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ABSTRACT 

This paper considers the problem of input design for maximizing the smallest 
eigenvalue of the information matrix for linear dynamic systems. The optimization of 
the smallest eigenvalue is of interest in parameter estimation and parameter change 
detection problems. We describe a simple cutting plane algorithm to determine the 
optimal frequency power weights of the input, using successive solutions to linear 
programs. We present a case study related to estimation of thermal parameters of a 
building. 

1. INTRODUCTION 

Consider the problem of estimating a set of unknown parameters 
or detecting parametric changes in a dynamic system based on 
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224 P. SADEGH, L. H. HANSEN, H. MADSEN AND J. HOLST 

experimental input-output data. The accuracy of the estimates or the 
detectability of changes are often dependent upon the experimental 
conditions under which the data are collected. We regard the output 
data as a realization of some random process which is obviously 
affected by the controlled input to the system. We wish to determine 
the input sequence so as to maximize the amount of useful 
information in the output data. Similar to the usual approach of the 
statistical experiment design literature (see e.g. [22]), we use Fisher's 
information matrix as a measure of quantifying the amount of 
information in data. In [22], it is argued that it is not possible to 
design an experiment to maximize the information matrix in a strong 
(matrix inequality) sense. Therefore, we consider instead the 
optimization of some suitable scalar function of the information 
matrix, see e.g. [22] and [6] for a discussion of the widely used and 
statistically meaningful criteria. A particularly useful and important 
choice is the smallest eigenvalue of the information matrix or the so 
called E-optimality criterion (see e.g. [17]). We shall discuss the role 
of the E-optimality criterion (maxmin design criterion) later in 
connection with parameter estimation and change detection problems. 

The problem of input design has been extensively studied in the 
literature using different approaches. The statistical approach of the 
present work is similar to the approach in [9]. Other selected 
references are [7], [25], [23], [81, [20], which treat different aspect:.> of 
the input design problem. The present paper is distinguished by the 
fact that the considered optimality criterion is nonsmooth and special 
optimization techniques should be employed. The paper indeed shows 
that the maxmin input design can be addressed within the setting of 
another extensively studied problem that is maximizing (minimizing) 
the smallest (largest) eigenvalue of a linear combination of given 
symmetric matrices (see e.g. [21, [51, [11]). We discuss in some detail 
a cutting plane algorithm (see [12], [24]) for the optimization of the 
criterion. The algorithm is both efficient and relatively simple, 
requiring only successive solutions to linear programs. 

The rest of the paper is organized as fotlows. In Section 2, we 
state the problem formulation. Section 3 pliesents the solution. In 
Section 4, we study the design of optimal inputs for estimating thermal 
parameters of a building. Finally, Section 5 offers concluding remarks. 

2. PROBLEM FORMULATION 

Consider a random variable y with the probability density 
function h{y I6) where 6 E Rf is a (p-dimensional) parameter. We 
introduce 
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225 LINEAR DYNAMIC SYSTEMS 

Definition 1. Fisher's information matrix for the random variable 
Y is defined by 

(2.1) 

where E {.} denotes mean value. For a total number of samples NT, 
the (average) information matrix per sample is defined by 
M limMFINT . 

NT~OQ 

We now consider the linear dynamic system given by 

Yt = Gt(q-t)Ut + G2(q-t)Et, t = ... , - 1, 0, 1,... (2.2) 

where rUt} and {Yt} are the input and output sequences respectively, 
{E t } is a sequence of Gaussian i.i.d. random variables which without 
loss of generality can be assumed to have unit covariance, and Gt and 

are transfer functions in the backward shift operator q-t. TheG2 


transfer functions Gt and G2 depend upon the parameter e. 

We shall be concerned with the problem of maximizing Amin(M) 

with respect to the input sequence, where Amin(') denotes smallest 
eigenvalue, and M is the information matrix per sample for the output 
data of the system (2.2). Note that all the eigenvalues are real since 
the information matrix is a real symmetric matrix (the information 
matrix is moreover nonnegative definite). The stated maxmin problem 
is of interest in a variety of areas such as parameter estimation and 
change detection. 

Parameter Estimation : Consider the system (2.2). Let in the 
following eN " denote the maximum likelihood estimate of e based on 

T 

NT observations, and 11'11 denote the usual Euclidean norm. It is 
well-known that under mild stationarity and regularity conditions 
(see e.g. [9]) 

(2.3) 

We have that .1e™.10 - X;, and hence Pr(.1e™.10:::;; XL;p) 
1- &, 0 < &< 1, where xi-o;p is the 1- &fractile ofax2-distribution 

with p degrees of freedom. Obviously 

(2.4) 
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The equality in (2.4) is reached for a6 being along any eigenvector 
corresponding to Amin(M). It then follows that for any 0::;;: B::;;: 1, we 

have IIa6 112::;;: XL13;/Anun(M) with probability 1 B. Upon maximizing 
Amin(M) with respect to the experiment, we minimize the largest 
(probabilistic) uncertainty bound on the estimate. 

Change Detection: Assume that a change in the system given by 
(2.2) is characterized by a change in the parameter from 6 to 
6 + a6e. Under general regularity conditions, the quantity a6~MFa6e 
for a6e -T 0 tends to the divergence between the model under no 
change hypothesis and the model under the change hypothesis ([13]) 
where MF is the information matrix for the model given by (2.2). It is 
then obvious that the average value of the divergence per sample 
tends to MJ~Ma6e. Divergence is a suitable measure of the 
detectability of a parametric change, see e.g. [1]. We have 
aS~Maee:2 Amin(M) IIa6e112 where the equality is reached for aee 

being along an eigenvector corresponding to Anun(M). For any fIxed 
change magnitude IlaSe II, maximizing the smallest eigenvalue with 
respect to the input sequence is related to maximizing the smallest 
(with respect to the direction of a6e) divergence between the two 
models. 

We introduce the following assumptions: 

A1: the input and the noise sequences are uncorrelated (Le., the 
experiments are performed in open loop), 

A2 : the input is generated by a fInite register with length N, i.e. 
the input sequence repeats periodically with cycle N, 

A3 : the total number of samples NT is large, 

A4 : the input power is constrained. 

We further assume that the general regularity and stationarity 
conditions that ensure the convergence result (2.3) hold. For 
simplicity, we restrict attention to single input systems. 

Consider the system given by (2.2) and denote the one step ahead 
prediction error at time t by et. Using (2.1), it follows that the 
information matrix, MF , for the system is given by ([9]) 

NT-l 

MF =L/-!t~+Me, (2.5) 
t:=O 

where 
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227 LINEAR DYNAMIC SYSTEMS 

(2.6) 

and 

MO~E{] '[ -Gi'(q-') (aG,!-'~ ).,1 
T 

• [ - Gi' (q-') ( aG,!-') Hie) 
This result is obtained from the definition of the information matrix. 

Considerable simplicity is obtained if we represent the input 
sequence in the frequency domain. The assumption A2 implies that 
we can represent th.e input as 

N 

u t = eo + L (-Y2ck_l) sin(21t(k l)tlN + 'l'k)' 
k",,2 

Without loss of generality, the input power restriction (see A4) can be 
N 

expressed as L eLl 1. Now note that 
k=l 

lim J L sin(21tkltlN + '1') sin(21tk2(t - T)/N + 'I' ') = 0 
N~ TN

T 

for all integer T, all '1', '1", and all kl> ~ E to, 1, ... , N 1), kl oj:. k2• 

Denoting the information matrix per sample corresponding to the 
input Ut by M(ut) , it follows immediately that M(sin«(Ot + '1')) 

M(sin(cot)) for all 'I' and (0. This result together with (2.5) yield 

N 

M = c5M(1) + L eLl M(-Y2 sin(21t(k - l)tlN)). (2.7) 
k=2 

Now, define Cik CLl, k = 1, ... , N. Then the input power restriction 
N 

can be written as L Cik = 1 and 
k=l 

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 0

5:
54

 2
0 

M
ay

 2
01

4 



228 P. SADEGH, L. H. HANSEN, H. MADSEN AND J. HOLST 

N 

M LCJ."Mk (2.8) 
k=l 

where Ml =M(l), and Mk M(...J2 sin(2n(k - 1)t/N) for k ~ 2. From the 

input power restriction L uk = 1 and the equation (2.8), it is evident 
k 

that the symmetric nonnegative definite information matrix per 
sample, M, lies in the convex hull of the symmetric nonnegative 
definite matrices Mk ([9]). 

Remark 1. It follows from (2.5) that the actual values ofMk (and 
M) are dependent upon the true parameter value e. However, the true 
parameter is in general unknown at the experiment design stage, 
especially when the experiment concerns estimation of the 
parameters. In this paper, we assume that the Mk matrices are 
evaluated at an a priori value for the parameter, say its prior mean. 
The sensitivity and the robustness of the design to other parameter 
values should usually be checked, see [20] for the design of robust 
experiments using a Bayesian formulation. 

Remark 2. Using a slightly different assumption than A2, we can 
obtain a result analogous to (2.8). Assume that the input can be 

N-l 

represented as the linear combination ut L ck4>ik) where the 4>~k) are 
k=O 

given functions satisfying lim L 4>~kl)4>(:2}/NT= 0 for all integer T and 
N'£'""'>oo NT 

all k1, k2 E {O, 1, ... , N - 1}, kl -:f. k2. Again, defining CJ.k =cL, k 1, 
N 

..., N, it is straightforward to show that M L u~k where Mk is the 
k=l 

information matrix per sample under application of the input 4>;k-l) to 
the system. The Mk can be easily obtained using e.g. simulations 

where the simulations involve application of the input 4>~k-l) to the 
system and calculation of the relevant quantities in (2.5). The 
numerical case study of the paper (Section 4) illustrates such 

NT NT 

procedures. Assuming that lim L [4>ik1)j2/NT lim L [4>;k:;lj2/NT for 
N'£'""'><>o t=l N'£'""'><» t=l 

all k1> k2 E {O, 1, ... , N 1}, the input power constraint can without loss 
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229 LINEAR DYNAMIC SYSTEMS 

of generality be stated by L. ak ;::; 1, and the input design problem 
k 

concerns optimal allocation of the input power among the $~k) , Note 

than A2 simply implies that we can select $~O) == 1, and 
$~k) {2sin(2rcktlN), k ;::: L 

Now, denoting a (0.1> "" aN), the maxmin problem can be stated 
as 

(2.9) 

The optimization problem (2.9) can be equivalently formulated as 
a problem with linear objective function as follows. For convenience, 

we define fCa) "'min [i aiMk ]. It is also more convenient to consider 
k=l 

the equivalent optimization problem 

max{ fCa) } (2.10) 
aeA 

fCa) :::; '-min [I ak Mk 1· 
k=l 

) 

Without loss of generality, we can assume that all the Mit are positive 
definite implying that fCa) > 0 for all a E A. To ensure the positive 

"definiteness of the Mk , we possibly need to add a constant matrix 
EO I to each nonnegative defmite Mk where I is the unity matrix of 
proper order and EO is some positive number. This modifies the 

objective function of (2.9) to '-min [I aiMk + EO I ], Recalling 
k=l 

"'minCM) ;::; min wTMw, it fallows that the addition of Eo I to the Mk 
Ilwll=l 

merely adds the constant EO to the objective function, Assuming the 
positive definiteness of the Mk , it is then allowable to define the 
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230 P. SADEGH, L. H. HANSEN, H. MADSEN AND J. HOLST 

N 

variable ~ = (~1> ... , ~N)' ~ = a.lf(a.) since f(a.) ~ EO' Since L a.k = 1 for 
k==l 

N 

all a. E A, we have that L ~k = lIf(a.). Furthermore, it holds that 
k==l 

"min [i a.;#k 1If(a.) = Amin (i ~;#k l' and consequently we obtain 
k=l k==l 

the equivalent optimization problem 
N 

min L ~k 
13 k=l 

(2.11)f(~) == Amin [i ~;#k l~ 1 
k=l 

~k ~ 0 . k == 1,... , N. 

Provided that a solution to (2.11) is available, the solution to (2.9) is 
N 

readily obtained using the simple transformation a. == ~/L ~k' The 
k=l 

equivalence of (2.9) and (2..11) is quite analogous to the equivalence of 
the matrix games and linear programs in the game theory ([4]). 

3. OPTIMIZATION PROCEDURE 

The constraint function f(~) in (2.11) is nondifferentiable at those 
No 

values of ~ where the multiplicity of L ~;#k is larger than one 
k=l 

(similarly, the objective function of (2.9) is in general 
nondifferentiable). However, it can be readily verified that f(~) is 
concave, i.e. for 0 s; ys; 1 and any W, W'; 

f (y W+ (1- y)~") ~ y feW) + (1- y) f(~")· 

Subdifferentials of a nonsmooth concave function play the same 
important role as the gradients of a differentiable function. We 
therefore introduce the following definition. 

Definition 2. The subdifferential of a concave function F(x), 
x ERn, is the set of all vectors Z E~, such that F(u) s; F(x) + 
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231 LINEAR DYNAMIC SYSTEMS 

ZT(V - x) for all vERn. The subdifferential of F at x is denoted by 
aF(x). 

We can compute the subdifferential for the concave function 
f(~) using basic rules of subdifferential calculus, see [19]. Analogous to 
proposition 2.8.8 'of the reference [3], we obtain that at a point ~ where 

N 

the multiplicity ofthe smallest eigenvalue of I ~Pk is equal to r, the 
k=l 

subdifferential of f is given by: 

where each column of the p x r matrix Q(~) is equal to one of the r 
N 

orthonormal eigenvectors of I ~Pk corresponding to the smallest 
k=l 

N 

eigenvalue (recall that I ~Pk is symmetric), Sr is the r-dimensional 
k=l 

unit sphere, and coH denotes convex hull. 
The optimization problem (2.9) can be addressed within the 

setting of maximizing the smallest eigenvalue of a linear combination 
of symmetric matrices. In the reference [2], some standard techniques 
for solving similar nondifferentiable problems are reviewed. Methods 
based on a smooth approach to nondifferentiable optimization have 
been recently reported, see e.g. [21], [11]. A particularly simple and 
efficient method which is suitable for the maxmin optimization of 
(2.11) is the cutting plane method (Kelley's cutting plane method, see 
[12]). In the following, we describe the method in some detail. 

3.1. Cutting Plane Algorithm 

In [12] a cutting plane algorithm for optimization problems of the 
form: 

minqT~ 
(3.2)~ 

g(~) ~ 0, 

is considered with the assumptions that the scalar valued function 
g(~) is real, continuous, concave, and the set B {~: g(~) ~ O} is 
compact. Moreover, the elements of ag(~) are assumed to be uniformly 
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232 P. SADEGH, L. H. HANSEN, H. MADSEN AND J. HOLST 

bounded on some compact polytope containing B. The general form of 
the cutting plane algorithm is as follows ([14]): 

PROCEDURE 1. Cutting Plane Algorithm: Select a polytope Pi 
containing B. 

Step 1 : Minimize qT~ over Pi to obtain ~(i). If ~(i) E B, then ~(O is 
optimal. Otherwise, 

Step 2 : Add the hyperplane a(i)T(~ ~(i» + g(~(i» ~ 0 where a(i) is 
any element of ag(~(i» to obtain a new polytope (update Pi) and go to 
Step 1. 

N 

Recalling that L ~k::;; 1IEo (EO is a number such that f(a):;::': EO), 
k=1 

the optimization problem (2.11) can be reformulated as (3.2) by letting 
q =(1, ... , 1t, and 

g(~) :: min [ 11 EO - i ~k,f(~) - 1, ~1> ••• , ~N 1· 
k .. l 

) 

It is easy to check that g(~), as defined above, is continuous and 
concave, and the restriction defined by g(~) :;::.: 0 is compact. As the 
start polytope for solving (2.11) using the cutting plane algorithm, we 
select a polytope defined by the restrictions 

N 

1IEo-L ~k' ~1' ... , ~N:;::': O. 
k=l 

At any iteration i, it holds that either the algorithm stops or 
N 

f(~(~) < 1, while 1/Eo L ~Z), ~~), ..., ~.w:;::.: O. This implies that at all 
k=l 

the iterations where the algorithm does not stop g(~(!) =f(~(i» 1. 
Since the convergence proof of Kelley's cutting plane algorithm is 
based on the asymptotic behavior of a limit sequence of g(~(£) (see 
[12]), the hyperplanes for optimization of (2.11) can be selected as 
a~) E af(~(i» (notice that alf(~) - 1) = ar(~». Since, the elements of 
af(~) are uniformly bounded on any compact set, the assumptions for 
applying Kelley's cutting plane algorithm to the optimization problem 
(2.11) hold. Furthermore, it can be readily verified that for any 

D
ow

nl
oa

de
d 

by
 [

D
T

U
 L

ib
ra

ry
] 

at
 0

5:
54

 2
0 

M
ay

 2
01

4 



233 LINEAR DYNAMIC SYSTEMS 

a(i) E Jf(p(i»), we have a(t)Tp(l) =f(p(i»). Therefore, the hyperplanes at 

Step 2 of Procedure (1) are selected as a(i)Tp;;:: 1. . 
Notice that each iteration of the algorithm requires solution to a 

linear program. The drawback of the method is that the number of 
constraints of the linear program at each iteration grows with the 
number of iterations. Simple devices may be used to circumvent this 
problem, e.g. by deleting the inactive constraints at the end of each 
iteration (see [14]). Different numerical experimentations indicate the 
efficiency of the algorithm for the maxmin problem of interest. For a 
detailed treatment of the cutting plane algorithm where convergence 
is established under more general conditions, see [24]' Chapter 14. 

4. CASE STUDY: DOMESTIC HEATING OF A HOUSE 

An exemplification of the described theory is given in this case 
study, which is concerned with the domestic heating of a house. This 
case study is inspired by a low energy test house at the Department 
of Buildings and Energy, the Technical University of Denmark. A 
water based central heating system is used as the domestic heating 
system. 

The low energy house and the central heating system £!.re 
modelled and implemented in Matlab®. The goal is to find an optimal 
sequence of pump pressures in order to obtain accurate estimates of 

dynamics. The house has a ground floor of approximately 120 m2 

some thermal capacities in 
temperature measurements. 

the house, using (indoor) room 

4.1. The Model 

This subsection presents the model for the heat transfer 
, and 

a wooden outer wall which is insulated with 300 mm mineral wool. 
The power needed to maintain 20°C at an ambient temperature of 
- 12°C is about 2.5 kW. For details, see e.g. [18J, [16], and [15J. The 
house contains two separate rooms A and B each of 60 m2

. 

The modeling objective here is to obtain accurate estimates of the 
parameters that are related to dominant time constants of the system. 
Therefore, lumped modeling of the heat transfer will be appropriate, 
provided that certain conditions hold (see [10)). Based on a second 
order lumped model for the heat transfer in each room, we obtain the 
thermal network model illustrated in Figure 1. 

In Figure 1, R and C generically denote thermal resistance and 
thermal heat capacity, respectively. The indices A and B refer to the 
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RWA 
Ta 

RqA TAr RrA RFA 

I :r: 
TA 

CrA ~FA 
qA 

Ts RAB 
RWB 

Ta 

RqB RrB RFB 

r TBr 

&J;; ~ 
CrB ~CB ~FB 

qB ~ 

Figure 1. Thermal network equivalent model of the house 

rooms A and B, and the indices F, W, r and q refer to the floor, the 
outer wall, the radiator, and the flow in the radiator, respectively, As 
indicated' in Figure 1, RqA and RqB are dependent upon the actual 
flows. This makes the model nonlinear in qA and qB' Finally, Ts 

denotes the temperature of the supply water from the boiler and 
Ta denotes the ambient temperature. The outputs (measurements) are 
the two room temperatures TA and TB • The measurements are taken 
in the presence of mutually uncorrelated ii.d. Gaussian noise with 
unit covariance. 

Based on Figure 1, the following coupled first order differential 
equations for the room A can be derived 

dTAr 1 1 

CrA de =RqA (Ts TAr) + RrA (TA TAr) 


dTAF 1 
(4.1)CFA ---at = RFA (TA - T AF) 
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235 LINEAR DYNAMIC SYS'rEMS 

The relationship between the resistance RqA and the flow qA is 
given by RqA 1/cppqA where cp and\ p denote the specific heat 
capacity and density of water, respectively. Identical equations hold 
for the room B. The total hydraulic flow to the radiator, q, is obviously 
the sum of qA and qB' The relationship between qA and q (qB and q) is 
in general nonlinear. However, assuming small flow perturbations for 
qA and qB around some nominal values allows the linearizations 
!::.qA kAt::.q and t::.qB == kBt::.q, where !::.qA, !::.qB' and t::.q denote 
perturbations around the nominal values of qA, qB, and q respectively, 
and kA + kB == L The small perturbation assumption also allows 
linearization of the system of equations (4.1) and the similar 
equations corresponding to the room B. We therefore obtain a total 
linear model from the pump pressure perturbations to the indoor 
temperatures. The smallest time constant for the total linearized 
model is approximately 4 minutes (see Appendix for numerical values) 
which allows a sampling time of 1 minute. 

4.2. Optimal Design of Inputs 

The pump pressure around the nominal value (used for 
linearization) is the designed input to the system. We denote the 
designed input by t::.p;. The input power restriction is a realistic 
constraint in this case study, implying restricted pump power. 

A complete design of inputs should be based on including all the 
unknown physical constants in the parameter vector e. However, the 
physical knowledge of the system confirmed by numerical 
experimentation shows that the worst estimable parameters are related 
to the slow dynamics of the system (due to the large floor capacities). 
Therefore, we select e (CFA• CFB)T as the parameter vector. 

In order to design optimal inputs, it is required to specify the 
functions <I>~k) and compute the corresponding matrices Mk (see 

Remark 2). We select <I>~k-l) as 25ck sin(cokt), i.e. the input is 
represented as 

t::.Pt == 25 L Ck sin{cokt) [mBar] (4.2) 
k 

where L c~ == 1, and the frequencies COk, k E {1, ...,20), are selected as 

COk == 60 x 2;0 x k' The reason for this selection is that each sinusoid 

sin(cokt) has a period of 50 x k hours, and the largest time constant of 
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236 P. SADEGH, L. H. HANSEN, H. MADSEN AND J. HOLST 

the system (=- 180 hours) is included within the time range [50,1000] 
hours. The above values for the frequencies OOk are used throughout 
the case study. The Mk matrices are computed by numerical 
differentiation (with respect to 9) of the simulated noise free output, 
under the application of the input 25 sin(ookt), see (2.6) and note that 

in this example G2(q-l) = 1. 

2 

1 

10 12 14 16 18 20FrQquQncy index 

Figure 2. Eigenvalues of Mk versus k 

li~tr 2: ~ : " : 1 

°0~--~----~'~--~--~2~--~----3~--~----~4----~--~S 

~f:::l . ~..: • j
~: 1 14 _______ 

1.2 

'0~--~----~--~----~2'---~--~3~--~----~~----~--~S 
Iteration step 

Figure 3. Convergence of the cutting plane algorithm 
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237 LINEAR DYNAMIC SYSTEMS 

4.3. Simulation results 

In Figure 2, the two eigenvalues of Mk versus the (frequency) 

index k are shown and at k "'- 13 the smallest eigenvalue has a 
maximum with multiplicity one. 

The behaviour of the cutting plane algorithm is illustrated in 
Figure 3. The top figure shows f(~(i) as a function of iteration number 

i, while the bottom figure shows ""min [ ~ a~)Mk ) as a function of i. 

Notice that the value of f(~) can be used as a stop criterion for the 
algorithm (convergence follows if f(~);?; 1). The optimal input is 
computed to be 

Apt =: 25 ( 0.74 sin( 60 x ~~x13 )+ 0.67 sin ( 60 x ~~x 14 )]

The result is in agreement with the optimal input suggested by 
Figure 2. 

Let us now examine the case where RAB tends to infinity which 
means that the two rooms become thermally independent. The 
eigenvalues of Mk are plotted as a function of k in Figure 4. In this 
case the maximum of the smallest eigenvalue has multiplicity 2 at 
k "'-16. 

Figure 5 illustrates tt~(i) (top figure) and Amin [~aZ)Mk ) (bottom 

figure) as a function of i. The optimal solution gIVen by the cutting 
plane algorithm is 

Apt 25 ( 0.89 sin ( 60 x ~~x 16 J+ 0.45 sin ( 60 x ~~x 17 )]

which is in agreement with Figure 4. 

5. CONCLUDING REMARKS 

We have studied the problem of input design for maximizing the 
smallest eigenvalue of the information matrix. It is established that 
the design problem can be addressed within the setting of maximizing 
the smallest eigenvalue of a linear (indeed convex) combination of given 
symmetric (nonnegative definite) matrices. We have presented a cutting 
plane algorithm for the optimization, requiring only successive solutions 
to linear programs. Numerical experience indicates the efficiency of the 
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238 P. SADEGH, L. H. HANSEN, H. MADSEN AND J. HOLST 

algorithm for input design problem. The method is illustrated by a 
case study related to domestic heating of a house. 

APPENDIX 

Here we list the thermal data of the test house which are used 
throughout the case study. 

~---r--""'~'--~-.......,-

.. 
5 

.. 

:2 

Figure 4. Eigenvalues of Mk versus k 

0.13 

O.S 

Iteration step 

Figure 5. Convergence of the cutting plane algorithm 
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239 LINEAR DYNAMIC SYSTEMS 

From measurements on the central heating system it is known 
that a pump pressure oft:,p =0.1 Bar yields qo =28.7l1h. These values 
are used as nominal values. At qo =28.7l1h, the flow fractions are 
given by kA 0.25 and kB =0.75. 

value unitParameter 
C rA , CrB 	 6.9 kJ/K 

CA,CB 	 158 kJlK 
11.6 MJIKCFA 

5.80 MJIKCFB 	 i 
0.333 KIWRrA ,RrB 

0.15 KIWRAB 

0.186 KIW'RWA ,RWB 

5.56 mKIWRFA ,RFB 

4.2 kJ/(kg K)Cp 

Ip 	 992 kg/m" 
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