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GREY BOX MODELLING OF OXYGEN LEVELS IN A SMALL 
STREAM 
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SUMMARY 
Data from a stream is used to identify a dynamic model of the oxygen level as a function of solar radiation 
and precipitation. The time series of the oxygen level is occasionally corrupted by pumping of external water 
into the stream, which is of no interest to the biological processes in the stream. In this paper a grey box 
modelling approach, which is a statistical method taking the known physical relations into account, is 
used. Using this approach, an identification of a stochastic continuous time model for the oxygen level based 
on the discrete time data, where the corrupted data are considered as missing values, is outlined. 

KEY WORDS oxygen dynamics; time series analysis; missing data; continuous time modelling; grey box 
models 

1. INTRODUCTION 

The purpose of this work is to establish a stochastic model of the oxygen level in a creek as a 
function of solar radiation and precipitation. Oxygen, measured as dissolved oxygen, is the most 
universal environmental factor when water quality in rivers and streams is evaluated. The level of 
oxygen determines the kind of aquatic fauna that may exist, and thereby the trophic level of the 
ecosystem. Harremoes and Malmgren-Andersen (1990) state that there is a pronounced need for 
stochastic descriptions of the different processes that influence water quality in order to obtain a 
better understanding of the involved phenomena. 

This paper describes a grey box modelling approach to identify a continuous time linear 
stochastic dynamical model of the oxygen level in a small stream based on time series with 
missing values. The missing values are due to an occasional disturbance of the measurements, 
which is of no interest to the dynamics we wish to model. They are therefore identified, and 
considered as missing values. 

Time series analysis traditionally deals with black box models, i.e. models which are identified 
purely on the basis of data. It may be questioned whether such models are only representative of 
the data themselves, and not of the general dynamics and physics behind the data. 

Bohlin (1984), Madsen et al. (1985), Madsen and Melgaard (1991), Melgaard and Madsen 
(1993) and Melgaard (1994) describe a so-called grey box approach that combines available 
physical knowledge with statistical modelling tools. This is done by using well-known physical 
equations, and including them in the analysis, along with a set of data, which are then used to 
estimate the parameters, and validate or falsify the model structure. 

No matter how well understood a system is, there are always uncertainties and phenomena that 
have not yet been detected or fully realized. Therefore, combining physical knowledge with 
information from data is an optimal approach towards understanding a physical system. 
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In Denmark, the Water Pollution Act, WPA, has set standards for stationary waste water 
discharge. A combined sewage system is designed with a specific hydraulic capacity, which 
includes an expected rate of overflow. The system has built-in storage basins to take some of the 
load when the sewage system cannot handle the extra during heavy rainfall. Overflows of 
polluted oxygen-free water will occasionally enter the environment, with negative consequences 
for the recipient quality. 

The essence of the problem involves three different components: the drainage system, the 
sewage treatment plants and the recipient. Each of these components are equally important, but 
while the first two have been the subject of much research, the recipient has not yet been 
submitted to such thorough investigation. Rainfall is a powerful transient burden of the entire 
system, that may give rise to discharge of oxygen consuming components, resulting in lowered 
oxygen levels and dead fish as some of the repercussions. Thus the WPA-standards eventually 
may result in huge investments in renewal and restoration of the sewage system, as well as in the 
monitoring of the recipients. 

Many of the dominant mechanisms which determine the variations of the oxygen level in small 
streams and rivers are quite well known and described deterministically by, for example, 
Simonsen (1994), Harremoes et al. (1989) and Harremoes and Malmgren-Andersen (1990). 
However, there are many approximations involved, as the oxygen dynamics involves several 
transient components: the natural diurnal and annual oxygen oscillation, caused by photosynth- 
esis and respiration from plants, and the sudden external influence during rain. This causes so 
much high frequency variation (noise) that calibration of deterministic models is very difficult, 
and stochastic modelling has to be considered. 

2. THE DATA AND THE VARIABLES 

The dependent variable is the oxygen content of a small creek that runs along a recreational area 
in Copenhagen. The input variables are temperature, solar radiation, precipitation and water 
depth. 

Oxygen (mg/l) and temperature ("C) data were measured online, in the middle of the stream, 
every 3-5 minutes, and show a marked diurnal variation. 

Solar radiation, measured as global radiation, has a great influence on the oxygen content in a 
creek and therefore a clear diurnal (and annual) variation is found for the oxygen. The variation 
in amplitude is, however, according to Harremoes and Malmgren-Andersen (1990) and Madsen 
et al. (1985), of a random nature due to the variation of cloud cover. Solar radiation (W/m2) is 
measured every 10 minutes at H~ijbakkegird, a nearby agricultural meteorological station. 

Precipitation data, given as an intensity (pmls), is collected and stored by the Danish 
Meteorological Institute. A thorough explanation of the collecting system and the measuring 
methods may be found in Bramslev (1989) and Jacobsen and Voss (1994). 

Water depth is measured a bit down stream from the other measurements and is therefore only 
an approximation to the depth at the measuring station. However, since it is an important 
parameter, it has been included. 

2.1. Sampling 

Since the observations in the different series were not equally spaced, sampling was necessary. 
For the three variables of interest, the hourly measurements of the solar radiation is the longest 
time interval and the radiation at time t is given as the mean over the preceding hour. It was then 
chosen to sample all the data like the solar radiation. See Jacobsen and Voss (1994) for a more 
thorough description of the sampling techniques employed. 
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Figure 1 .  The scaled measurements of oxygen, solar radiation depth, temperature and precipitation. The oxygen 
measurements show the missing values 

This sampling technique suppresses a lot of the high frequency variation, giving a smoother 
variation. A more correct treatment of filtering and sub-sampling, in order to avoid aliasing, was 
considered, but since the solar radiation series were available only as averaged hourly values, it 
was decided to treat the other series likewise for consistency. After sampling, each of the three 
time series contained 1460 hourly observations including 41 1 missing values. 

3. A DYNAMJCAL MODEL FOR THE VARJATION OF OXYGEN 

The measurements of the input and output variables for five days are depicted together, scaled for 
comparison, in Figure 1. The figure shows that the oxygen level is affected by variations in both 
solar radiation and precipitation. There seems to be a delayed response in relation to the input, 
specifically from a shift in the solar radiation. The response to precipitation input is not as 
distinct as the response to the solar radiation. The depth of the water in the stream is seen to be 
highly correlated with the precipitation, although a little delayed. Whenever the water depth 
shows an increase, so does the oxygen level. 

A dynamical system, such as a stream, is very complex. All the physical processes are not 
known and therefore difficult to describe in detail. In this section, only a brief introduction to the 
physical and chemical processes and the derivations of the governing differential equations will 
be shown for the oxygen dynamical system. For further details, see Jacobsen and Voss (1994). 

Autocorrelations and partial autocorrelations revealed that a system of at least two state 
variables were to be expected (Jacobsen and Voss 1994). When the oxygen level of a small stream 
is to be evaluated, the concentration of organic matter is known to be the foremost important 
factor. Therefore, it seemed natural to have the concentrations of oxygen and organic matter as 
the two state variables. 

The mass balance for oxygen and organic matter are thoroughly explained and derived in 
Harremoes and Malmgren-Andersen (1990). The mass balance for a water element is based on 
the assumption of total mixing and no longitudinal dispersion. The assumption of total mixing is 
usually fulfilled, except very close to the source of an organic matter discharge. 

3.1. The differential equations 

In the present complex dynamic system, where both the physical and chemical parameters behind 
the oxygen levels in a creek are interrelated, both non-linear and stochastic elements should be 
included in the description. A sketch of the processes involved is shown in Figure 2. 
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Figure 2. Overview of the processes involved with oxygen concentrations 

The following two differential equations are suggested for the state variables oxygen, C, and 
organic matter, L. They are mainly inspired by Harremoes et af. (1989) and Harremoes and 
Malmgren-Andersen (1 990), though the precipitation terms, involving P,, are our own presump- 
tions: 

where 

C,(T) = 14.5294 - 0-3735771T + 0.004973443T2 (mg/l) 

R ( T )  = ~ ~ ~ e ~ - ~ ~  (mg/l) (3) 
P(Z) is some function of the solar radiation, I ,  e.g. P(Z)  = ,LIZ (Cosby 1984), which is used in the 
following. This linear function does not incorporate possible saturated or even inhibiting 
conditions, which are assumed to be of limited importance. The coefficients in the empirical 
function for C,(T), the solubility of oxygen in water as a function of water temperature, are 
estimated via curve fitting to a table given in Harremoes et al. (1989). Respiration at temperature 
15"C, Rts ,  is estimated along with the other parameters in the model. Otherwise, the function is 
empirical with 8 = 1.07. 

The physical explanation for the differential equations may be expressed as the change in 
oxygen is depleted by a contribution from re-aeration of the measured oxygen, K/(hJh)C ,  but 
replenished from the saturated oxygen concentration, K / ( h J h )  C,( T ) .  Degradation of organic 
matter from various sources in the water volume also uses oxygen, K1,L, while photosynthesis, 
P(Z),  from solar radiation produces it. Depletion of oxygen is also caused by the respiration, 
R ( T ) ,  and from the sediment at the bottom of the creek via Kb. The change in organic matter is 
depleted by degradation, KIIL ,  but replenished by oxygen involved in nitrification, K3C, which 
provides nourishment in the form of nutrient salts. 

Photosynthesis as a function of solar radiation has been the subject of much research for lakes, 
but not much for small streams and rivers. It obviously depends on plants, or rather the 
chlorophyll in the plants, which in turn depends on pH and nutrients in the stream. 

3.1.1. Physical and chemical factors 

The two main differential equations for the state variables, oxygen concentration and organic 
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matter (equations (1) and (2)), involve both physical and chemical factors. These are described in 
the following. 

Solar radiation, I ,  may be influenced by solar elevation and cloud cover, possibly depending on 
water quality. It is assumed that there is no light saturation or inhibition. According to 
Harremoes and Malmgren-Andersen (1990), about 44 per cent of the total solar radiation lies 
in the photosynthetic active spectral area. 

Re-aeration is an oxygen exchange from the air, striving to maintain equilibrium. Absorption 
of oxygen, in the water, is assumed to be a first-order process: 

where K is a constant comprising Froudes number, 9 4 ,  the absorption coefficient, the gradient of 
the stream, I, and the gravitational acceleration, g. Equation (5 )  shows a dependence on the 
water depth, h, but, since it is negligible and to keep it simple, Froudes number is considered 
constant. Crn(T)  is the saturated oxygen concentration at temperature T ,  and C is the oxygen 
concentration. Harremoes et al. (1989) and Harremoes and Malmgren-Andersen (1990) give a 
detailed account for the re-aeration process. Stream velocity, slope of the stream bottom, i.e. 
water flow, are important factors. The dependence of temperature for the saturated oxygen 
concentration, C,,,(T), is tabulated in Harremoes et al. (1989). In this project a function is 
empirically fitted to the tabulated values. Higher temperature causes higher total respiration and 
low re-aeration due to high oxygen saturation. 

Respiration, R( T ) ,  from the plants in the creek uses oxygen. It is weakly dependent on the 
temperature, as described by equation (3). Respiration of organic matter, represented by CH20, 
is considered constant over the day. That makes it independent of the content of organic matter, 
plant types, the light intensity and of the oxygen-concentration itself, which may not be entirely 
likely, but commonly accepted as a first approximation (see Harremoes and Malmgren-Andersen 
(1990)). It utilizes oxygen, 02, produces carbon dioxide, CO2, and generates energy, which is 
stored by the opposite process, photosynthesis. 

energy 
0 2  + CH20 c------) COZ + H20. 

Photosynthesis, P ( I ) ,  is a process where plants convert light into chemical energy. In a model 
for photosynthetic production of oxygen, light is assumed to be the only limiting factor, and, for 
simplicity, the production of oxygen is assumed proportional to the light intensity. With 
photosynthesis depending primarily on the light intensity and respiration being almost constant, 
the diurnal cycle from solar radiation is clearly recognized in the oxygen variation (see Figure 1). 

Degradable orgunic matter in excess of what is needed to sustain life is not in itself harmful for 
the fish in the stream, but mineralization removes oxygen from the water. The cutting of 
weeds in the stream has a large, but unknown, effect in this context. The classical theory (as 
presented in Harremoes and Malmgren-Andersen (1990)), regarding decomposition of organic 
matter, is based on the assumption that the processing of organic matter, in a element of water 
following the stream, can be described as a first-order process: 

where M L  is the production of organic matter. The degradation constant, K11, is related to the 
organic matter, L, as indicated by the subscript. 
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Sedimentation, K,, and extraction, K,, is particular organic matter falling to the bottom of the 
creek by gravity, and dissolved organic matter being extracted from the water phase, respectively. 
A first-order removal is also assumed here, i.e. dC/dt = (Ks + K,)L. These terms, as well as the 
degradation of organic matter, influencing the oxygen concentration, will be incorporated in one 
term only: K1,L. 

NitriJcation uses oxygen in the biochemical oxidation of ammonia over nitrite to nitrate. 
Ammonia is present in waste water, run-off from farm land and decomposition of organic matter 
in the mineralization process. The stoichiometric coefficient is about 4.3 mg O2 per mg NH: - N 
(NH; - N is ammonium bound as nitrogen). Since the organic matter is nourished by these salts, 
the production of organic matter depends on oxygen through the nitrification process. This term 
is then included as dL/dt = K3C, 

Precipitation, P,, onto, and evaporation from, the surface of the stream itself will be neglected 
due to the very small surface. Precipitation run-off, though, may be of significance, thus 
accounting for some direct dependency and resulting in a delayed oxygen consumption. If this 
dependency is related to oxygen diffusion in the sediment, Harremoes et al. (1989) has shown that 
it is a half order process, thus resulting in the term with the square root of the oxygen 
concentration. The unknown contribution from precipitation (with an optimum delay, found 
to be 4 hours), in relation to the two state variables, will be incorporated with the term P,. 

4. A MAXIMUM LIKELIHOOD METHOD FOR PARAMETER ESTIMATION 

In this section it is shown how the parameters in a linear stochastic differential equation are 
estimated using discrete time measurements and the maximum likelihood method. 

4.1. The model in state space form 

A model formulation based on physical laws will typically be a set of coupled differential 
equations. To account for the stochastic fluctuations, as well as the model discrepancies from the 
true system, stochastic terms are added. Thus the uncertainties and lack of knowledge about the 
system are included in the stochastic terms. 

Including stochastic terms, the differential equation (equations (1) and (2)) can be written in 
state space form: 

where the last term is an additive noise term, which is introduced to describe the deviation 
between equations (1) and (2) and the true variation of the state variables C and L. 

Only the oxygen concentration is measured. The recorded oxygen concentration, C,, can be 
written as 

where e ( t )  is the measurement error. 
In a short notation the equations are written: 

dX = AXdt + BUdt + dw(t) 
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and 
Y ( t )  = CX(t) + e(t) (11) 

where the matrix A characterizes the dynamical behaviour of the system and B is a matrix which 
specifies how the input signals enter the system. X is the state vector and U the input vector. 
Furthermore, w ( t )  is assumed to be a process with independent increments. With the purpose of 
calculating the likelihood function, w(t) is restricted to be a Wiener process with the incremental 
covariance Rf  ( t  )dt. e(t) is the measurement error, assumed normally distributed white noise 
with zero mean and variance RZ. Furthermore, it is assumed that w(t)  and e(t) are mutually 
independent. 

It is a crucial question whether the parameters of a specified state space model can be identified. 
If a non-identifiable model is specified, the methods for estimation will not converge. See Madsen 
et al. (1990), Melgaard and Madsen (1993) and Melgaard (1994) for a further discussion on 
identifiability . 

4.2. From continuous to discrete time 

Since it is assumed that the system is described by the stochastic differential equation (lo), it is 
possible analytically to perform an integration which under some assumptions exactly specifies 
the system evolution between discrete time instants. 

The discrete time model corresponding to the continuous time model (10) is obtained by 
integrating the differential equation through the sample interval [t, t + TI. Thus the sampled 
version of (10) can be written as: 

(12) 
t rT t +T 

X(t + T )  = eA('+'-')X(t) + / eA(t+T-S)BU(s)ds + eA(t+T-s)dw(s). 

Under the assumption that the input vector, U(t), is constant in the sample interval, the sampled 
version of (10) can be written as the following discrete time model in state space form: 

X(Z + T) = + r(T)u(t) + vjt; 7) (13) 
where 

*(r)  = eAT 

t f T  

v(t; 7) = J eA(r+T-s)dw(s). (16) 
t 

Equation (1 3)  is the discrete form of equation (lo). 

noise with zero mean and covariance: 
On the assumption that ~ ( t )  is a Wiener process, v ( t ; ~ )  becomes normally distributed white 

R1 (T) = E[v(t; T)v(~; T)'] = B(s)RfO(s)'ds. (17) 
0 

If the sampling time is constant (equally spaced observations), the stochastic difference equations 
can be written: 

x(t  + I )  = +x( t )  + ru(t) +v(t) (18) 

where the time scale now is transformed such that the sampling time becomes equal to one time 
unit. 
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The calculations above were carried out assuming that U(t) was constant through the 
sampling interval [ t ,  t + TI. In the following we shall, however, assume that U(t) is linear through 
the sampling interval. It is advantageous for cases where the measurements have been low pass 
filtered, e.g. by simple averaging, or generally when the input are not controlled. 

The implementation of the linear interpolation is a modification to the derivations above. The 
modification is in the calculation of the term: II(T)U(t) in equation (13). 

Assuming that U(s) is linear through the points ( t ,  U(t)) and ( t  + T ,  U(t + T)) results in the 
calculation: 

= j;eASB(T - s)/Tds(U(t + T) - U(t)) + I'(T)U(t) 

Hence equation (1 8) becomes: 

The numerical details are described in Madsen et al. (1991). 

4.3. The likelihood function 

It is assumed that the observations are obtained at regularly spaced time intervals, and hence that 
the time index t belongs to the set {0,1,2,. . . N } .  N is the number of observations, or rather the 
length of the time series. Some of the observations may be missing. In order to obtain the 
likelihood function we further introduce: 

Y*(t) = [Y(t),Y(t - l ) ,  1 . .  , Y ( l ) ,  Y(O)]' (21) 
i.e. Y*(t) is a matrix containing all the observations up to and including time t .  Finally, let 8 
denote a vector of all the unknown parameters - including the unknown variance and covariance 
parameters in Rf and R2. The case of a missing observation is easily handed by assuming R2 = 00 

for that time instant, and taking Y ( t )  to an arbitrary value. 
The likelihood function is the joint probability density of all the observations assuming that the 

parameters are known, i.e. 

L(e;~*(iv)) = p ( ~ * ( ~ ) p )  

= P ( Y ( N )  I Y*(N - I ) ,  %(Y*(N - 1) 18) 

\?= 1 

where successive applications of the rule P ( A  n B) = P ( A  1 B)P(B) is used to express the 
likelihood function as a product of conditional densities. 

Since both v(t)  and e(t) are normally distributed, the conditional density is also normal. The 
normal distribution is completely characterized by the mean and the variance. Hence, in order to 
parameterize the conditional distribution, we introduce the conditional mean and the conditional 
variance as 

*( t i t  - 1) = E[Y(~)  I Y * ( ~  - I) ,  el (23) 
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and 

R(tjt - 1) = V[Y(t))Y*(t - 1),6] 

respectively. It is noted that (23) is the one-step prediction and (24) the associated variance. These 
can be calculated recursively by a Kalman filter. 

4.4. The Kalman filter 

A Kalman filter is a recursive, linear, real-time processing algorithm, which gives an optimal 
estimate of the states of a dynamic system in a noisy environment. It is used to recursively 
calculate the one-step prediction for the state of the system together with formulas for updating 
(or reconstructing) this estimate, based on a new observation. 

In the present case where the transfer of the states of the system in discrete time is described by 
equation (2) and the observations by equation (1 l), the equations for updating the estimate of the 
state X, according to Madsen (1989) and Melgaard and Madsen (1993), becomes 

%(t i t )  = % ( t i t -  1 ) + K , ( Y ( t ) - % ( t ) t - l ) )  (25) 
P ( t  I t )  = P(t I t - 1 )  - K,R(tl t - 1)K: (26) 

where the Kalman gain, K,, is 

K, = P ( t I t -  l)C’R(t\t- l)-’. (27) 

The formulas for prediction becomes 

The formulas require some initial values which describe the prior knowledge about the states of 
the system in terms of the prior mean and variance: 

X(ll0) =E[T( l ) ]  = P O  

P(1lO) = V[T(l)] = Vo. 
(32) 

(33) 

The matrix P(t + 1 I t )  is the variance of the one-step prediction of the state, X(r + 1 I t ) ,  of the 
system. 

Using equations (21)-(24) the logarithm of the conditional likelihood function (conditioned 
on Y(0)) is calculated: 

l N  
logL(Q;Y*(N)) = - jx ( logde tR( t l t  - 1) + ~ ( t ) ’ R ( t l t -  l ) - l ~ ( t ) )  +constant (34) 

, = I  

where 
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is the one-step prediction error. It may be noted that in the case of missing observations we set 
R2 = m, which gives contribution to the likelihood at that time instant. 

Since it has not been possible to determine an explicit expression for the ML-estimator, 
numerical methods have been used (see Madsen and Melgaard (1991)). 

5. RESULTS AND DISCUSSION 

Different models were tried and a satisfying model was found by means of varying the initial 
values, their range and checking the diagnostic information provided by the software used (see 
Melgaard and Madsen (1993)). Estimating parameters in a continuous time model has the 
advantage that the parameter estimates may be directly evaluated, physically. The found 
estimates and their standard deviations are shown in Table I. 

All parameters, except organic matter L and respiration R( T ) ,  are significantly different from 
zero. Organic matter, therefore, seems of little significance in itself in this creek, however, the 
parameters linking the two states were significant. It seems that the depth variations of the creek 
play a larger role than is commonly the case. This may be because the exchange with air turns out 
to be a dominant factor. In general, all the estimated parameters falls into ranges proposed in the 
literature (see Harremoes et al. (1 989), Harremoes and Malmgren-Andersen (1990) and 
Simonsen (1994)). 

Stochastically the model is evaluated by using tests for parameters equal to zero, as discussed 
above, and tests for white noise of the residuals. The tests have shown that an assumption of 
white noise is reasonable. 

Figure 3 shows the measured and the simulated oxygen concentration, while Figure 4 shows 
the measured values and the one-step predictions for a part of the series. It is seen that the 
obtained model fits quite well, though of course not perfectly. 

This model had no direct time delay between the solar radiation input and the oxygen output, 
and a four hour delay between precipitation input and the oxygen output. The parameter, K ,  

governing the precipitation is negative, suggesting that rain removes organic matter from the 
creek. However, this is possibly due to a dilution effect. Previously it had been expected that 
oxygen would be consumed when it rains, as a result of increasing levels of organic matter from 
sewage pipes and the precipitation itself. As seen in the simulation in Figure 3, there is some 
variation that is not accounted for by the model. 

The finding of no direct time delay between the solar radiation input and the oxygen response 
may just be because the time resolution is too large compared to the one hour sampling time. Still 
the time constants of the system will describe a phase shift between input and output variables, 
and hence the time difference between, for example, the maximum radiation and the correspond- 
ing maximum oxygen (as seen in Figure 1). The rain has to be routed to the sewage system and 
then through that before it finds its way to the recipient, making the four hour delay seem 
possible. 

Figure 3.  Measured and simulated oxygen for a part of the series 
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Figure 4. Measured and one-step predicted oxygen for a part of the series 

More exhaustive research will have to be done in refining the equations. A more thorough 
investigation would include a non-stationary mass balance, such as differential mass balance over 
an infinitely small element of water. Also the analysis of values from two or more stations in the 
stream should prove more accurate. The estimated model in the present paper may be considered 
as a first step towards a better modelling and understanding of the oxygen dynamics in creeks. 

6 .  CONCLUSION 

A continuous time linear stochastic model for the oxygen dynamics of a small creek is formulated 
and estimated using discrete time data, with missing values, and a maximum likelihood method. 
The stochastic evaluation showed that the model was not contradicted by the statistical tests. 

Purely statistical models, such as a transfer function model, are useful in classifying data and 
describing poorly understood systems, but they generally offer little physical insight; they are 
usually sufficient for prediction and control applications. The advantages of the so-called black 
box approach is that traditional time series methods can be used for identifying the structure of 
the transfer function. As an alternative, physical information may be used to establish the 
structure of the model. Here a continuous time model has been formulated based on the known 
physical equations for the system and estimated using discrete time series. Thus, the model is 
based on the physical laws for the system, as well as the actual data, and the resulting model is 
called a grey box model. 

With the use of the grey box approach, it was possible to obtain a model for a rather complex 
dynamical system using the available physical knowledge combined with statistical modelling 
tools. The resulting parameter estimation was physically evaluated as describing the system in 
accordance to what is known and expected for this kind of system. 

Keeping the model formulation and parameter estimation in continuous time has several 
advantages. Experiments with missing observations, which most traditional time series analysis 
approaches cannot deal with, are easily accommodated. The model can easily be improved by a 
combination of detailed comparison with data and the use of physical facts, and furthermore, a 
direct physical interpretation of the estimated parameters is possible. 

The model obtained had no direct time delay from solar radiation to the oxygen concentration 
and a four hour time delay for the influence from precipitation. While organic matter usually is of 
great importance when evaluating the oxygen dynamics of a stream, it seemed to have little 
influence in this particular creek, while water depth had more impact. 

ACKNOWLEDGEMENTS 

The authors wish to thank H~jbakkegird for providing the solar radiation data, the Department 
of Agricultural Sciences, Section of Soil and Water and Plant Nutrition, The Royal Veterinary 
and Agricultural University, Copenhagen, Denmark. Also gratitude is due to the Danish 



GREY BOX MODELLING OF OXYGEN LEVELS IN A STREAM 121 

Meteorological Institute, DMI, and Ballerup Municipality for providing precipitation, oxygen 
and temperature data, respectively. 

REFERENCES 

Bohlin, T. (1984). ‘Computer-aided grey-box validation’, Technical report TRITA-REG-8403, Department 
of Automatic Control, Royal Institute of Technology, Stockholm, Sweden. 

Bramslev, J. P. (1989). Treatment of Precipitation Datafrom a Precipitation Measuring System, Covering the 
Country, Department of Technical Hygiene, Technical University of Denmark. (In Danish: Bearbejdning 
of nedbersdata fra et landrhkkende regnmdlersystem). 

Cosby, B. (1984). ‘Dissolved oxygen dynamics of a stream: model discrimination and estimation of 
parameter variability using an extended Kalman filter’, Water Science and Technology, 16,(5-7), 561-570. 

Harremds, P. and Malmgren-Andersen, A. (1990). Textbook for Water Pollution, Polyteknisk Forlag. (In 
Danish: Larebog i Vandforurening). 

HarremoEs, P., Heme, H., Arvin, E. and Dahi, E. (1989). Theoretical Water Sanitation, Polyteknisk Forlag. 
(In Danish: Teoretisk vund-hygiejne). 

Jacobsen, J. L. and Voss, L. (1994). ‘Time series analysis and modelling of corrupted data’, Master’s report, 
no. 12/94. Institute of Mathematical Statistics and Operations Research, Technical University of 
Denmark, Lyngby, Denmark. 

Madsen, H. and Melgaard, H. (1991). ‘The mathematical and numerical methods used in CTLSM - a 
program for ML-estimation in stochastic, continuous time dynamical models’, Technical report 7/ 199 1, 
Institute of Mathematical Statistics and Operations Research, Technical University of Denmark, Lyngby, 
Denmark. 

Madsen, H., Spliid, H. and Thyregod, P. (1985). ‘Markov models in discrete and continuous time for hourly 
observations of cloud cover’, Journal of Climate and Applied Meteorology, 24, 629-639. 

Madsen, H., Melgaard, H. and Holst, J. (1990). ‘Identification of building performance parameters’, in 
Bloem, J. (ed), Workshop on Advanced Identification Tools in Solar Energy Research, Non Nuclear 
Energy, Commission of the European Communities, DG XII, pp. 37-60. 

Madsen, H. (1989). Time Series Analysis, Institute of Mathematical Statistics and Operations Research, 
Technical University of Denmark. (In Danish: Tidrrcekkeanalyse). 

Melgaard, H. and Madsen, H. (1993). ‘CTLSM version 2.6 - a program for parameter estimation in 
stochastic differential equations, Technical report 1/1993, Institute of Mathematical Statistics and 
Operations Research, Technical University of Denmark, Lyngby, Denmark. 

Melgaard, H. (1994). ‘Identification of physical models’, Ph.D. thesis, Institute of Mathematical Modelling, 
Technical University of Denmark. 

Simonsen, J. (1994). ‘Oxygen fluctuation in streams’, Ph.D. thesis, Department of Technical Hygiene, 
Technical University of Denmark. 




