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In order to use a model-based optimal control strategy
for the heat supply to greenhouses, a reasonable descrip-
tion of the heat dynamics is required. This paper de-
scribes the identification of a linear stochastic model for
the heat dynamics of a greenhouse which takes the global
radiation, the outdoor air temperature and the heat sup-
ply as input variables. The model is a linear and lumped
parameter model formulated in state-space form in con-
tinuous time. The formulation contains physically inter-
pretable parameters and, for their identification, data
from an experiment conducted in winter have been used.
During the experiment, the heat supply was controlled by
a pseudo-random binary signal (PRBS) in order to avoid
a correlation between the heat supply and other vari-
ables, and in order to ensure that the dynamic character-
istics of the greenhouse were present in the data.

A number of alternative model structures have been
considered, and by using statistical methods a model
with three thermal capacities is suggested. This model
predicts the air temperature 2 min ahead with a standard
deviation of 0)062 K.

Physical knowledge as well as statistical methods are
used to validate the model. The estimated parameters of
the model show reasonable agreement with prior phys-
ical knowledge. Additionally, the model has been verified
by simulating the air temperature using an independent
set of data. ( 1998 Silsoe Research Institute

Notation

A
s

effective horizontal glass area exposed to
the global radiation/m2

C
j

heat capacity of node j, J/K
e(t) measurement error of the air temperature

in the greenhouse, K
N number of observations
p number of parameters in a model
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Q
h

energy (heat) input from the heating sys-
tem, W

q
in

input energy, J
q
out

output energy, J
q
st

stored energy, J
R

0
resistance to heat transfer between indoor
and outdoor air, K/W

R
j

resistance to heat transfer between nodes
j and j#1, K/W

¹
0

temperature of the outdoor air, K
¹

j
temperature of node j, K

¹
r

measured air temperature in the green-
house, K

p2
jj

variance of the temperature ¹
j
in note j

p2
1

variance of the measurement error of the
air temperature

/
s

heat flux from solar radiation, W/m2

1. Introduction

The purpose of this paper is to describe the basis for
improving the control of air temperature and heat supply
in greenhouses using a method which controls the energy
supply by a model-based prediction of the air temper-
ature in the greenhouse. Controllers of this type are the
minimum variance controller,1 the generalized predictive
controller2 and the proportional-integral-plus (PIP) con-
troller.3 Prediction-based controllers have proved to be
powerful in controlling the supply temperature in a distinct
heating system.4 Model-based adaptive control of green-
houses has previously been considered by Udink ten
Cate,5 Davis and Hooper,6 Young et al.,7,8 Sigrimis and
Rerras9 and Nielsen and Madsen.10 In the control model
used by Udink ten Cate,5 the heat transfer is described by
a first-order differential equation. Inputs to the model are
solar radiation, long-wave sky radiation, external air
( 1998 Silsoe Research Institute



Fig. 1. Serial energy fluxes in a greenhouse with n nodes. Each
node is assumed to be spatially uniform with a constant temper-

ature and heat capacity
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temperature, wind speed, heating and ventilation. Davis
and Hooper6 use traditional time-series analysis to ident-
ify models where the internal air temperature is described
by three inputs, each with a first-order transfer function.
The inputs are the pipe temperature of the heating sys-
tem, external temperature and wind speed. In general, the
performance of prediction-based control systems de-
pends on the possibility of obtaining good predictions of
the air temperature in the greenhouse in response to the
heating control input.

A total model of the heat dynamics of greenhouses
includes equations of heat transfer by diffusion and radi-
ation, flow of air, evaporation and condensation of water
and such a model becomes a very complex system of
equation.11,12 Due to its complexity, a total model of the
heat dynamics is unsuitable for a predictive control
system design. Therefore, there is a need for identifing
smaller models that describe the significant variations
in the heat dynamics. Such models may be identified by
stochastic modelling.6–8,13 However, in horticultural
engineering there is a profound need to formulate
stochastic continuous-time models of heat dynamics of
greenhouses where knowledge about the physics of heat
dynamics may be included in the model so that the
estimated parameters are given a physical expression.
Thus, this paper describes how to identify an approxim-
ate model of the heat dynamics in a greenhouse which
describes the essential dynamics by parameters of phys-
ical interpretation and, using the heat supply, the global
radiation and the outdoor air temperature as input vari-
ables. The model predicts the air temperature by a num-
ber of coupled linear differential equations and describes
the deviations between measurement and predicted air
temperature by a stochastic component.

2. The heat dynamics in a greenhouse

Heat transfer is energy in transit due to a temperature
difference between two nodes with different temper-
atures. Considering a whole greenhouse, it becomes
a tedious task to calculate the heat diffusion equation for
heat conduction in all parts of the house and simulta-
neously calculate the heat transfer between the air and all
the surfaces of glass, ground, plants, etc., by the equations
for convection and radiation. Furthermore, such a de-
tailed calculation seems to be meaningless in practice due
to the uncertain specification of the heat capacities and
conductivities. Therefore, the heat dynamics in the green-
house have to be simplified. A simple, yet common,
simplification is the lumped capacitance method.14 The
essence of this method is the assumption that the heat
capacities of the greenhouse are lumped in certain nodes
where the temperature in each node is spatially uniform.
For such a model, the energy balance at each node in the
greenhouse is

dq
st

dt
"

dq
in

dt
!

dq
out

dt
(1)

where q
st
, q

in
and q

out
(in J) are the stored, the input and

the output energy, respectively, for the node.
Figure 1 shows a simple model of the heat dynamics in

a greenhouse. Since the heat input from solar radiation
has a dominant immediate effect on the internal condi-
tions, the solar radiation is considered as the input to the
first node. In each node of Fig. 1 the change of energy is
represented by the change of temperature, i.e.

C
j

d¹
j

dt
"

dq
in,j

dt
!

dq
out,j
dt

(2)

where ¹
j
(in K) is the temperature and C

j
(in J/K) is the

heat capacity of the jth node. Thus, the energy balance of
the first node in Fig. 1 is

C
1

d¹
1

dt
"

¹
2
!¹

1
R

1

#

¹
0
!¹

1
R

0

#Q
h
#A

s
/
s

(3)

where ¹
1
, ¹

2
and ¹

0
are the temperatures of nodes 1,

2 and the outdoor air, respectively; R
0

(in K/W) is the
resistance to heat transfer between the inside and the
outside; R

1
(in K/W) is the resistance to heat transfer

between nodes 1 and 2. The energy Q
h
(in W) is the heat

input from the heating system; /
s
(in W/m2) is the heat

flux from solar radiation; and A
s

(in m2) describes the
effective horizontal glass area exposed to the global radi-
ation, i.e. the area corrected for reflection, shading, dust,
etc. The parameter R

0
contains a description of the mean



LINEAR CONTINUOUS TIME STOCHASTIC MODEL OF HEAT DYNAMICS 251
influence of the wind speed. However, to describe R
0

as
a function of the wind speed makes the model non-linear
and the identification becomes much more difficult.

The energy balance of the jth node ( j*1) is deter-
mined approximately by

C
j

d¹
j

dt
"

¹
j~1

!¹
j

R
j~1

#

¹
j`1

!¹
j

R
j

(4)

where R
j

(in K/W) is the resistance to heat transfer
between nodes j and j#1. For the last node j"n, the
second term with j#1 of Eqn (4) is eliminated, since heat
flux from the lower nodes is assumed to be negligible.
Modelling the heat transfer between two nodes by Eqn
(4) is reasonable owing to the one-dimensional heat diffu-
sion through a homogeneous layer and the convective
heat transfer. The heat transfer due to radiation between
two nodes is determined by the non-linearity in the heat
flux. However, at temperatures from about 270 to 300 K,
the linear approximation in Eqn (4) includes a significant
part of the energy transfer by radiation. In summary, the
resistance to heat transfer R

j
between two nodes will be

a weighted mean of the one-dimensional heat diffusion, the
convection and the linear approximation of the radiation.

From Eqns (3) and (4), it is seen that the lumped
capacitance method describes the heat dynamics in
a greenhouse by a number of coupled first-order differen-
tial equations. After dividing each differential equation
by the corresponding heat capacity, C

j
, Eqns (3) and (4)

can be written in the matrix notation as a linear differen-
tial equation

d

dt
T"AT#BU (5)
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Since the proposed model describes the heat dynamics
by a number of coupled differential equations, it is well
suited for the prediction of change in the temperatures at
the nodes.

3. A linear stochastic differential equation

In order to describe the deviation between Eqn (5) and
the actual temperatures, an additive noise process is
introduced. Then the model of the heat dynamics is
described by the linear stochastic differential equation

d¹"AT dt#BU dt#dw(t) (6)

where dw(t) is assumed to be a stochastic process with
independent increments. In order to estimate the para-
meters in the model by the maximum likelihood method,
w(t) is assumed to be a Wiener process with incremental
covariance &&c

1
dt, where

&&c
1
"A

p2
11

0
}

0 p22
nn
B

and c indicate continuous time. The model expressed
by Eqn (6) is a linear stochastic state-space model in
continuous time.

The noise process, dw(t) in Eqn (6) accounts for devi-
ations between the simplified model expressed by Eqn (5)
and the true system. For instance, Eqn (5) does not
include a latent heat component. Furthermore, the noise
process accounts for disturbances in the input variables,
and for disturbances of unrecognized and non-modelled
input variables, e.g. wind speed and direction.

Equation (6) describes the evolution of the temper-
atures of all the nodes in the greenhouse, but in the
present case, only the air temperature ¹

r
is measured.

Thus,

¹
r
(t)"CT(t )#e (t) (7)

where C"(1, 0, 0,2) is a constant matrix. Hereby the
air temperature is assumed to be the temperature of the
first node in Fig. 1 and Eqn (5). The measurement error
e(t) of the air temperature is assumed to be normally
distributed white noise with zero mean and constant
variance, p2
1
. Furthermore, it is assumed that dw(t) and

e(t) are mutually independent.

4. Estimation

The heat dynamics in a greenhouse are modelled by
Eqns (6) and (7). Let h denote a vector composed of the
thermal parameters C , R , A in A and B, the initial
j j s
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temperatures of the nodes, and the unknown variance
parameters in &&c

1
and p2

1
. The parameters in h are esti-

mated from data by maximizing the likelihood function

¸ (h )"
N
<
t/1
A

1

p
e
(t Dt!1, t!2,2)J2n

exp A
!e2 (t)

2p2e (t Dt!1, t!2,2)BB (8)

where N is the number of observations, and t denotes the
time index belonging to the set M1, 2,2 ,NN. A Kalman
filter is used to obtain recursive estimates of the predic-
tive variance p2e (t D t!1, t!2,2) and the prediction
error

e (t)"¹
r
(t)!¹K

r
(t D t!1, t!2,2) (9)

The prediction error e (t) is the error of the one-step
forward prediction of the air temperature from one
measurement to the next. Given previous measurements,
¹K

r
(t D t!1, t!2,2) denote the one-step forward pre-

diction of the air temperature, ¹K
r
(t) in the greenhouse.

For further information about the estimation procedure
see Refs. 15 or 16.

5. The experiment

In order to obtain estimates of the parameters, an
experiment was conducted from 1 February to 7 March
1992 at the Department of Ornamentals, A_ rslev,
Denmark, in accordance with the experiment in Nielsen
and Madsen.13 This part of the year was chosen because
a typical winter period with a typical demand on heat
supply was required. The greenhouse was smaller than
commercial greenhouses, being 8 m]21)5 m in base area.
It was constructed of steel with glass in aluminium
frames, where the distance between the frames was 0)8 m.
The greenhouse was placed in an area with other green-
houses used for experiments. During the experiment, the
windows were kept closed.

In the greenhouse, there were four benches filled with
pot plants (¹agetes erecta ‘‘Hawaii’’). The water-based
heating system consisted of two pipe heating systems,
with horizontal pipes running along the length of the
greenhouse. The largest heating system was placed to-
wards the top of the house, along the side wall, and was
called the wall/top heating system. The other heating
system was placed near the floor, and was called the floor
heating system.

Under normal conditions, the control system introduces
a correlation between the solar radiation and the energy
supplied by the heating system because the control sys-
tem attempts to maintain a constant air temperature.
This correlation introduces a difficulty at the identifica-
tion stage. Hence, in order to avoid the correlation be-
tween the heat input and other input variables, the
energy from the heating system was controlled by
a pseudo-random binary signal (PRBS).13 The signal
determines the switch between the two levels of energy
input into the greenhouse. The advantage of using
a PRBS is that it has an autocorrelation close to white
noise and hence is not correlated with other input signals.

The two-level strategy of heating was obtained in the
following way. The flow of water was kept constant, and
the inlet water temperature for the two systems, i.e. the
wall/top and floor heating, was the same and controlled
by the PRBS, which then determined whether the heat
supply should be on the high or the low level. In order to
obtain the two levels, the difference between the inlet
temperature and the air temperature was kept at one
level for the low heat supply and at a higher level for the
high heat supply. For further information about the
experiment design; see Ref. 15.

5.1. ¹he data

The air temperature in the greenhouse (¹
r
) was meas-

ured in the middle of the house 1)5 m above the floor and
behind an aspirated screen with a platinum resistance
temperature sensor. The temperature in the heating sys-
tem was measured with paired platinum resistance tem-
perature sensors. A sensor was placed to measure the
inlet water temperature and another sensor was placed to
measure the outlet water temperature. The actual energy
input of the heating system to the greenhouse (/

h
) is

assumed to be proportional to a mean temperature
difference between the actual mean temperature of the
pipes in the heating systems and the actual air temper-
ature in the greenhouse.

The solar radiation (/
s
) was measured with a Kipp and

Zone’s solarimeter placed on the top of the roof on
a neighbouring greenhouse. The outdoor temperature
(¹

0
) was measured in a Stevenson Screen.

Data from the experiment were sampled every 2 min,
yielding 25 920 observations of each variable, ¹

0
, /

s
, /

h
,

¹
r
. Data from 3 February (720 observations) are shown

in Fig. 2.
The plot of /

h
, (Fig. 2) shows how the PRBS deter-

mines the heat supply. On the high level the heat supply
rises about 70 W/m2 compared to the low level situ-
ation. The increase in heat supply leads to an increase in
the measured air temperature, ¹

r
in the greenhouse. Also

an increase in solar radiation /
s
implies an increasing ¹

r
.

On 3 February, the outdoor temperature ¹
0

was almost
constant.



Fig. 2. Air temperature in the greenhouse (T
r
), outdoor temper-

ature (T
0
), energy input of the heating system (/

h
) and the solar

radiation (/
s
) recorded on 3 February

Table 1
Statistic of the models considered

Model No. of No. of
no. nodes parameter log(¸) SBC

1 1 6 22 058 !44 055
2 2 10 34 680 !69 258
3 3 14 34 833 !69 523
4 4 16 34 836 !69 509
5 4 18 34 851 !69 519

¸"likelihood function; SBC"Schwartz’s Bayesian Criterion.

Table 2
Estimate and standard deviation (S.D.) of thermal parameters

Parameter Est. S.D.

C
1
, 106 JK~1 4)79 0)04

C
2
, 106 JK~1 6)9 0)4

C
3
, 106 JK~1 46)2 1)7

R
0
, 10~6 KW~1 452 9

R
1
, 10~6 KW~1 435 12

R
2
, 10~6 KW~1 1205 53

A
s
, m2 98)8 1)2

Table 3
Estimate and standard deviation (S.D.) of variance parameters

Parameter Est. S.D.

p2
11

, 10~3 K2, 0)013 0)0005
p2
22

, 10~3 K2, 0)296 0)018
p2
33

, 10~3 K2, 1)64 0)12
p2
1
, 10~3 K2, 1)13 0)03

Table 4
Initial value of the temperature in the three nodes

Est. S.D.

¹
1
, °C 20)4 0)1

¹
2
, °C 23)6 0)9

¹
3
, °C 32)5 3)9
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6. Results

In Table 1, some statistics of the most attractive
models are shown. The first column in Table 1 contains
the model number, the second column is the number of
nodes and p, in the third column is the number of para-
meters in each model. The six parameters in model 1 are
associated with Eqns (6) and (7), i.e. C

1
, R

0
, A

s
, variance

parameters p2
11

and p2
1

belonging to w (t) and e (t), plus an
initial temperature of the node. Increasing the number of
nodes by one increases the maximum number of para-
meters by four since one capacity, one resistance, one
initial temperature and one error parameter of the new
node are added. All the models in Table 1 relate to Fig. 1,
where the number of nodes is the only difference. Consid-
ering model 4, the number of parameters is 16 since,
nodes 3 and 4 are assumed to have the same heat capa-
city. Furthermore, the resistance to heat transfer between
the nodes is assumed to be identical to the resistance to
heat transfer between nodes 2 and 3. In model 5, all the
nodes have different heat capacities and the resistances to
heat transfer are different. Hence, the number of para-
meters in the model are 18.

Column 4 in Table 1 shows the value of the logarithm
of the likelihood function ¸ evaluated at the parameter
estimates. To facilitate comparisons of the different
models, the Schwartz’s Bayesian criterion (SBC) is also
shown. This is defined by Schwarz17 as

SBC"p log N!2 log(¸) (10)

where N is the number of observations, p is the number of
parameters and ¸ is the likelihood value. The best model
is the one which has the smallest value of SBC (note that
these values are negative).

Considering the SBC values in Table 1, model 3 is
better than the other models owing to the smallest SBC
value. Estimates of the thermal parameters from model 3
are shown in Table 2, and the variance parameters are
shown in Table 3. The table shows that ¹
1

is predicted
with the smallest variance, whereas ¹

3
is predicted with

the largest variance. The estimated initial temperatures at
the nodes are shown in Table 4. The relatively high initial
temperature of the third node shown in Table 4 describes
most likely a higher than expected measured air
temperature on the first day of the experiment. The
correlation matrix between the parameters were also
calculated, but no correlation, which could indicate an
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overparameterization of the model, was observed. The
largest correlation coefficient is 0)8.

7. Discussion

Table 2 suggests that the model with three lumped
capacitances in the three coupled differential equations is
better than the other models. Hence, according to the
used information criteria (SBC) a model with three
thermal capacitances gives the most appropriate descrip-
tion of the air temperature in the greenhouse.

The model is a stochastic linear state-space model in
continuous time, which takes the heat supply, solar radi-
ation and outdoor temperature as input variables. It is
expected that the wind speed has some influence on the
dynamical model, and more specifically the resistance
(R

0
) of heat transfer from the indoor air to the outdoor

air may depend on the wind speed.5,6,9 This leads, how-
ever, to a non-linear model which makes the identifica-
tion much more complicated.16 The wind effect consti-
tutes a subject for identification by itself.

The solar radiation is considered as an input to the
first node of the models shown in Table 2. Since solar
radiation does not interact directly with the greenhouse
air, the input A

s
/
s
in Eqn (5) can be omitted from the first

differential equation and instead included in the second
differential equation. But the alternative model introduces
a slower heat transfer from the solar radiation, and studies
have shown that the suggested model expressed by Eqn
(5) has the best performance with smaller SBC values.

Based on the assumptions for dw(t), and e(t) the predic-
tion error e (t) should be a white noise. Investigations of
e(t) indicate that the constant variance of p2e"0)0622, the
autocorrelation function and the cross-correlation func-
tions to the input variables show that e (t) is close to white
noise without a correlation to the inputs.

An important part of the evaluation of the model is to
compare the estimated parameters with parameters
determined by using physical constants for the green-
house. In the following, it is shown how the estimated
parameters correspond with the physically determined
values.

The loss of heat from the greenhouse to the environ-
ment is most frequently described by the heat loss trans-
mission coefficient called the º value (W/m2K). The
whole area of the wall and roof of the greenhouse is
325 m2. If the whole area of the surface is assumed to be
homogeneous, then from the estimate of R

0
in Table 2 of

452 kK/W, an average º value of the greenhouse be-
comes 6)8 W/m2K. For the greenhouse considered, this is
consistent with earlier measurements of the heat con-
sumption coefficient which varies between 0 and
9 W/m2K depending of the outdoor climate.18
The volume of the greenhouse is 1148 m3. Thus, at
20°C and 90% relative humidity a rough calculation of
the heat capacity of the air in the greenhouse is 1)6 MJ/K.
The estimate of C

1
in Table 2 is 4)79 MJ/K. Hence, the

estimated value of C
1

contains more than the heat capa-
city of the air in the house. The boundary between the
different nodes in a lumped system is not clear.14 The
estimated thermal mass of C

1
in Table 2 is the thermal

mass of the greenhouse that has a uniform spatial tem-
perature equal to the measured air temperature. The
estimate of C

1
may then contain the thermal mass of the

air in the greenhouse plus the thermal mass of a part of
the plants, the surfaces of other objects in the house
like the pots, the benches and the floor. A similar
conclusion was given for ordinary buildings by Madsen
and Holst.16 The fact that C

1
estimates the thermal mass

of the air and the surfaces of other objects in the green-
house demonstrates that the heat input from the solar
radiation must be added to the first differential equation
in Eqn (5).

The estimated values of the heat capacities, C
2

and C
3
,

are complex to validate. However, let the specific heat
capacity of the soil be 2 MJ/Km3, then the soil to a depth
of 1 cm has a heat capacity of 3)4 MJ/K. The estimated
C

2
in Table 2 may then contain the thermal mass of the

inner parts of the plants, the soil in the pots, the inner
parts of the bench and a few centimetres of the ground.
All the heat capacities included in C

2
are not included

in C
1
.

The estimated value of C
3

in Table 2 most likely
corresponds to the heat capacity of a deeper part of the
ground. In the table, C

3
is 46)2 MJ/K. Compared with

the heat capacity of the soil, it is found that the third node
in the model corresponds to a layer of about 14 cm.

The estimate of A
s
in Table 2 is 98)8 m2 and corres-

ponds with the experimentally evaluated values of A
s
,

aiming at values between 81 and 210m2.19

Using the estimated parameters shown in Table 2, the
temperatures in the nodes are simulated using indepen-
dent data collected over a period of 2 d, 4 d after the
period used for the estimation. The period was from
12:00, 11 March to 12:00, 13 March. The initial temper-
ature of ¹

1
in the first node was copied from the starting

point of measured air temperature ¹
r
. For the other two

nodes, likely initial temperatures were assumed. The pat-
tern of simulated temperatures at the nodes is shown in
Fig. 3. In general, the pattern of the simulated temper-
atures, ¹

1
in the first node shows agreement with the

measured air temperature ¹
r

in the greenhouse. The
temperature of the second node ¹

2
shows less variation

than ¹
1
, and the variation of ¹

3
is smaller than the

variation of ¹
2
. The small variation of ¹

3
suggests that

the third node most likely represents a deeper part of the
ground in the house as argued previously.



Fig. 3. Simulation of the temperatures at the three nodes (T
1

, T
2

,
¹

3
) and the measured air temperature (¹

r
), during the two day

period from 12 : 00 on 11 March to 12 : 00 on 13 March

Fig. 4. Measured heat input from the heating system (/
h
), the

solar radiation (/
s
), the measured air temperature (T

r
), and

simulated air temperatures (T
1

) recorded with the 95% confidence
limit shown by the dashed line
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In Fig. 3, the pattern of the temperatures in the nodes
illustrates that nodes 2 and 3 are heat accumulating
thermal masses which accumulate or deliver heat, respec-
tively, depending on the air temperature in the green-
house. During the day when the air temperature in the
greenhouse is high, the second and third nodes accumu-
late energy because of increasing temperatures (¹

2
and

¹
3
). However, just after sunset, at 16:30, when the air

temperature decreases, the second node has a higher
temperature than the air (¹

2
'¹

1
) and the third node

has a higher temperature than the second node
(¹

3
'¹

2
), hence the third node delivers heat to the

second node and the second node delivers heat to the air.
One purpose of setting up a model for the heat dynam-

ics in a greenhouse is to be able to control the heat supply
in an efficient way. Figure 4 shows how the estimated
model predicts the measured air temperature, ¹

r
, in the

greenhouse on 9 March from sunrise when the heat
supply from solar radiation increases and the heat de-
manded from the heating system decreases. These data
were recorded 2 d after the period used for estimation of
the model. In the figure, the heat supply, /

h
was kept at

a constant level until 06 : 00. The heat supply was then
switched to a higher constant level. Due to the sunrise,
the heat supply from solar radiation, /

s
increased from

0 W/m2 to 80 W/m2 in the time from 06 : 50 to 08 : 00. At
05 : 50, some reasonable initial temperatures of ¹

2
and

¹
3

were assumed. Until 06 : 00, ¹
1

is updated by the
measured air temperature, ¹

r
and the model is updated

by the inputs i.e. outdoor temperature, solar radiation
and heat supply. After 06 : 00, only the inputs are used to
predict the air temperature until 08 : 00. The increase in
the air temperature is well approximated by ¹

1
during

the first period after 06 : 00. Over time, the predicted air
temperature diverges from the measured air temperature
and, after 07 : 30, the measured air temperature is outside
the upper 95% confidence limit. In this case, the
predicted air temperature is smaller than the measured
air temperature, most likely due to some autocorrelated
disturbance which in turn might be due to the low wind
speed, for example while, in other cases, the predicted air
temperature is larger than the measured air temperature
(see Fig. 3).

In on-line control applications, such as the generalized
predictive controller, the state of each node is estimated
recursively, and correspondingly the on-line estimate is
as accurate as possible. The needed prediction horizon
depends on the controller, the time constants and time
delays of the heating system.

8. Conclusion

A linear stochastic model of the heat dynamics of
a greenhouse in continuous time is identified using statis-
tical methods. The model is useful for predicting changes
in the air temperature and the stochastic part of the model
provides variance and confidence levels of the predicted
air temperature. The deterministic part of the model
consists of three coupled differential equations.

Although a greenhouse is a complex system, it is
shown that the heat dynamics can be described approx-
imately by a few nodes. It is demonstrated that a linear
model with only three nodes can describe the internal air
temperature in a greenhouse with inputs only from the
global radiation, the outdoor air temperature and the
heat supply.

The simulated value of the temperature in the first
node fits the measured air temperature of the greenhouse.
The estimated heat capacity of this node corresponds to
the heat capacity of the air in the greenhouse plus the
thermal mass of part of the plants, the surfaces of other
objects in the house, e.g. the pots, the benches and the
floor. The second and the third nodes describe heat
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capacities which accumulate or deliver the heat, respec-
tively, depending on the air temperature of the green-
house.
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