equivalent 
thermal parameters. 

The obtained maximum likelihood estimates of the 
parameters of the model in Eq. (34) are shown in the 
first column of Table 1. The corresponding approximate 
standard errors are shown in parentheses. 

It is seen that the parameter p, which describes the 
fraction of the solar radiation which is directly affecting 
the large heat-accumulating medium, is close to zero. 
In order to deduce whether it is reasonable to assume 
that p really is zero, a likelihood ratio test is performed 
based on the restriction p = 0. The test has shown that 
the hypothesisp = 0 cannot be rejected on any reasonable 
level. Therefore, it is concluded that the solar radiation 
is directly affecting only the room air including the 
inner part of the walls. The second column in Table 
1 shows the results under the restriction p =  0. 

The estimated variance of the one-step prediction 
error (cf. Eq. (18)) of the recorded indoor air tem- 
perature, Tr, is ~=(0 .0316  °C) 2. 

At stationary conditions the one-step prediction var- 
iance is constant, i.e., 

P(t + lit ) = P ( t [ t -  1) = P® (36) 
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By using Eqs. (22), (27) and (36), an equation for 
P® is obtained. This is the stationary Riccatti equation 
(see Ref. [21]): 

P® = ~ o ,  O' + Ra -  q~P~C'[CPo~C' + R2]- aCP® q ~' (37) 

In the estimated system, the stationary one-step pre- 
diction variance for the state T is 

[0.00164 0.000471 
P® = [0.00047 0.00080] (38) 

Thus the variance of the one-step prediction error of 
the state T~ is 36®, 22 = 0.00080 = (0.028 °C) 2. Following 
Eq. (28) the stationary variance of the one-step pre- 
diction error of the recorded variable is 

System error Measurement error 

6-~= P®.22 + R2 =(0.0315°C) 2 (39) 

which nicely corresponds to the variance of the observed 
one-step prediction error. It is also seen that the 
measurement error is small compared to the 'system' 
error. 

The input matrix 

0 0 Awp 1 Cm 

B = ( 4 0 )  

1 Aw(1 - p )  

raCi Ci Ci 

determines how the influences from the outdoor air 
temperature, the solar radiation, and the electrical 
heaters affect the temperature of the room air and the 
temperature of the heat-accumulating medium. The 
zero values in the B matrix indicate that the outdoor 
air temperature and the electrical heaters affect the 
heat-accumulating medium only through the indoor air 
temperature - and not directly. 

The dynamical characteristics are described by the 
matrix 1(1)1 riCrn riCm 

A =  1 _ 1 + __1 (41) 

rici raCi ri¢i 

By using the estimates in Table 1 for p = 0, the ei- 
genvalues and eigenvectors of A become 

A~= -2.3121 h -~ and A2 = -0.0065 h -1 

[ 0"28111 :[0.7115 l 
Vl= -0 .9597]  and vz [0.7026J 

respectively. Based on the eigenvalues, the time con- 
stants are found as 

~', = - l/A,; i = 1, 2 (42) 

which, given the above eigenvalues, lead to the following 
time constants: 

~'1 = 26 min and ~'2 = 154 h 

Any state T= (T~, T~)' can be described as a linear 
combination of the eigenvectors. By considering the 
eigenvectors and eigenvalues for the estimated system, 
it is shown in the next Section that the long-time 
variations are related to situations where the room air 
temperature and the temperature of  the heat-accu- 
mulating medium are almost equal, whereas the short- 
time variations are roughly related to a difference 
between the two temperatures. 

5.1. Transient trajectories 
When the external influence signals are constant, a 

stationary value of the state exists which is independent 
of the initial state vector. The above interpretation of 
the eigenvalues and eigenvectors becomes more evident 
by considering the transient trajectories describing how 
the state of the system, T(t) = [Tm(t), Ti(t)]', approaches 
the stationary state T( oo ) = [ T m (  oo ) ,  Ti( oo)]' for different 
choices of the initial state T(to) = [Tm(to), T~(to)]'. When 
the time parameter is eliminated this is called a phase 
plot. 

Let us assume that the input is U =  (Ta, 4~h, ~bs) ' =  0 
for t >/to, then 

T(t) = exp[A(t - to)] T(to) (43) 

Using the eigenvalues and eigenvectors, Eq. (43) can 
be written as 

T(t)=zl(to) exp[Al(t-to)]Vl + Z2(to) exp[Az(t-to)]V2 ( 4 4 )  

where [zl(to), ZE(to)] are the coordinates of the initial 
state in the vector space spanned by the eigenvectors, 
i.e., 

zl(to)] , 1 [ Tm(/o)] 
Z2(to)]=[Vl V2I- [Zi(to ) J (45) 

Fig. 4 shows the transient trajectories for three different 
choices of the initial state: T1 = (10, 20)', Tz = (20, 20)' 
and / '3=(20, 10)'. 

The initial state/ '3 might be reasonable for describing 
a situation where the room has been ventilated recently. 
The ambient air is supposed to be 0 °C. Shortly after 
ventilation the temperature of  the indoor air will rise 
due to heat from the heat-accumulating medium and 
simultaneously the temperature of the heat-accumu- 
lating medium will decrease slightly. The direction of 
the increase in the indoor air temperature and decrease 
in the temperature of the heat-accumulating layer is 
mainly determined by vl and the rate of change is 
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Fig. 4. Transient trajectories for three different initial states. 

determined by A1. As the temperatures 7"1 and :/'2 become 
(nearly) identical a simultaneous decrease of the tem- 
perature along the direction v2 will begin (since no 
external energy source is supposed to be available). 
The rate of decrease is now determined by A2. The 
above separation in a trajectory, which first is determined 
by v~ and then by v2, is caused by the fact that the 
system is extremely stiff, i.e., ~2 >> rl. In situations where 
eigenvalues are of the same order of magnitude, such 
a separation is not seen as clearly. 

5.2. Transfer function representation 

If only the relation between the input and output 
signals of the system is of interest, the transfer function 
representation might be regarded as a sufficient de- 
scription of the system. The transfer function is obtained 
from the stationary state space representation simply 
by eliminating the states. 

Let us restrict our attention to the discrete-time case, 
and consider the innovation form of the discrete-time 
state space representation: 

J'(t + 110 = ~ ( t l t  - 1) + FU(t) + KE(t) (46) 

Tr(t) = C?'(tlt - 1) + ,(t) (47) 

which is readily obtained by the Kalman filter equations 
and using the fact that D =0.  

By elimination of ?'(t+ lit ) in Eqs. (46) and (47), the 
transfer function representation is obtained, i.e., 

Tr(z) = C(zl - ~ ) -  1/U(z) + C(zI - ~ ) -  ~Ke(z) + ,(z) (48) 

where z denotes the z-transform variable. Since the 
order of • is two, the transfer function representation 
corresponding to the estimated model becomes 

(z 2 + a lz + a2)Tr(z) = (bl. oZ + b~. 1)T,(z) (49) 

+ (b2. oZ + b2, ,)Oh(Z) + (b3. oz + b3, ~) ~b,(z) 

+ (z 2 + + c2) (z) (50) 

Based on the estimated parameters forp---0 in Table 
1, the following transfer function representation is 
obtained: 

(z 2-1.6791263z + 0.6794737)Tr(z) 

= 0.00416(z - 0.9166)Ta(z) (51) 

+ 0.1223(z- 0.9166)¢h(Z) 

+ 0.3480(Z -- 0.9166)~bs(Z) (52) 

+ (z 2 -  0.9547z + 0.1296)e(z) (53) 

The high number of digits stated for the autoregressive 
part of the transfer function is necessary to obtain 
reliable steady-state relations, due to the stiffness of 
the system. Note that the zero of the transfer function 
is identical for all the input signals, due to the very 
simple structure of the B matrix in the case p = 0. 

The zeros of the autoregressive part, which are the 
poles of the transfer function from all input signals, 
become 

Pl = - 0.6802 (54) 

P2 = - 0.9989 (55) 

Note that the poles for the discrete-time transfer func- 
tion might have been calculated from the eigenvalues 
of the A matrix belonging to the continuous-time model 
by the relationship 

p, = exp(?ti ./') i = 1, 2 (56) 

where r is the sampling time (1/6 h). 

5.3. Steady-state equations 

If only the steady-state behavior of the system is of 
interest, one might regard it more convenient to consider 
a static equation rather than the dynamical equation, 
Eq. (34). The stationary situation is characterized by 
dT/dt=0. Hence it follows that the equation which 
expresses the static relationship between the influences 
U and the state T is given by 

T= -A-~BU (57) 

By using the estimated parameters for p = 0 in Table 
1 we can compute the stationary equations, and a 
rearrangement of the terms in the equation for Ti yields 

~bh = (0.03404 kW/°C)(Ti - r , )  - (2.845 m2)¢s (58) 

Alternatively the steady-state equation is obtained 
by putting z =  1 in the transfer function Eq. (53). 

Such a steady-state equation might be used as a 
simple characterization of the steady-state heat transfer 
properties of the building. It is important to notice 
that the above steady-state equation is an outcome of 
a dynamical model, which then accounts for the serial 
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correlation, which in traditional regression analysis may 
cause problems. 

6. Evaluation of the model 

The estimated model is evaluated by three different 
approaches. Firstly, the estimated parameters are com- 
pared with parameters calculated by the traditional 
approach from the physical characteristics of the build- 
ing. Secondly, statistical methods are used for verifi- 
cation of the model, and finally, the model performance 
in simulation and forecast applications is illustrated. 

6.1. Comparison with physically evaluated parameters 

By the traditional approach a model of the heat 
dynamics is obtained by using physical constants of the 
building materials employed, and well-known models 
of subprocesses which are extrapolated to a model for 
the whole building. It is, however, very difficult to 
predict the accuracy of the final model, even when the 
simple model given in Eq. (2) is considered. 

In Ref. [10] values for the parameters in the simple 
model of Eq. (2) were calculated. The parameters are 
determined by using physical constants for the building 
materials employed. For the resistance against heat 
transfer to the ambient air, r, their calculations give 
values from 24.7 to 27.7 °C/kW, and for the total heat 
capacity, c, their calculations give 7.0 kWhPC. Com- 
paring these with the estimated values in Table 1 and 
the associated estimation error, it is noticed that the 
calculated value of r and the estimated value ro are 
nearly equal, whereas the calculated value for the total 
heat capacity is higher than the estimated value. 

The transparent window area facing south is 4.9 m 2. 
Taking the reflection at low angles of incidence into 
account, around 60% of the incident solar radiation is 
expected to penetrate through the triple-glazed win- 
dows. The effective window area is thus 2.9 m 2, which 
corresponds very nicely to the estimated value of A,~ 
in Table 1. 

As a whole, it is concluded that the estimated pa- 
rameter values nicely correspond to the calculated values 
for those parameters which are most easily calculated 
from basic physical knowledge, but not for the rest of 
the parameters. Note that some of the estimated pa- 
rameters have no physically determined counterpart. 
In a dynamical description of the house, e.g., for 
simulation purposes, where the heat capacity also be- 
comes important, it is concluded that the simple model 
of Eq. (2) used with physically determined parameters 
gives a bad description compared to the estimated 
extended model. 

6.2. Evaluation of the residuals 

One point which is often overlooked in discussions 
about the sufficiency of models for heat dynamics of 
buildings is that statistical methods can be used to 
judge whether the model describes all the observed 
autocorrelation or dynamics of the building. The idea 
behind the statistical methods is that if the residuals 
from the estimation of the model can be considered 
to be a sequence of uncorrelated random elements 
(white noise), then no more information about the mean 
value and the correlation properties of the system is 
left in the residuals and thus all autocorrelation is 
described by the model. 

The estimated autocorrelation function based on all 
the residuals is shown in Fig. 5. Confidence bands of 
approximately 95% under the hypothesis that the re- 
siduals are white noise are also shown. Since only three 
of the 24 autocorrelations are just outside the confidence 
bands, it is reasonable to accept the hypothesis that 
the residuals belong to an uncorrelated random se- 
quence. 

If the residuals contain hidden periodicities, a study 
of the correlation in the frequency domain can be more 
useful to reveal such periodicities than the autocor- 
relation function. The periodogram [24] describes how 
the variation of the residuals is distributed on fre- 
quencies. For a sequence of white noise this variation 
is equally distributed, i.e., the cumulative periodogram 
is a straight line from 0 to 1. Fig. 6 shows the cumulative 
periodogram for the residuals, and confidence bands 
of approximately 95% under the hypothesis that the 
residuals are white noise. Since the estimated cumulative 
periodogram lies inside the confidence bands, it seems 
reasonable to consider the residuals as a white-noise 
sequence. Summing up, it is concluded that both the 
observed time dependence and causality are reasonably 
well described by the model, which especially means 
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Fig. 7. Simulated and measured room air temperature. Initial value 
of Tt is 24.62 *C. 

that the model order is high enough to describe the 
system. 

6.3. Simulation and forecasting 

Generally, the models of the heat dynamics of build- 
ings are to be applied either for simulation or forecasting. 
This Section illustrates the performance of the for- 
mulated model for these two purposes. 

Fig. 7 shows the measured and the simulated room 
air temperature. As a starting point for the simulation 
(Tm, Ti)=(25.45 °C, 24.62 °C) is used. The starting 
point for the room air temperature is taken as the first 
observation, whereas the starting value for the heat- 
accumulating medium is taken as the interception be- 
tween the estimated straight line and the ordinate, 
since this temperature is not directly measured. A good 
agreement between the measured and simulated tem- 
perature is observed, and the model describes reasonably 
well both the long- and the short-time performance of 
the system. 

The performance of the model for forecasting is 
illustrated in Fig. 8, which shows forecasts 30 min (or 
3 steps) ahead of the room air temperature Ti. The 
one-step forecasts of T= (Tin, Ti)' are calculated as 

?'(t + lit ) = ~ ( t l t -  1) + /U( t )  + K~t) (59) 

where K is the stationary value of K(t) determined by 
the stationary conditions of the Kalman filter equations. 
Hence the n-step forecasts are calculated by repeated 
use of 

~(t + k + lit ) -- ¢¢F(t + klt ) + I~( t  + klt ) (60) 

for k = l ,  ..., n - l ,  where O(t+klt ) is the predicted 
influence signal at time t+k. In the present example 
the ambient temperature and the solar radiation at 
time t are used as the predictions at time t + k, whereas 
the input from the electrical heaters is considered 
deterministic and therefore totally predictable. This is 
in accordance with the fact that the input from the 
electrical heaters is selected before the experiment. 
The prediction used for the ambient temperature and 
the solar radiation is thus very simple, and an improved 
predictability of the room air temperature is naturally 
obtainable by using more adequate predictions of the 
influence signals. Models for the outdoor climate which 
are useful in such applications are described by Madsen 
[25]. In Ref. [26] it is shown how lumped models for 
the heat dynamics of buildings can form the basis for 
an improved control of the heat supply. 

In the case of perfect information about the future 
influences, the variance of the n-step forecast error is 
calculated by repeated use of 

Wk+ 1 = ¢~¢¢k ¢~' + R1 (61) 

with the starting value Wl = P(t) = P, which is determined 
from the stationary conditions of the Kalman filter. 
Based on the estimates in Table 1 the variance of the 
forecast error for the predictions 30 min ahead becomes 
(0.042 °C) 2 in the case of perfect information. However, 
owing to the uncertain predictions of the influences, 
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Fig. 8. Measurements and 30-min forecasts of the room air tem- 
perature. 
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the variance of the forecast error for the forecasts 
shown in Fig. 8 can be estimated to be (0.058 °C) 2. 

7. Conclusions 

A procedure for estimation of continuous-time models 
for the heat dynamics of buildings based on building 
performance data measured in discrete time is proposed. 
The fact that the model formulation and modeling is 
done in continuous time implies that the model can 
be iteratively improved easily by a combination of more 
detailed comparisons with data and use of physical 
facts. By this approach the problems associated with 
the modeling approaches mainly used today are reduced 
or eliminated. 

The serious problem associated with the traditional 
approach, which uses the knowledge of physical char- 
acteristics to derive a total model for the building, is 
that it is impossible to predict the accuracy and the 
sufficiency of the total model, and very often the pro- 
cedure leads to a very complicated model. Furthermore, 
a special problem of the traditional approach is to 
achieve a reasonable description of the short-time vari- 
ations, which can be especially useful in control sit- 
uations. 

In the proposed method the accuracy of the model 
is directly estimated and represented as covariance 
matrices of the states and parameters, and the problem 
of sufficiency and over-parameterization is readily an- 
swered by analyzing the residuals and by considering 
the variance of the estimates. A model of the important 
short-time variations for control purposes is obtained, 
provided that the measurements contain the actual 
information, i.e., the sampling time is chosen properly. 

In an alternative approach the dynamic model is 
obtained solely by statistical methods. The disadvantage 
of such a method is the difficulties that might be involved 
with physical interpretation of the parameters in the 
most commonly used discrete-time parameterization. 
In the proposed method the parameterization is kept 
in continuous time which ensures a more reasonable 
interpretation of the parameters. Furthermore, the con- 
tinuous-time formulation makes it possible to change 
the sampling time properly. 

In the considered experiment it turns out that a 
model with two time constants gives a reasonable de- 
scription of the observed variation. A model is for- 
mulated which, probably in many situations, can serve 
as a reasonable approximation of the heat dynamics 
of buildings where the heat capacity in the outer wall 
is of minor importance. Compared to the single-time- 
constant model frequently used, the proposed model 
is an extension containing two time constants, and thus 
it is able to describe both the long- and the short-time 
variations of the indoor air temperature. 
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