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ABSTRACT

A new method for modelling the dynamics of rain measurement processes is suggested. The method takes the
discrete nature and autocorrelation of measurements from the tipping bucket rain gauge into consideration. The
considered model is a state space model with a Poisson marginal distribution. In the model there is only one
parameter, a thinning parameter. The model is tested on 39 rain events. The estimated value for the various
rain events is reflecting a subjective classification of rain events into frontal and convective rain. Finally, it is
demonstrated how the model can be used for simulation and prediction.
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INTRODUCTION

Rainfall is of paramount interest in todays society. The time scales of relevance in urban areas ranges from
minutes to decades. Of major importance in urban hydrology is the variations on a scale of minutes. Urban
runoff causes problems with flooding of subcatchments and pollution, the latter both due to combined sewer
overflows and due to transient impacts on waste water treatment plants. From an environmental engineering
point of view a better understanding of the rainfall process will enable better modelling of the entire water flow
in the cities.

Increasing requirements for averting floods as well as increasing consideration of environmental pollution
aspects makes minimisation of peak discharges a key issue today. Among engineers many believe that this
goal could be achieved through real-time control of urban hydrological systems. These control systems may
require short-term rainfall forecasts as input.

Also in requirements from design and analysis of urban drainage systems there is a need for better under-
standing and description of the rainfall process. Typically long time series of rainfall are taken as input to
rainfall-runoff models to simulate long time series of maximum water levels, overflows and impacts on waste
water treatment plants and receiving waters. The simulated model output is analysed, and the system perfor-
mance evaluated. Thus, the results of any hydrological calculations are highly dependent on the rainfall input
that is used. However, there is a serious shortage of rain series long enough to produce long-term extreme
statistics. Therefore simulated rain series could be used with advantage. However, before starting to simulate
30 years of rain data a good understanding of single rain events is crucial.

Rain data is most often collected by means of a tipping bucket rain gauge. A tipping bucket rain gauge is a
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discrete sampler counting the number of times a bucket is filled in each sampling time interval. Knowing the
volume of the bucket the rain event can somehow be reconstructed from these counts. Thus, when the rain
event is sampled in this way, the observed rain event is represented as a time series of counts.

The literature is scarce concerning analysis of single rain events with a temporal resolution suitable for mod-
elling of urban storm drainage. Most of the rain data collection is due to agricultural needs and for prediction
of flooding in rivers. Hourly, or even daily, measurements are quite sufficient for these purposes. However, the
temporal aggregation of rain data for use in urban hydrology should not exceed five minutes (Schilling, 1991).

In (Arnbjerg-Nielsen, 1996), the modelling of single rain ever_:s is considered. The approach used in this work
is to consider the waiting times between consecutive tips of the bucket. These waiting times are modelled
using traditional statistical models. One approach is using ARIMA models on the logarithm of the waiting
times. Another is a full discrete time Markov chain with 26 states representing waiting times. The latter model
is used to construct long artificial rain series with properties close to the observed series. The disadvantage of
this approach is that it requires a lot of parameters.

THE DATA

The data used for testing the proposed models consist of 39 single rain events, 16 of which are subjectively
classified as being convective and the other 23 are classified as being frontal. The rain events cover a time
span of 16 years, the first rain event is from 1979 and the last from 1995. They have been selected using either
extreme intensities (an average of more than 9 ym/s in ten minutes) or depths over 20 mm as criterion.

The rain data originates from tipping bucket rain gauge 20211 in Aalborg, Denmark. The gauge is part of a large
monitoring program initiated by the Danish Committee on Water Pollution Control (Spildevandskomiteen). For
a more detailed description of the monitoring program see (Harremdes and Mikkelsen, 1995).

Fig. L. Tipping bucket rain gauge.

The measuring principles of a tipping bucket rain gauge is illustrated in Figure 1. The rain enters the gauge
through the funnel whereafter it goes through a filter (1) into a syphon (2). The purpose of the syphon is to
ensure that the water always enter the bucket assembly (3) with the same momentum. When the syphon is
full, all the water from the syphon enters the bucket assembly. The water enters one of the two buckets at a
time, and when the bucket is full the bucket assembly tips, and the water will now enter the other bucket. The
number of tips from the bucket assembly is registered with a sampling frequency of one minute.

In Denmark two types of rainfall are dominating. Convective rain is high intensity rainfall usually of rather
short duration, as seen for example during thunderstorms. The 16 convective events selected have durations
of between 75 and 564 minutes, and have depths in the interval [9.0; 47.4] mm. As an example a typi-
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Fig. 2. Convective rain event from August 30th 1990.

The other common type of rain is frontal rain. Frontal rain usually give rise to longer rain events with almost
constant rain intensities, as seen for example during the passing of a front. The 23 frontal events selected have
durations between 308 and 1460 minutes, and have depths in the interval [20.2; 72.4] mm. An example of
a typical frontal rain event is shown in Figure 3. The first observations of the events shown are as follows
001000 -]

2900904

—{ A0 MR O 0 R |

E3 100 G0 ada 400 sc0

Fig. 3. Frontal rain event from September 4th 1990.

Rain events are rarely pure in the sense that they can uniquely be said to belong to one of the two types.
Especially convective storms are likely to exhibit frontal behavior prior to and after the convective region of
the storm.,

All 39 events have been manually classified as being either frontal or convective by an expert. Those events
reflecting both types of behavior have been classified as convective.

THE MODEL

Count data are usually modelled using probability distributions such as the Poisson or negative binomial. When
the means of such models are constant, or can be expressed in terms of input variables the estimation can be
carried out by using the theory of generalized linear models, see e.g. (McCullagh and Nelder, 1990). The idea
behind times series analysis, however, is that the mean is not constant but rather depends on previous obser-
vations. In the model considered in this paper the distribution of an observation, y, is specified conditional
on the mean of an underlying unobserved process, the rain intensity {8;}. The observations can then be said
to consist of two components; one belonging to the embedded process, the true rain intensity, and the other a
random error. This error represents both the discretisation and any misspecification of the underlying model.

In (Harvey, 1989) a state space model for count data is presented using the analogy to the random walk plus
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noise model
w=0+e n
0, =01+ n 2
in which the underlying level of the process changes over time according to (2). €, and 7, are error terms
representing measurement error and system error, respectively. Both have mean zero and constant variance.

The conditional distribution of the observations (y;) given the level of the underlying process (4;) is assumed
to follow a Poisson distribution

Y;16. € Po(8,) 3)
This corresponds to the measurement equation (1). Similarly, the probability distribution of the embedded rain
intensity is chosen to be a gamma distribution.
0, € G(a, B) “)
In order to formulate the model defined by (3) and (4) as a stochastic process, the time dependence has to be
specified. Here it is chosen to specify this dependence in terms of the conditional distribution of 8, given the
previous observations, Y;_;. Let o, and f;_, denote the parameters at time ¢ — 1 computed from the first
t — 1 observations, Y;_;. In other words, conditional on the information at time ¢ — 1 the distribution of §,_,
is given by
0, € G(ae—l,ﬂt—l) )
For the random walk plus noise model with normally distributed observations, 6;—; € N(m.—, ps—;) implies
that 0, € N(my_y,pe-1 + a,f). Thus, the mean of 8,|Y_ is the same as that of 6;_,| Y, but the variance is
increased. For the gamma distribution this same effect can be obtained by multiplying « and 3 with a constant

between zero and one. The fundamental difference between this model and the random walk plus noise model
is in the model for the latent process, {0, }.

Derivation of the distribution of 8, is now done by updating the parameters « and (3. By letting
ap = wa—y

B = wly (6)

where 0 < w < 1, the following desirable properties hold

E{0,} = E{0,_,}

and

var{f,} = w™'var{8,_,}

i.e. exactly the properties of the random walk plus noise model.
Having observed y;, o, and 3, can be updated using this new information. The updating equations are given by

!
a, = ar+ yi
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‘B:=ﬁt+1

where o} and §; denote the updated parameter values. These values are then used as the basis for the new
prediction using (6).

RESULTS

In most of the frontal events the counts are very rare, indicating a very low minute-to-minute varition. Thus,
to have some autocorrelation worth modelling all 39 rain events have been aggregated to the number of tips
in 10 minutes. The parameter w has been estimated for each of the 39 aggregated events using the maximum
likelihood method. For a derivation of the maximum likelihood estimator as well as a more detailed description
of the model see (Thyregod, 1997). The resulting parameter estimates are shown in Figure 4. The estimate leads
to a very distinct separation into convective events and frontal events. The parameter w can be regarded as a
thinning parameter. Thus, w indicates the strength of the carry-over effect. The events classified as being frontal
give rise to higher values of w, i.e. the frontal events are characterised by having a higher carry-over effect.

These findings are in very good agreement with the common meteorological understanding that convective
rain events are innovation processes whereas frontal rain events have more memory. The usual practice for
determining whether a rain event is frontal or convective has been to classify the event manually by an expert.
The above findings indicate that this instead can be done by inspecting the parameters of the above model.
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Fig. 4. Estimate of the parameter w for the 39 events.

One major advantage of the state space approach is that the uncertainty is separated into two contributions, one
arising from the measurement process and one arising from the underlying process. When interest is focussed
upon predictions or in gaining insight in the rainfall process, it is much easier to work with a smooth process
without the measurement error on top.

In Figure 5 the observed process is shown above the underlying process. It is seen that the fast variations have
been removed, but the estimated underlying process exhibit a visible variation that corresponds to the picture
one would expect intuitively.

A model is estimated for each rain event in order to reflect the properties of this specific event, and hence for
comparisons with other events the related parameter estimates are used. This means that it is not possible to
carry out an ordinary cross validation procedures.
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Fig. 5. Original series (top) and estimated latent process (bottom).

APPLICATIONS

The proposed model can be used for making short erm predictions which is useful for instance for on-line
control of sewer systems. Furthermore, the model can be used to generate synthetic rain events.
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Fig. 6. Poisson-gamma predictions. Predictions: dotted line.

At time 7 the mean of the Poisson measurement process will be the level of the underlying process, 8,. Hence,
the best one-step prediction will be the estimated level of the underlying process. It follows from the updating
formulae for the parameters that the predictions can be found as an exponentially weighted average with
weights, w, declining exponentially. Hence, the most recent observations are given the most weight in the
predictions.
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Fig. 7. INAR and Poisson-gamma simulations.

In Figure 6 the series of one-step predictions is shown together with the series of aggregated observations.

Simulation

The way to simulate a rain event using the proposed state space model is by first simulating the level of the
underlying process. Conditional on that the number of tips can be simulated as a random Poisson variable with
mean equal to the level of the underlying process.

It can be shown that in the transition equation for the dynamics of the embedded rain process the random
component originates from a Beta distribution. Thus, the level of the underlying process, §; can be simulated
by generating random Beta distributed variables with suitable parameters following the updating equations for
the parameters.

The parameter used for simulation originate from estimation of the model using one of the aggregated rain
events. In Figure 7 the original series is shown above the simulated series. The simulated series seem to have
some of the same visual characteristics as the original series.

The model performance in terms of its prediction and simulation capabilities is in this paper judged solely on
the basis of graphical comparisons. A more objective method to compare the accuracy of more models could

be using the series of prediction errors arising from each model. When making comparisons like that it is
essential that the number of parameters for each model is also taken in to consideration.

CONCLUSION

In this paper a new model for the rainfall measurement process have been suggested and its performance is
tested on actual rainfall data sampled by a tipping bucket rain gauge.

Compared to some other approaches the model is formulated in the domain most natural, i.e. the time domain
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for positive counts. Furthermore it holds the Markovian property.

Models with many parameters have the major disadvantage, that they require a very large amount of data
for estimation with a reasonable precision. Furthermore in a model with many parameters, there will often
be a high degree of substitutability, i.e. the parameter estimates will be highly correlated, and therefore the
identification of the individual parameters may be doubtful. Models with few parameters, on the other hand,
provide better possibility of interpreting and comparing the estimates of the parameters. Finally models with
less parameters are often more robust.

A set of parameters was estimated for each of the available 39 rain events. When estimating a set of parameters
based on only one rain event, the parameters will be reflecting properties of this particular rain event. The
model leads to parameter estimates that could be closely associated with the distinction between frontal and
convective rainfall. This is an important break-through in rainfall modelling. Previously such classification has
been done manually, but using the suggested models the estimated parameters can be used in that classification.

In the Poisson-gamma model there is only one parameter, the thinning parameter. For each of the series the
thinning parameter was estimated using the ML method. The estimated value for the various rain events re-
flected in a very distinct way the classification of rain events into frontal and convective rain. Convective rain
events gave rise to small values of the thinning parameter which is in agreement with the meteorological known
fact, that convective rain is closer to an innovation process.

Finally the model was used for simulation. The simulations resulted in a series with the same visual character-
istics as the actual series of observations.
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