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ABSTRACT

Changing needs of the society also change the goals of hydrological calculations. The "design storm" concept
cannot provide adequate answers to the complex problems on many time scales that society is facing today.
This paper present a novel approach to generate artificial rain data with a time resolution sufficient for urban
hydrology. The model is based on Wolds process of intervals, ie. it generates waiting times observed at a
tipping bucket gauge conditional on the previous waiting time. The model is verified both with respect to
average and extreme values and by testing it on urban drainage problems and it is concluded that the model
appears to have captured to properties of rainfall well. © 1998 IAWQ. Published by Elsevier Science Ltd.
All rights reserved
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INTRODUCTION

Occurrence of rainfall interferes with many basic functions of society. Changing needs of society also
change the goals of hydrological calculations. When the main objective was simple design of conduits in
towns, simple approximations such as the "design storm" concept proved to be sufficient.

The recent shift of focus to sustainability and environmental protection requires that larger and more
complex systems are analyzed and thus the need for long and accurate historical rain series arise. The use of
single design storms is too simplistic an approach; the detrimental effects may occur on many different time
scales. The variation in the rain input must reflect what has been observed historically, from peak intensities
lasting only a few minutes right down to variations in annual precipitation. Thus historical rain series have
become necessary in the analysis of urban hydrology.

Many historical rain series are too short to enable reliable estimates of extreme values of detrimental effects.
In this paper a stochastic model which can be used for generating artificial rainfall data is presented. The
model can be used to generate rain events which can be seen as an extrapolation of the historical events. The
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focus is on establishing a rainfall generator that has the following properties: First of all it must have a
Markovian structure, meaning that predictions can be constructed based on recent rain information. Thus the
same model structure can be used to make long artificial time series and to make on-line predictions of the
rain intensity. Secondly, it must retain the statistical properties of rainfall on all relevant time scales in urban
hydrology. Following the above discussion, the statistical properties must be retained on time scales from
minutes to years. Third, but not least, it should be able to use data recorded by means of automatic tipping
bucket gauges, since these gauges have become the de facto standard rain gauge for urban hydrology
applications.

MODEL IDENTIFICATION

Recently several rain series generators have been presented. Most of these are based on Neymann-Scott type
models (Cowpertwait, 1991; Onof et al., 1994). These models are most frequently based on hourly or even
daily data and in order to obtain a suitable time scale the generated series have been disaggregated.
However, this approach has proved to be less adequate for urban hydrology studies due to a substantial bias
in the simulated series (Foundation for Water Research, 1992a, 1992b). Finally, these models have a non-
Markovian structure and these are thus not useful for making short term predictions.

v chain el

Mathematically and computationally Markov models are simpler than the Neymann-Scott type models.
Chapman (1994) cites more than 15 applications to rainfall data of Markov chain or Markov renewal
models, the majority being Markov chain models on daily rainfall.

Two studies have been reported using high resolution rain data. Srikanthan and McMahon (1983) have
estimated a Markov chain model based on Australian data with a resolution of six minutes, and conclude
that the model performs satisfactorily. Their model consists of a two state Markov chain governing
transitions between dry and wet days. On wet days a second-order non-stationary Markov chain dependent
on the type of wet day is used to generate hourly data. For wet hours another set of Markov chains are used,
depending on the type of wet hour and the month. The generated intensities are adjusted to obtain the
observed hourly totals. The Markov chain approach is also used by Tan and Lee (1993), but based on the
waiting times of a tipping bucket gauge. They use a matrix with 30 states. The states are chosen by using
constant increments on a log scale. They conclude that a simulated series complies reasonably well with the
original one. However, there is a tendency for the artificial series to give more heavy and shorter rainfalls.

Wold' f i

There are two major problems with the Markov chain approach. First, the method uses a vast number of
parameters. The model presented by Tan and Lee used 870 parameters. This large number prohibits
parametric modelling of regional variation. Secondly, the parameters cannot be related to the physical
properties of rainfall. However, the only successful studies of high resolution rainfall have been based on
Markov chain models.

A traditional rain series generator based on a Markov chain is obtained by defining a number of states, based
on an allocation of the rain intensities in a number of intervals. Then the probability of jumping from a state
i to a state j, p; j, is estimated based on available data. The probabilities satisfy Z; p;;=1, and the probabilities
belonging to a row of the transition matrix is thus a discrete (conditional) probability density function.

In this paper a new method is proposed which uses the fact that the sample space for the waiting times is R,
and the discretization of the conditional density is thus avoided. Let wy_; denote the waiting time number k-1
in the sequence of waiting times. The density function for the next waiting time, wy, can be modelled
conditional on the previous waiting time wy._,;. This type of process is known as Wold's process of intervals,
due to the author who first gave a description of such a process (Wold, 1948). The process is described
thoroughly by Lewis (1972).
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Jdentification of 2 sujtabl ltional distribution functi

The choice of the conditional distribution function to represent the waiting time is by no means trivial. The
objective is to identify parameters which can be related to the physical properties of rainfall. By trial and
error it is found, that three types of conditional densities are sufficient for adequately describing the
properties. These types can be labelled corresponding to convective rain, frontal rain and no rain. Each type
is modelled by a two parameter distribution function. Weighting parameters are used to identify the relative
proportion of each rainfall type.

The conditional density function for w; given the previous waiting time, wy_;, is given in Eq. (1). The
parameter o, describes the probability that the next waiting time is best described by the convective rain
type and ufdescribes the probability that the next waiting time is best described by the frontal rain type. The
probability that the next waiting time is best described by the non-rain type is thus 1 - o, - o A log-Gumbel
distribution, f;(w; k, b), is found to fit the convective storms well, whereas the log-normal distribution gives
a good fit both to the frontal storms, fy(w; Iz Op), and to the non-rainy periods, f3( w; H,, O,). The log-
Gumbel distribution arises as a special case of extreme value distribution, and the log-normal distribution as
a special case of the Box-Cox transformation. In some cases it is difficult to estimate the values of all eight
parameters due to optimization problems. Therefore one of the parameters in the convective rain region, k, is
fixed for w > 1/3. Also, the log-normal density function in the non-rainy part of the matrix is defined only
for w > r, where r = 10 is found by trial and error. For w smaller than 1/3 the probability of shifting to a type
of rainfall other than the convective area is found to be close to zero and therefore only the convective
region is fitted to these states. The model thus reads
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Using this model formulation very few parameters are used compared to the traditional Markov chain
approach, see Figure 1. What is even more important is the fact that each of the parameters of the model can
be interpreted physically. This is shown in Figure 2, where the estimated parameters for one rain series are
shown. Although only one parameter, k;, has been fixed, the other parameters develop smoothly and
intuitively correct. Note, that for w between 0.3 and 60 minutes two conditional distribution functions are
fitted. One corresponds to rainfall with accumulated volumes larger than 3 mm and the other corresponds to
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rains that do not (yet) contain 3 mm rain. Note, that especially the probability of staying in the frontal region
is much larger if the threshold of 3 mm is exceeded. This incorporates the physical knowledge that, given
that the rain event contains much volume the chance that the rain event will stop now is lower than average.
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Figure 1. Identification of physically related distributions compared to the Markov chain approach.
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Figure 2. The parameter estimates for gauge 20211. Subscripts 1 and 2 refer to the conditional distribution
functions being below and above the threshold value of 3 mm, respectively.
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TESTING THE MODEL

It is important to identify the proper test statistics used to compare the artificial rain series with the data. The
test statistics should relate to and encompass all the different aspects of urban storm drainage. Since the

model is estimated based on the average properties of rainfall the test statistics should primarily focus on
extreme values.

Extreme values of test statistics

Upstream peak flows in small and large urban catch ment can be evaluated by means of extreme values of
maximum average 10 and 60 minute intensities. This analysis corresponds to the traditional intensity-
duration-frequency curve principle. The two statistics check convective rain and heavy frontal storms. In
urban hydrology common design return periods are from one to five years.
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Figure 3. Extreme values of the observed and the simulated series at gauge 20211. The simulated series are the
average of 100 simulations using the same number of transitions as the original series. The vertical lines indicate
confidence limits estimated by means of a bootstrap estimation method (Arnbjerg-Nielsen et al., 1994) for smail

return periods and a Partial Duration Series model (Madsen ez al., 1997) for the larger return periods.
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Total volumes of rain are important when evaluating detention ponds with small interceptor capacities.
There is, however, a conflict in the assumption of a negligible interceptor capacity and a separation between
events of only one hour; there is a rather large probability of a new event starting before the detention pond
is empty. A rough estimate of typical detention ponds and interceptor capacities shows that events should be
separated by approximately 12 hours and that the relevant interceptor capacities could be neglected. The
fourth test statistic is thus extreme depths using a separation between events of 12 hours. Meteorologically,
the third and fourth statistics check frontal storms and intermittent rain. Roughly, common design return
periods are from ten times per year to a few years in urban hydrology.

The fifth test statistic is the annual average precipitation. When making long-term simulations and/or
generating series longer than the observed one it is important that a summary statistic such as the annual
average precipitation is also in accordance with the observed series.

As can be seen on Figure 3 the model perform well for all of these test statistics. The simulated annual
average precipitation is 638 mm which can be related to the observed value of 646 mm.

Testing on urban catchment

Since the rainfall generator is intended for use in urban hydrology applications the best test of the
performance of the artificial series is to route the artificial and original rain series through a model of test
catchment to study their relative performance. A real catchment from Virum in Copenhagen is chosen for
the analysis. The catchment has a total area of 42.1 ha and the paved area is 13.55 ha. An analysis of the
uncertainty of various detrimental effects from the catchment has previously been published by Arnbjerg-
Nielsen and Harremoés (1996). A plot of the catchment is shown in Figure 4.
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Figure 4. Sewer pipes in the catchment in Virum, Copenhagen. The paved area is 13.55 ha. The overflow structure
and the detention pond at the outlet of the system have been designed using a criterion of a maximum of ten
discharges per year.

The choice of detrimental effects is chosen to be the same as in Arnbjerg-Nielsen and Harremogs, since the
overall uncertainties are known for these effects. The reasons for choosing these effects are discussed in
detail in their paper. The detrimental effects are: Annual number of CSOs, yearly discharges of phosphorus
loads and flooding of manholes. The calculations are summarized in Table 1.

Yearly discharges

The calculated annual number of overflows from CSO structures from the artificial series is close to the
number calculated using the original series. There is a tendency for the calculated yearly discharges to be
smaller when based on the artificially generated series rather than the observed series. However, following
Armberg-Nielsen and Harremoés a 90% central confidence interval for the calculated annual phosphorus
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iz?d.is 9 kf;/yr, 27 kg/yr]. The calculated phosphorus load using the simulated rain series is thus well within
is interval.

Table 1. Detrimental effects calculated by means of the Odense rain series and the observed and an artificial
series from gauge 20211

Rain series 20211 Odense
observed artificial

Annual number of overflows (yr'") 14.4 14.1 10.6

Yearly discharges, Phosphorus loads (kg yr'") 18.1 14.8 12.8

Volume per year (m® yr'') 6647 5449 4750

Flooding, manhole A (m) -0.64 -0.30 -0.29

Flooding, manhole B (m) -0.44 -0.16 -0.08

Closer examination of the calculated results indicates that the smaller loads are due to too small volumes of
the extreme occurences of CSO. This means that a few rains with very high volumes are not generated in the
simulation scheme. This finding is supported by the plots shown in Figure 3.

Flooding in subcatchments

Calculation of the water level in the sewer system in subcatchments is very uncertain when the pipe capacity
is exceeded. The water level with a return period of one year is calculated at two manholes using both the
artificial series and the observed series. The confidence limits for this level at these manholes includes both
flooding in the catchment as well as water levels below the top of the pipe. In particular, the plot shows that
there is little difference between calculating exceedances of the top of the pipe and calculating flooding.

The water level calculated when using the artificial rain series is close to the water level calculated using the
observed rain series, see Table 1. Both models predict a level between the top of the pipe and the surface of
the catchment. The water level of all the tested rain series are classified into the categories: 1) flooding, 2)
top of pipe exceeded, and 3) top of pipe not exceeded. For all rain series, the observed and the simulated rain
series yield water levels in the same category.

FURTHER WORK

The model presented here is still under construction and the flexible formulation of the model almost
guarantees that a better performance can be obtained in the future. This section is dedicated to suggestions of
further testing of the model, and to the discussion of its advantages and possible improvements that can be
implemented.

Previous work suggest that extreme rainfall can be divided into high intensity rain storms with short duration
and long duration rainfall with heavy volume, but low intensities. Furthermore, a seasonal variation was
indicated (Arnbjerg-Nielsen, 1996). The artificial rainfall series should be tested to see if the first property is
retained in the present formulation of the model. Also, the seasonal variation is not included in the present
formulation of the model. This can, however, be established by assuming an annual variation of the
parameters.

The artificial rain series generate the same annual number of overflows from CSO structures as the observed
series. However, they presently underestimate annual loads, due to a lack of ability to generate artificial rain
events with very extreme volumes, i.e. the same problem as observed in the UK with the Neymann-Scott
type model. The solution in the UK is to build the detention ponds somewhat larger than calculations using
the artificial rain series suggest. The presented model in its present form is assumed to be well suited for
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urban hytflrology applications and the model can replace the use of historical rain data from other regions, if
a short rain series is measured at a gauge in the region.

There is a need for further parameter reduction in the model. Presently the parameters of each state are
estimated separately, i.e. the model uses 269 parameters. The number of parameters can almost certainly be
reduced by considering how they vary between different states. The use of fewer parameters has two major
advantages: 1) it will produce more reliable estimates and 2) make regional modelling more easy.

The model can perhaps be extended to generate the high volume rain events and thus improve the
description of annual loads from CSO structures. The problem is probably overcome by studying different
model dependencies on the accumulator variable. A first approach can be to introduce a second threshold on
the accumulator variable, i.e. to have three types of rainfall, separated by accumulated volumes of, say, 3
and 10 mm. Probably the only parameter with a significant variation between the second and third state will
be the probability of staying in the frontal rain type, ol The extension will probably produce larger volumes
for high return periods.

CONCLUSIONS

Markov chain models has been used with success to generate artificial rain series with properties like the
original series. The vast number of parameters in the Markov chain model is reduced by formulating an
equivalent model based on Wold's process of intervals. The model predicts consecutive waiting times
between tips using a conditional distribution function with eight parameters in total. The parameters in the
distribution function are related to the physical processes generating the rainfall and vary depending on the
present state of the rain. The state of the rain is described by the last observed waiting time and the
accumulated volume of the present rain event. In the current formulation the model uses 269 parameters.
Suggestions for reducing the number of parameters are given in the paper.

The artificial rain series are tested using test statistics applied directly on the rain series, as well as
comparing the calculated detrimental effects when using an artificial series and the corresponding observed
series. Events from an artificial rain series with a return period exceeding two years generally have lower
volume than events from the observed series. The difference in volume may be due to the limited
observation period for each of the individual series. However, the volume deficit is present at all the tested
gauges and, therefore, it is believed that the extreme volumes are due to a physical phenomenon rather than
just a limited observation period. The volume deficit in simulated rain series is most apparent in the
Copenhagen region.

The number of parameters has been reduced sufficiently to generate long artificial series based on an
observed series from a gauge, since one year of measurements leads to approximately 3,500 - 4,000
observations. However, for extrapolation to ungauged sites, the number of parameters should be reduced.
The reduction can be obtained with the present model formulation and the approach is outlined. A method to
improve the ability to describe extreme volume rainfall is also suggested.
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