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The purpose of this paper is to describe a method
for determining transfer functions for the air tempera-
ture in greenhouses. Such models are required for
using modern control strategies such as the general-
ized predictive controller. The input variables are heat
from the heating system and from solar radiation. The
structure of the transfer functions is identified from
preliminary estimates of the impulse response func-
tions obtained by using ridge regression.

In order to provide reliable and accurate parameter
estimates an experiment was designed and conducted
in January and February 1991. Data were sampled at
2 min intervals over two periods. During the experi-
ment the heat supply was controlled by a pseudo
random binary signal (PRBS) in order to avoid
correlation between the heat supply and other vari-
ables, and in order to ensure that the dynamic
characteristics of the greenhouse were present in the
data.

For both periods, a transfer function model was
determined, and good agreement between the models
for the two periods was observed. The methods used
show that for the greenhouse considered, a third order
model with two time constants for the response from
the heating system is adequate. A short time constant
of about Smin and a longer time constant of about
25 min were found.

1. Introduction

The energy input in greenhouses in a temperate
climate zone as in Denmark is normally large, espe-
cially in winter. In order to reduce the energy con-
sumption in greenhouses, research has been done to
improve the system for controlling the supply of
cnergy. Today, energy supply in greenhouses is con-
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trolled typically by a proportional integral differential
(PID) controller.

The long-term purpose of the project is to devise a
control system whereby the energy supply is con-
trolled by a prediction of temperature states in the
greenhouse. Controllers of this type are the minimum
variance controller' and the general predictive
controller.? Prediction-based controllers have proved
to be powerful® and they contain the ordinary PID
controllers as special cases. Model-based adaptive
control of greenhouses has previously been considered
by Udink ten Cate* and Davis and Hooper.® The
performance of prediction-based control systems de-
pends on the possibility of obtaining good predictions
of the temperature states in the greenhouse. The
prediction of the temperature states depends on
factors that have a significant influence on the air
temperature inside the greenhouse. As a first step in
the project an experiment was carried out to develop a
method for identifying the dependence of the air
temperature inside the greenhouse on the heat input
from the heating system and solar radiation. This
paper describes the results of this experiment.

2. The Box-Jenkins transfer function model

The dependence of the air temperature inside the
greenhouse on the heat input from the heating system
and the solar radiation will be described by a Box—
Jenkins transfer function model,® which is briefly
introduced in this section.

A time series is a set of observations generated
sequentially in time. Let {y,} =y, }5, ..., y. denote a
time series of length n with equidistant sampling
interval. It is convenient to introduce the backward
shift operator, B, defined by By, = y,_;.

Let {x}=x;,x3,...,x, be another time series

© 1995 Silsoe Research Institute



26 B. NIELSEN

sampled at the time intervals as {y,}. On the assump-
tion that the relationship between {x.} and {y,} is a
causal, linear and time invariant system, then there
exists an impulse response function {v;} so that y, is
given by the convolution between v, and x, (Ref. 6).

Ye= 2 ViXi—k (1)

k=0

Using the backward shift operator, B, this is written

2

Where v(B)=v,+v,B +v,B>+---. The function
v(B) is often approximated by a transfer function
which is a ratio between two polynomials®

i

where (r,s) is the order of the transfer function,
wy, Wy, ..., 8,,8,,...,8, are constants and b is a
delay from the input series {x,} 1o the output series
{y}

Most frequently, however, not all the variation of
{y.} can be described by {x,}. In order to take this into
account the model is rewritten as

i

where {N,} is a possibly autocorrelated time series.

On the assumption that the variation of {N,} can be
described by an auto regressive moving average model
(ARMA model) then the Box-Jenkins® transfer func-
tion model is finally obtained, i.e.

-
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where 6,,6,,...,0, ¢, ¢2,..., ¢, are constants
(p, g) is the order of the ARMA model of {¥} and
{g} is a white noise process with variance o2 The
model may be written in short as
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Frequently, it is required to extend the Box-Jenkins

transfer function model to a model with several input
variables, i.e.
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where x;, is the ith input. Note, that a transfer
function component is introduced for each input.

3. The experiment

The experiment was conducted from 28 January to
10 February 1991. This part of the year was chosen
because a typical winter period with a typical demand
on heat supply was wanted. The greenhouse is smailer
than commercial greenhouses, being 8m X 21:5m in
base area. It is constructed of steel with glass in
aluminium frames, where the distance between the
frames is -8 m. The greenhouse is placed in an area
with other greenhouses used for experiments. A more
detailed description of the house can be found in
Nielsen er al.”

Inside the greenhouse there were four benches of
which two were half filled with plants. The heating
system consisted of three pipe heating systems, with
horizontal pipes running the length of the greenhouse
with heat provided by hot water running through the
pipes. The largest heating system is placed towards the
top of the house, along the side wall, and is called the
wall/top heating system. The second and smallest
system is placed just under the bench. The third
heating system is placed near the floor, and is called
floor heating.

During the experiment, a two-level strategy of
heating from the heating system was used. The actual
supply, either low or high, was determined by a
pseudo random binary signal (PRBS). The two levels
were obtained in the following way. The flow of water
was kept constant, and the inlet water temperature for
the heating system just under the benches was kept
constant. The inlet water temperature for the other
two systems, i.e. the wall/top and floor heating, were
the same and controlled by the PRBS, which then
determined whether the heat supply should be on the
high or low level. In order to obtain the two levels, the
difference between the inlet temperature and the air
temperature was kept at one level for the low heat
supply and a higher level for the high heat supply.

3.1. The pseudo random binary signal (PRBS)

When a greenhouse is heated, the control system
will introduce a correlation between solar radiation
and energy supplied by the heating system. This
happens because the control system attempts to main-
tain a constant air temperature. The correlation intro-
duces a difficulty at the identification stage. To avoid
the correlation between the heat input and other input
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variables, the energy from the heating system was
controlled by a pseudo random binary signal (PRBS).2
The signal determines the switch between the two
levels of energy input into the greenhouse. The
advantage of using a PRBS is that it has an autocor-
relation close to white noise and hence is not corre-
lated with other input signals.

A PRBS is a determinmistic signal generated by a
shift register which switches between two levels, zero
and one. Most frequently, the PRBS signal is con-
structed by selecting the shortest (A) and the longest
time interval (nA} where the signal is constant. In
this experiment the choice of the two intervals
was A=72min for the shortest time interval and
4x =288 min for the longest interval. The complete
period of the signal is of A(2" — 1) = 1080 min (18 h).
In Fig. I one complete period of the PRBS is shown.
Since, the PRBS is a deterministic signal, the signal is
repeatable. See Godfrey® for further details about
PRBS.

3.2. Data and data sampling

The experiment was divided into two periods,
namely, midnight on 28 January to midnight on 30
January and midnight on 7 February to midnight on
10 February 1991. During cach period the tempera-
ture inside the greenhouse, the solar radiation, the
temperature outside the greenhouse and inlet and
outiet water temperature of the heating system were
sampled every second minute. All the data was
collected by a PDP 11 computer.

The air temperature in the greenhouse (7} was
measured in the middle of the house 15 m above the
floor and behind an aspirated screen with a platinum
resistance temperature sensor.

The temperature in the heating system was meas-
ured with paired platinum resistances temperature
sensors. A sensor was placed for measuring the inlet
water temperature (7;) of water entering the heating
system. The outlet water temperature (7,) was meas-
ured by another sensor placed on the heating system

PRBS
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Fig. 1. One period (18 ) of the used pseudo random binary
signal (PRBS)

where the water leaves the house. The solar radiation
(Q,) was measured with a Kipp & Zone solarimeter
placed on the top of the roof on a neighbouring
greenhouse. The outdoor temperature (7,) was meas-
ured in a Stevenson Screen.

4. Results

In this paper, the energy input from the heating
system is used as an input variable for prediction of
the air temperature. The energy input of the heating
system to the greenhouse is assumed to be propor-
tional t0 a mean temperature difference (7;) which is
the difference between the mean temperature of the
pipes in the heating systems and the air temperature
(T;} in the greenhouse. The formula used is

Q=cT;
Ti=#{T+T)-T,

(8)
9

where (J is the energy input to the greenhouse, and ¢
is a constant belonging to the heating system.

Data from 1 day of the experiment are shown in
Fig. 2. Solar radiation (Q,) is the radiation on a
horizontal surface outside the house. The theoretical
maximum of the solar radiation for the period when
the experiment was running is about 350 W/m?. The
day shown in Fig. 2 is typical for a day with an
overcast sky.

The plot of T, in Fig. 2 shows how PRBS deter-
mines the mean temperature difference. When the
PRBS was 1 the mean temperature difference rises
about 13°C compared with the situation where the

signal was zero. A higher mean temperature
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7 February 1991
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difference gives a higher input of energy into the
greenhouse and results in an increase of the air
temperature (7;). Also, the solar radiation which
increases before and after midday gives a higher air
temperature.

4.1. Spectral analysis

Often, spectral analysis is useful as a diagnostic tool
in the analysis of time series.%®°

Fig. 3 shows the spectrum of the air temerature. It is
seen that the variation is dominated by low fre-
quencies. White noise is characterized by having a
constant spectrum for all frequencies. Hence white
noise behaviour is seen for frequencies larger than
roughly 0-2 cycles per 2 min. Compared with the 95%
confidence interval it can be concluded that the main
variability in the time series is at low frequencies and
concentrated at cycles where the period is larger than
2 min/(+2 = 10 min.

4.2, Identification of models with ridge regression

In order to estimate the transfer function com-
ponent in Eqn (7), knowledge of the values of s, r and
b from each of the input variables is needed. Box and
Jenkins® suggested that these values can be guessed
from the pattern of preliminary estimates of the
impulse response weights {vi} of Eqn (1). They also
proposed a preliminary estimations procedure called
prewhitening procedure. But in the present case the
procedure is not useful because it requires ARMA
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Fig. 3. Spectra of air temperature, 95% confidence limit is
(—2:39,331)dB
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models of the input variable but the heat energy from
the heating system cannot be described by an ARMA
model because it is switching between two levels due
to the control by the PRBS.

Hence, another method has been used, namely, that
of Edlund" who proposed a preliminary estimation
procedure based on ridge regression. Figs 4 to 7 show
the preliminary estimates of impulse response weights,
975 and P, (the “hat” indicates that the values are
estimates) of the model

99

Ti= 2, (VraTauei + VouQei) + N,

k=0

{8)

where v, is the impulse response weight of heat from
the heating system at the kth previous measurement,
and vy, is the impulse response weight of solar
radiation at the kth previous measurement. Note that
only the first 100 values of the impulse response
weights are considered.

An impoertant item of information from the prelimi-
nary estimates of the impulse weights in Figs 4 to 7 is
the immediate response already at k = 1. Therefore,
any time delay between air temperature and the
dependent factors, seems to be at most one sample
(2 min). At the same time, it is important 10 remem-
ber that the pattern of the impulse response weights
where k is larger than about 50 are of less importance
compared with the first impulse response weights.®
Especially for k£ > 90, the weights possessed a different
pattern compared with impulse response weights for
k <<90. For the values of k near 100 the results are
simply not reliable, since the preliminary estimates at
these impulse weights try to account for the influence
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Fig. 4. Preliminary estimates of the impulse response weights
obrained from ridge regression of T, on the previous meas-
urements of T, in period 28-30 January 1991
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of weights for k > 100, which are not considered in the
ridge regression.

Preliminary estimates of the impulse response func-
tion from the energy from the heating system seem to
show a peak at kK =3 in the first period (Fig. 4). If the
impulse response weights from k >3 can be described
by an exponential decay, then the denominator of the
transfer function component from the energy of the
heating system must contain a model of first order.®
The impulse weights for k <3 follow no fixed pattern.
These weights will determine the order of the nume-
rator in the transfer function. However, due to the
small coefficient at k=10, only three values in the
numerator polynomial are needed. Hence, the order
of the numerator polynomial is two. A reasonable
transfer function component [see Egn (3)] relating the
energy from the heating system to the air temperature
might be:

Wy — (l)lB - ﬂ)sz)

"(B):( 1- 8,8

%
The impulse response weights of the heating system in
Fig. 5 does not seriously contradict the above model in
Eqn (9).

In Figs 4 and 5 the pattern of the coefficients shows
some evidence of a combination of an exponential
decay and an oscillation structure. To handle this
oscillation the order of polynomial in the denominator
has to be increased by two. Thus, a possible revised
model is:

(t)()_w-[B_szz )B

B =(
B = 5B 0.5 - 5.8°

(10)

In the same way Figs 6 and 7 can be analysed for
the structure of the transfer function from solar

40
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Fig. 5. Preliminary estimates of the Iimpuise
weights obtained from ridge regression of T, on the previous
measurements of T, in period 7-10 February 199]
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Fig. 6. Preliminary estimates of the impulse response weights
obtained from ridge regression of T, on the previous meas-
urements of Q| in period 28-30 January 1991

radiation to the air temperature. The outcome of this
analysis is that no order bigger than three is expected
for the numerator and the denominator of the transfer
function from the solar radiation.

For simplicity, a third order polynomial is con-
sidered for both numerators, and no time delay from
both inputs is assumed. Hence the following prelimi-
nary overall model for the air temperature of the
greenhouse is considered to be

2 3
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Fig. 7. Preliminary estimates of the impulse response weights
obtained from ridge regression of T, on the previous meas-
urements of @, in period 7-10 February 1991
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where wr;, 87, and wg,;, 8, are the constants in the
transfer functions from the heating system and solar
radiation respectively. The structure of 8(B) and ¢(B)
are identified by conventional time series analysis
based on the autocorrelation function of N, (see Box
and Jenkins® for further information).

4.3, Model estimarion and validation

After the identification of the model, the structure
of the parameters can now be estimated. For the
estimation, a maximum likelihood method is used.'?
All parameters were estimated simultaneously includ-
ing the parameters of the noise model. The standard
errors of the parameters in the models were also
estimated. Estimates of the parameters from the
different models are shown in Tables 1 and 2. The
tables contain the results from period 1 and 2,
respectively.

The first model in Tables 1 and 2 corresponds to the
most complicated model identified in the previous
section, Eqn (11). The other models in the tables
correspond to the most attractive reductions of this
model. However, a lot of other alternative model
structures have been considered, but they are not
shown since they are not candidates for a reasonable
model. To facilitate comparisons of the different
models the Schwartz’s Bayesian criterion (SBC} is also
shown. This is defined by Schwarz'? as

SBC=nlogé*+plogn (12)

where s is the number of observations, p is the total
number of parameters and 67 is the estimated vari-
ance of the white noise process in the model. The best
model is the one which has the mathematically small-
est value of SBC (note that these values are negative).

Model 2 in Tables 1 and 2 is a third order model of
the denominator in the transfer function of the energy
from the heating system [as in Eqn (10)] and a first
order model of the denominator of transfer function
from the solar radiation fas in Eqn (9)}. Compared
with model 1, this model is, in both cases, better,
owing to significantly lower values of SBC. The
difference in the number of parameters between the
two models is seven. In model 2, o, is zero and a time
delay of 2 min is assumed for the energy input from
the heating system and the solar radiation.

In Tables 1 and 2, models 3 and 4 respectively,
contain a second and a first order polynomial in the
denominator of the transfer function from the heating
system. Due to the SBC criteria it is concluded that
model 2 is the best model in both cases.

From the estimated parameters of the (ransfer

functions it is possible to calculate the roots of the
polynomials. From the roots of the denominator
polynomial the time constants can be calculated as:

= At
In |a|

(13)

where At is the sampling time (2 min), and « is a root
of the denominator polynomial. A 95% confidence
limit of 7 is calculated by a resampling procedure
where the (not shown} correlation between §,, 8, and
84 is used. Table 3 shows the time constants with 95%
confidence limit of the heat input from the heating
system and the solar radiation for the best model,
i.e. model 2 in Table 1 and Table 2.

Two time constants were calculated for the response
from the heating system in model 2. This is the
outcome of one real root and two complex roots. For
the two periods the longest time constant was estim-
ated to 30min and 21 min, and the shortest time
constant to 5-5min and 4-4 min, respectively. How-
ever, the time constants for the two periods are of the
same magnitude. Thus, values of about 5 and 25 min
can be proposed for the short and long time
constants, respectively, In Table 3 the estimated
constant for the response from the solar radiation was
30 and 40 min for the two periods. These values are
not significantly different, as indicated by the 95%
confidence interval in Table 3. Hence, a single value
of about 35 min can be proposed for the time constant
related to the solar radiation.

The impulse response function of the energy from
the heating system is calculated from model 2, for
both periods and shown in Figs 8 and 9. The impulse
response function in Figs 8§ and 9 can be compared
with the preliminary impulse response estimates in
Figs 4 and 5. The oscillation structure in the impulse
response function is most likely owing to the con-
troller of the heating system itself. The same oscilla-
tion structure can also be seen in Fig. 2, especially
when the heating system is in the beginning of a
pertod with a high level of energy output.

The assumption that {¢} is white noise, in Eqn (5),
was tested by means of cumulative periodograms.®
The cumulative periodograms, with a 95% confidence

Table 3
Time counstant, v (min), for model 1 in Table 1 and Table 2

Solar
Period Heating system radiation
7 (min) 28-30 January 1991 30 5-5 40
95% C.1. [2440] (42:7-4) {33;52)
T (min}  7-10 February 1991 21 4-4 30
95% C.L [18:27] [3-3:57] [24; 40)
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Fig. 8. Impulse response function of the energy from the
heating sytem in period 28-30 January 1991

limit, were calculated for model 2 and are shown in
Figs 10 and 11 for the two periods.

The cumulative periodograms in Figs 10 and 11 are
inside the confidence limits. This means that model 2
seems to give a reasonable description of the varia-
tions of the air temperature in the greenhouse.®

5. Discussion

The time constants found in this experiment are in
accordance with time constants found by Udink ten
Cate.* He found one dominant time constant of
approximately 20 min of the heat transfer from the
heating system to the air temperature in a greenhouse.
Udink ten Cate* also found that the time constant for
energy from the solar radiation was larger than the
time constant from the heating system. Here it is
found that the dominant time constant for energy
from the solar radiation is between 30 and 40 min.
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Fig. 9. Impulse response function of the energy from the
heating system in period 7-10 February 199]
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Fig. 10. Cumulated periodogram of residuals of air tempera-
ture in period 28-30 January 1991 (with 95% confidence
limits)

The best model for both periods is almost alike.
However, the model used does not include the humi-
dity in the greenhouse. The humidity of the air will
properly influence the time constants of the green-
houses. But it was not possible to include the humidity
as a parameter in the transfer model, because the
humidity of the air has a strong correlation with the
air temperature. Thus, to include the humidity in the
model, a non-linear model has to be considered.

Another parameter not included in the present
models is the outdoor temperature. But the outdoor
temperature turned out to have no significant effect on
the indoor temperature in the second period and only

LY
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A

Fig. 11, Cumulated periodogram of residuals of air temmpera-
ture in period 7-10 Februarv 1991 (with 95% confidence
diintits)
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a small influence, compared with the solar radiation,
in the first period. If, however, the outdoor tempera-
ture is included in the model as an extra input
variable, the estimated model becomes:

. _189+( 26-9 — 18-4B )T
o 1-2-00B +1-47B> — 0-44B%/ 7V
( 272 )Q N (0-127 + O-OSBB)T

1—0-9478/ <50~ 1—0-7198 /¢ D

(1 _ 1198 + 0-3232)
1 —1-868 + 0-868%/°®

The estimated transfer function from the outdoor
temperature is of order one. The root «,=1-39
corresponds to a time constant of 6-1 min. The estim-
ated variance of residuals is 0-00988, and SBC is
estimated to —3736, the decrease of SBC from model
2 (Table 1) to this model is —3698 — (—3736) = 38.
This shows a significant dependency on the outdoor
temperature, but comparing the significant level with
the significance level of the solar radiation the outdoor
temperature has only a small effect. The reason that
the outdoor temperature shows only a small effect in
these experiments, is due to a very small variation in
the outdoor temperature during the short experi-
ments. If the experiments were run for a longer period
or in a climate with large variations in the outdoor
temperature, then the temperature would be expected
to cause significant variation.

6. Conclusions

A method for identification of transfer function
models for the heat dynamics of greenhouses is
proposed. By this method it is possible to identify and
estimate a reasonable model of the air temperature in
a greenhouse. Although a greenhouse is a distributed
system, which approximately can be described by a
large number of time constants, it has been demon-
strated that a reasonable model with only a few
time-constants can be found.

The identified models describe the air temperature
adequately using only two input variables, namely
energy from the heating system and from solar radia-
tion. The identification of the model is based on a
two-step procedure. The first step gives preliminary
estimates, using ridge regression, of the impulse res-
ponse function from the solar radiation and the
heating system. From the preliminary estimates of the
impulse response function the time delay from inputs
to output and the number of parameters in the

transfer functions are found. In the second step the
parameters of the transfer function model are estim-
ated by the method of maximum likelihood.

The model is estimated using data from an experi-
ment. In the experiment the heat supply was con-
trolled by a pseudo random binary signal. By this
approach a correlation between the heat supply signal
and other input signals is avoided.

From the identified transfer function model the time
constants of the system are calculated. The order of
the denominator of the tramsfer function from the
solar radiation is estimated to be one. The corres-
ponding time constant is about 35 min,

The order of the denominator in the transfer
function from the heating system is estimated to be
three. This allows for a pattern of the impulse function
with an exponential decay in combination with an
oscillation. Two time constants were estimated; a
short one of about 5min and a larger one of about
25 min.
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