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Abstract

Using a compact measuring unit with on-line meters for UV absorption and turbidity, it is possible to determine concentrations

of organic load (chemical oxygen demand (COD) and suspended solids (SS)) anywhere in a sewer system. When measurements of

the ¯ow are available as well, the pollutant mass ¯ow at the measuring point can be calculated.

The measured data are used to estimate di�erent models describing the load of pollutants in the sewer. A comparison of the

models shows that a grey-box model is most informative and best in terms measured by the multiple correlation coe�cient. The

grey-box model is a state-space model, where the state represents the actual amount of deposition in the sewer, and the output from

the model is the pollutant mass ¯ow to the wastewater treatment plant (WWTP). The model is formulated by means of stochastic

di�erential equations. Harmonic functions are used to describe the dry weather diurnal load pro®les. It is found that the accu-

mulation of deposits in the sewer depends on previous rain events and ¯ows.

By means of on-line use of the grey-box models, it is possible to predict the amount of pollutants in a ®rst ¯ush at any time, and

hence from the capacity of the plant to decide if and when the available detention basin is to be used for storage of wastewater. The

mass ¯ow models comprise an important improvement of the integrated control of sewer and WWTP including control of

equalisation basins in the sewer system. Further improvements are expected by the introduction of an additive model where dry

weather situations and storm situations are modelled separately before addition to the resulting model. Ó 1999 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

On-line measurements of organic pollution in terms
of biological, chemical or total oxygen demand (BOD,
COD or TOD) and suspended solids (SS) by means of
UV absorbance and turbidity sensors are now well de-
scribed (Dobbs, Wise & Dean, 1972; Mrkva, 1975;
Kanaya, Fujita, Hayashi, Hiraoka & Tsumura, 1985;
Ruban, Marchandise & Scrivener, 1993; Nowack &
Ueberbach, 1995; Matsch�e & Stumw�ohrer, 1996; Rey-
nolds & Ahmad, 1997; Wass, Marks, Finch, Leeks &
Ingram, 1997). When on-line measurements of COD
and SS are available a better characterization of the
wastewater can be achieved, and this leads to a better
understanding of the processes in the sewer system.

The sewer system is often modelled by means of de-
terministic modelling as a con®guration of storage vol-

umes connected with pipes of di�erent dimensions
(Mark, Appelgren & Larsen, 1995; Dempsey, Eadon &
Morris, 1997; Heip, Assel & Swartenbroekx, 1997; van
Luijtelaar & Rebergen, 1997). As these models are for-
mulated as a large collection of di�erential equations
with many parameters, it is di�cult to estimate the pa-
rameters on the basis of available measurements.

Data based models are also common in the literature
(Capodaglio, 1994; Delleur & Gyasi-Agyei, 1994; Ruan
& Wiggers, 1997; Young, Jakeman & Post, 1997). These
models have few parameters, which can then be esti-
mated on the basis of available data. However, as the
models are most often formulated in discrete time, the
parameter estimates depend on the sampling time.

In this paper a data based grey-box modelling ap-
proach is used. A grey-box model is a physically based
macroscopic model with stochastic terms to count in
uncertainties in model formulation and measurement
values. The introduction of stochastic terms enables
maximum likelihood estimation of the model pa-
rameters. The maximum likelihood method provides
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estimates of the variances of the parameter estimates,
which are used to evaluate the uncertainty of the pa-
rameters. The proposed models are formulated here in
continuous time. Measurements of pollutant mass ¯ows
in the inlet to a wastewater treatment plant (WWTP) are
modelled by means of models of di�ering complexity.
Pollutant deposition in the sewer can for instance be
included, to make it possible to quantify the amounts of
pollutants in a ®rst ¯ush.

2. The measurement system

A compact portable measuring box, developed by
Kr�uger A/S, Denmark, has been used to collect mea-
surements of UV absorption and turbidity from the inlet
to the Aalborg East WWTP in Northern Jutland,
Denmark, in the late 1997 and in the beginning of 1998.
The Kr�uger measuring box consists of a Grant SQ-1003
datalogger, a Dr. Lange UV absorbance sensor model
LSV 109 and a Dr. Lange SOLITAXplus LSV 121
turbidity sensor. The Aalborg East WWTP is equipped
with the STAR control system (Nielsen & �Onnerth,
1995; �Onnerth & Bechmann, 1995) which supplies esti-
mates of the inlet ¯ow, based on measurements from the
inlet pumping station. Fig. 1 shows the data used in the
present work. Laboratory analyses of COD and SS are
also available.

3. Models of the pollution concentrations and ¯uxes

The relationships between on-line measurements of
UV absorbance (A) and turbidity (T) and laboratory
analyses of COD and SS concentrations (CCOD and CSS,
respectively) are assumed to be:

CCOD � aCODA� bCOD; �1�
CSS � aSST � bSS; �2�
where aCOD, bCOD, aSS and bSS are parameters, which
have to be estimated on the basis of measurements of

CCOD, CSS, A and T, as the parameters depend on the
actual operating conditions and the wastewater com-
position (Dobbs et al., 1972; Mrkva, 1975; Kanaya et al.,
1985; Ruban et al., 1993; Nowack & Ueberbach, 1995;
Matsch�e & Stumw�ohrer, 1996; Reynolds & Ahmad,
1997; Wass et al., 1997). When these parameters are
estimated, it is possible to consider the observation at
time t of pollution ¯ux:

y�t� � Q�t�C�t� �3�
with Q�t� and C�t� denoting the ¯ow and the pollution
concentration (CCOD or CSS), respectively. This quantity
can be modelled using:

y�t� � ŷ�t� � ��t�: �4�
Here ŷ�t� is the predictable part of the model, and the
residual ��t� is a stochastic part, which is the di�erence
between the data observed and the prediction obtained
from the model.

The ®rst approach considered is to model the pollution
¯ux using a ®xed diurnal pro®le expressed as an nth order
harmonic function with a 24-hour period (model 1):

ŷ�t� � a0 �
Xn

k�1

ak sin 2pk
t

24 h

� ��
� bk cos 2pk

t
24 h

� ��
; �5�

where a0, ak and bk (16 k6 n), are the unknown pa-
rameters.

Another approach is to model the ¯ux as a mean
value and a term proportional to the ¯ow (model 2):

ŷ�t� � c0 � c1Q�t�; �6�
where c0 and c1 are positive parameters.

These two approaches can be combined to (model 3):

ŷ�t� � a0 �
Xn

k�1

ak sin 2pk
t

24 h

� ��
� bk cos 2pk

t
24 h

� ��
� cQ�t�: �7�

Note that the parameter values of the Fourier expansion
in Eqs. (5) and (7) are in general not the same, as some
of the harmonic variation in y�t� is most likely explained
by the harmonic variation of cQ�t�.

These approaches all result in static models.
The ®nal approach considered is model 4 which is a

dynamic model formulated as a state-space model. This
model takes the deposition of pollutants in the sewer
system and on impervious areas of the catchment area
into account.

The model is based on the assumption that pollutants
deposit gradually in dry weather and that the deposited
pollutants are ¯ushed out during rain incidents and into
the inlet of the treatment plant. Let x�t� denote the de-
position of pollutants at time t. Then a simple ®rst-order
linear ordinary di�erential equation:Fig. 1. The measurements of ¯ow, UV absorbance and turbidity.
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dx̂
dt
� a�x̂ÿ �x� � b�Qÿ �Q� �8�

can be used to describe the dynamics of the pollution
deposition. The time derivative of x̂ is the estimated
growth rate at which pollution is built up in the sewer,
and �x and �Q are the mean values of x̂ and Q. The pa-
rameters a and b are assumed to be negative, and hence
a ¯ow larger than the average ¯ow during the period will
decrease the growth rate and a ¯ow lower than the mean
¯ow will increase the growth rate. Similarly a deposited
amount larger than the mean will decrease the growth
rate, and vice versa.

The pollution ¯ux observed at the measuring point in
the inlet to the WWTP, is assumed to consist of a ®xed
diurnal pro®le, which describes the pollutants that enter
the sewer system, minus a contribution to the deposi-
tions in the sewer. This is formulated in the observation
equation:

ŷ�t� � a0 �
Xn

k�1

ak sin 2pk
t

24 h

� ��
� bk cos 2pk

t
24 h

� ��
ÿ dx̂

dt

� a0 �
Xn

k�1

ak sin 2pk
t

24 h

� ��
� bk cos 2pk

t
24 h

� ��
ÿ a�x̂ÿ �x� ÿ b�Qÿ �Q�: �9�

Besides a better description of the available data, this
approach also provides information about the practi-
cally unmeasureable amount of deposits in the sewer
and impervious areas of the catchment. Hence, besides
the parameter estimates, the model also provides an
estimate of xÿ �x. This means that the model does not
give information about the actual deposition level x, but
only about the di�erence from the mean level of depo-
sition. This does not pose any practical limitations on
the use of the model, as, for instance, it is still possible to
quantify the amount of pollutants in a ®rst ¯ush.

All the proposed pollution ¯ux models can be applied
to both SS and COD ¯ux.

4. Estimation methods

The parameters of the concentration models (1) and
(2) as well as the parameters of the static pollution ¯ux
models (5)±(7), can be estimated by ordinary least-
squares methods, as these models are all linear in the
parameters.

The method used to estimate the parameters of the
dynamic pollution ¯ux model (4) and (8), (9) is a max-
imum likelihood method for estimating parameters in
stochastic di�erential equations based on discrete time
data given by (4). For a more detailed description of the

method refer to Madsen and Melgaard (1991) or Me-
lgaard and Madsen (1993).

In order to use the maximum likelihood method,
some stochastic terms have to be introduced. Hence, the
®rst-order di�erential equation (8) turns into a sto-
chastic di�erential equation, where the continuous time
equation describing the dynamics of the pollution de-
position can be written as the so-called Itô di�erential
equation (éksendal, 1995).

dx�t� � f �x; u; t�dt � g�u; t�dw�t�; �10�
where x is the state variable, u an input (e.g., control)
variable, w a standard Wiener process (see e.g., Kloeden
& Platen, 1995), and f and g are known functions. The
function g�u; t� describes any input or time-dependent
variation related to how the variation generated by the
Wiener process enters the system. Note, that in order to
illustrate the ¯exibility of the method Eq. (10) represents
a generalization of the ordinary state equation (8).

For the observations we assume the discrete time
relation

y�t� � h�x; u; t� � e�t�; �11�
where e�t� is assumed to be a Gaussian white noise se-
quence independent of w, which can be seen as a gen-
eralization of (4) and (9). All the unknown parameters,
denoted by the vector h, are embedded in the continu-
ous±discrete time state-space model (Eqs. (10) and (11)).

The observations are given in discrete time, and, in
order to simplify the notation, we assume that the time
index t belongs to the set f0; 1; 2; . . . ;Ng, where N is the
number of observations. Introducing

Y�t� � �y�t�; y�t ÿ 1�; . . . ; y�1�; y�0��0 �12�
i.e., Y�t� is a vector containing all the observations up to
and including time t, the likelihood function is the joint
probability density of all the observations assuming that
the parameters are known, i.e.,

L0�h;Y�N�� � p�Y�N�jh�
� p�y�N�jY�N ÿ 1�; h�p�Y�N ÿ 1�jh�

�
YN
t�1

p�y�t�jY�t
 

ÿ 1�; h�
!

p�y�0�jh�; �13�

where successive applications of the rule P�A \ B� �
P �AjB�P �B� are used to express the likelihood function
as a product of conditional densities.

In order to evaluate the likelihood function it is as-
sumed that all the conditional densities are Gaussian. In
the case of a linear state-space model as described by (4)
and (8), (9), it is easily shown that the conditional den-
sities are actually Gaussian (Madsen & Melgaard, 1991).
In the more general nonlinear case the Gaussian
assumption is an approximation.

The Gaussian distribution is completely characterized
by the mean and covariance. Hence, in order to
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parameterize the conditional distribution, we introduce
the conditional mean and the conditional variance as

ŷ�tjt ÿ 1� � E�y�t�jY�t ÿ 1�; h�
and

R�tjt ÿ 1� � V �y�t�jY�t ÿ 1�; h�; �14�
respectively. It should be noted that these correspond to
the one-step prediction and the associated variance, re-
spectively. Furthermore, it is convenient to introduce
the one-step ahead prediction error (or innovation)

��t� � y�t� ÿ ŷ�tjt ÿ 1�: �15�
For calculating the one-step ahead prediction and its
variance, an iterated extended Kalman ®lter is used. The
extended Kalman ®lter is simply based on a linearization
of the system equation (10) around the current estimate
of the state (see Gelb, 1974). The iterated extended
Kalman ®lter is obtained by local iterations of the lin-
earization over a single sample period.

Using (13)±(15) the conditional likelihood function
(conditioned on y�0�) becomes

L�h;Y�N�� �
YN
t�1

1������
2p
p ��������������������

R�tjt ÿ 1�p 

� exp

 
ÿ ��t�2

2R�tjt ÿ 1�

!!
: �16�

Traditionally, the logarithm of the conditional likeli-
hood function is considered

log L�h;Y�N�� � ÿ 1

2

XN

t�1

log R�tjt
 

ÿ 1�

� ��t�2
R�tjt ÿ 1�

!
� const: �17�

The maximum likelihood estimate (ML-estimate) is the
set ĥ, which maximizes the likelihood function. Since it
is not, in general, possible to optimize the likelihood
function analytically, a numerical method has to be
used. A reasonable method is the quasi-Newton method.

An estimate of the uncertainty of the parameters is
obtained by the fact that the ML-estimator is asymp-
totically normally distributed with mean h and covari-
ance

D � Hÿ1; �18�

where the matrix H is given by

hlkf g � ÿE
o2

ohl ohk
log L�h;Y�N��

� �
: �19�

An estimate of D is obtained by equating the ob-
served value with its expectation and applying

hlkf g � ÿ o2

ohl ohk
log L�h;Y�N��

� �
jh�ĥ

: �20�

The above equation can be used for estimating the
variance of the parameter estimates. The variances serve
as a basis for calculating t-test values for test under the
hypothesis that the parameter is equal to zero. Finally,
the correlation between the parameter estimates is
readily found, based on the covariance matrix D.

The estimation methods are implemented in the
CTLSM program, which are available from http://
www.imm.dtu.dk/�hm/.

5. Results and discussion

The parameters of Eqs. (1) and (2) are found by linear
regression. It turned out that bCOD and bSS were insig-
ni®cant, and therefore they were eliminated in the ®nal
estimation. The estimated parameters and their standard
deviations are shown in Table 1. The degrees of expla-
nations (multiple correlation coe�cients) of the COD
and SS concentration models are R2 � 0:98 and
R2 � 0:97, respectively.

For the models, which include a diurnal pro®le
modelled as a harmonic function (models 1, 3 and 4), it
was found that second-order harmonic functions were
suitable, as the higher order coe�cients were insigni®-
cant. In Tables 2 and 3 it can be seen that some of the
parameters of the harmonic functions are insigni®cant,
as their estimated values are smaller or comparable in
absolute values to their estimated standard deviations.
Especially b1 of COD ¯ux model 3, b1 of SS ¯ux model 3
and b2 of SS ¯ux model 4 are very uncertain. Usually
insigni®cant parameters should be excluded from the
®nal estimation, to make the estimation of the remaining
parameters better. However, we have chosen to include
these parameters for comparison with the other models.

Comparison plots of measured and modelled pollu-
tion ¯uxes of the 4 models are shown in Figs. 2±5. Note,
that the modelled pollution ¯uxes shown in the ®gures

Table 1

Parameters of Eqs. (1) and (2) (the b parameters are insigni®cant and are therefore not estimated)

Parameter aCOD bCOD aSS bSS

Unit �g O2=m3�=mÿ1 g O2=m3 �g SS=m3�=FTU g SS=m3

Estimate 10.57 ± 3.05 ±

Standard deviation 0.40 ± 0.13 ±
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are not one-step ahead predictions, but simulations from
the estimated models. The simulations are based only on
the measured input to the models, which is time of day
(models 1, 3 and 4) and inlet ¯ow (models 2±4). In
Tables 2 and 3 the parameter estimates of the proposed
models are listed, and in Table 4 the correlations
between measured and simulated ¯uxes R2 of the models
are listed.

When comparing Figs. 2±5, it is seen that the simple
harmonic model 1 is good at describing most of the dry

weather situations, but not the wet weather situations.
Models 2±4 are better than model 1 at following the
peaks in pollution ¯ux in wet weather, as they include a
term proportional to the ¯ow. Besides a better correla-
tion between measured and modelled pollutant ¯uxes
expressed by the degree of explanation R2, application of
the dynamic model provides information about the
pollutant depositions in the sewer. In Fig. 6 the esti-
mated deviations from the mean levels of COD and SS
deposits are shown. From this ®gure it is seen that

Table 2

Parameter estimates of the COD ¯ux models

Model 1

Parameter a0 a1 b1 a2 b2

Unit kg O2=h kg O2=h kg O2=h kg O2=h kg O2=h

Estimate 443.5 ÿ148.6 ÿ39.22 17.94 53.94

Standard deviation 3.8 5.34 5.34 5.34 5.34

Model 2

Parameter c0 c1

Unit kg O2=h kg O2=m3

Estimate 190.1 0.3464

Standard deviation 10.3 0.0130

Model 3

Parameter a0 a1 b1 a2 b2 c
Unit kg O2=h kg O2=h kg O2=h kg O2=h kg O2=h kg O2=m3

Estimate 270.8 ÿ114.3 ÿ29.29 19.25 36.04 0.2361

Standard deviation 9.4 5.07 4.79 4.76 4.85 0.0120

Model 4

Parameter a b a0 a1 b1 a2 b2

Unit hÿ1 kg O2=m3 kg O2=h kg O2=h kg O2=h kg O2=h kg O2=h

Estimate ÿ0.08775 ÿ0.4448 444.4 ÿ93.50 1.403 24.67 22.69

Standard deviation 0.00864 0.0175 3.0 4.65 4.690 4.12 4.34

Table 3

Parameter estimates of the SS ¯ux models

Model 1

Parameter a0 a1 b1 a2 b2

Unit kg SS=h kg SS=h kg SS=h kg SS=h kg SS=h

Estimate 198.8 ÿ65.91 ÿ16.62 ÿ10.55 32.10

Standard deviation 3.3 4.70 4.70 4.70 4.70

Model 2

Parameter c0 c1

Unit kg SS=h kg SS=m3

Estimate ÿ77.11 0.3772

Standard deviation 5.25 0.0066

Model 3

Parameter a0 a1 b1 a2 b2 c
Unit kg SS=h kg SS=h kg SS=h kg SS=h kg SS=h kg SS=m3

Estimate ÿ67.96 ÿ12.96 ÿ1.268 ÿ8.536 4.445 0.3647

Standard deviation 5.60 3.01 2.846 2.830 2.882 0.0071

Model 4

Parameter aSS bSS a0 a1 b1 a2 b2

Unit hÿ1 kg SS=m3 kg SS=h kg SS=h kg SS=h kg SS=h kg SS=h

Estimate ÿ0.01192 ÿ0.4147 204.3 ÿ3.945 4.002 ÿ6.357 ÿ0.1627

Standard deviation 0.00090 0.0086 1.7 2.663 2.429 2.339 2.476
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pollutants build up in the sewer during dry weather
periods and are ¯ushed out during rain. The amounts of
deposits in a ®rst ¯ush can also be quanti®ed on the
basis of Fig. 6: The ®rst and second rain incidents
contain approximately 3000 kg O2 (COD) and 6000 kg

SS which are 14% and 63% of the diurnal load of COD
and SS, respectively. As it is expected that deposited
COD stabilizes in the sewer this is considered realistic.
The stabilization of COD will lead to a smaller amount
of COD in a ®rst ¯ush compared to the normal load of
COD than the amount of SS compared to the normal
load of SS, as deposited SS are not expected to stabilize
in the sewer.

The time constants of the dynamic COD and SS
models are ÿ1=a � 11:4 h and ÿ1=a � 83:9 h, respec-
tively. This means that after a considerable change in the

Fig. 4. The pollutant ¯ux modelled as a diurnal pro®le plus a term

proportional to the ¯ow. Solid lines: measured ¯ux, dashed lines:

modelled ¯ux.

Fig. 2. The pollutant ¯ux modelled as a diurnal pro®le. Solid lines:

measured ¯ux, dashed lines: modelled ¯ux.

Fig. 3. The pollutant ¯ux modelled as proportional to the ¯ow. Solid

lines: measured ¯ux, dashed lines: modelled ¯ux.

Fig. 5. The pollutant ¯ux modelled by a dynamic grey-box model.

Solid lines: measured ¯ux, dashed lines: modelled ¯ux.

Fig. 6. Estimated depositions of COD and SS in the sewer and on

impervious areas.

Table 4

Degrees of explanation of the di�erent models

Model R2

COD model SS model

1 0.39 0.15

2 0.32 0.69

3 0.51 0.69

4 0.61 0.76
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¯ow, the COD and SS depositions will reach 63% of the
steady state level in 11.4 and 83.9 h, respectively. The
dynamics of the COD deposition is thus about seven
times faster than the dynamics of the SS deposition.

As the data used for estimating the models are
dominated by dry weather situations, the ¯uxes are
underestimated during rainful events. A separation of
the models into dry weather models and storm models,
which are added to each other, might be a signi®cant
improvement.

6. Conclusions

Linear relationships between UV absorption and
COD and between turbidity and SS are derived. These
relationships are used to compute the COD and SS
concentrations from on-line measurements of UV ab-
sorption and turbidity. Using available measurements
of the ¯ow in the inlet to Aalborg East WWTP the
pollution ¯ows of COD and SS are used to estimate
models of di�ering complexity. It is shown that the es-
timated dynamic grey-box models, which include the
deposition and ¯ush out of pollutant masses in the
sewer, describe the data better than the other models
proposed. Furthermore, these dynamic models estimate
the amounts of deposits in the sewer at any time.
Hereby the amounts of pollutants in a ®rst ¯ush are
found. This information is very useful when control
algorithms for the use of the available detention basin
at the WWTP are designed. However, when the models
are to be used to enable better operational control of
available detention basins, predictions of the wastewa-
ter ¯ow to the WWTP are required. When ¯ow fore-
casts are available, the models suggested can be used to
predict the pollutant load with the same time horizon as
the ¯ow predictions.

With degrees of explanation (multiple correlation
coe�cients) R2 � 0:76 and R2 � 0:61 for the dynamic
grey-box COD and SS ¯ux models, respectively, there
are still variations in the data that are not described by
the models. Hence, there is still a need to develop better
models. Improvements could be a separation into dry
weather models and storm models, and the introduction
of limitations on the depositions in the sewer and on
impervious areas. However, introduction of limitations
on the depositions will require measurement data that
covers the limits su�ciently to estimate the parameters
that describe the bounds.
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