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SUMMARY

A new method for modelling the dynamics of rain sampled by a tipping bucket rain gauge is proposed. The
considered models belong to the class of integer valued autoregressive processes. The models take the
autocorrelation and discrete nature of the data into account. A ®rst order, a second order and a threshold
model are presented together with methods to estimate the parameters of each model. The models are
demonstrated to provide a good description of data from actual rain events requiring only two to four
parameters. Copyright # 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Rainfall is an important process for the water cycle, and in urban areas the rainfall process
interferes with many basic functions of today's society. From an environmental engineering point
of view, a better understanding of the rainfall process is believed to lead to less ¯ooding problems
in the sewer system, reduced pollution discharge and improved e�ciency of wastewater treatment
plants.

The two most important aspects of modelling rain is forecasting and simulation. Forecasting
can be used in real time control of urban hydrological systems with the objective of minimising
peak loads. Such on-line control systems may require short-term rainfall forecasts as input. For
most sewer systems the desired prediction horizon is between 30 and 60 min. Another application
of rainfall models is design and analysis of urban drainage systems where there is a need for better
understanding and description of the rainfall process. Long series of rainfall are taken as input to
rainfall±runo� models to simulate long series of runo�, ¯ow, water level and over¯ow to produce
long-term extreme statistics. The simulated model output is analysed, and the system perform-
ance evaluated. However, there is a serious shortage of high-resolution measured rain series
su�ciently long to produce long-term extreme statistics. Simulated rain series could be used with
advantage. Before starting to simulate 30 years of rain data, a good understanding of single rain
events is crucial.
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Most of the rain data collection is due to agricultural needs and for prediction of ¯ooding in
rivers. Hourly, or even daily, measurements are quite su�cient for these purposes. However, the
temporal aggregation of rain data for use in urban hydrology should not exceed, say 5±10 min.
Rain data is most often collected by means of a tipping bucket rain gauge. A tipping bucket rain
gauge is a discrete sampler counting the number of times a bucket is ®lled in each sampling time
interval. Knowing the volume of the bucket, the rain event can be reconstructed from these
counts. Thus, when the rain is sampled in this way, the rain event is represented as a time series of
counts.

In statistical time series literature very little attention has been given to the modelling of time
series of counts. Most of the literature that does exist is concerning theoretical properties of such
models, see e.g. MacDonald and Zucchini (1997). However, only very few applications of such
models besides discrete time Markov chain models have been published. In the present paper an
integer valued autoregressive model proposed by Al-Osh and Alzaid (1987) will be presented as a
means of modelling tipping bucket rain data.

In Arnbjerg-Nielsen (1996) the modelling of single rain events was considered. The approach
that was followed was to consider waiting times between consecutive tips of the bucket. These
waiting times were modelled using traditional statistical time series models. One approach was
using ARIMA models on the logarithm of the waiting times. Another was a full discrete time
Markov chain with about 40 states representing the di�erent waiting times.

2. RAIN DATA

In Denmark a large monitoring program was initiated in 1979 by the Danish Committee on
Water Pollution Control (in Danish: Spildevandskomiteen). The objective was to obtain high
resolution data on the rainfall process which could be used as input to hydrological and hydraulic
models for simulating extreme events in the sewer system. For this reason a number of rain gauges
of the tipping bucket type (see Figure 1) have been scattered over the country in order to obtain
information on the regional variation as well. For a more detailed description see Harremoes and
Mikkelsen (1995).

Figure 1. Tipping bucket rain gauge
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A tipping bucket rain gauge operates by means of a pair of buckets. The basic principle of a
tipping bucket rain gauge is as follows. The rain enters the gauge through the funnel, whereafter
it goes through a ®lter (1) into a syphon (2). The purpose of the syphon is to ensure that the water
always enters the bucket assembly (3) with the same momentum. When the syphon is full, all the
water from the syphon enters the bucket assembly. The water enters one of the two buckets at a
time, which overbalances directing the water into the second bucket. The ¯ip-¯op motion of the
tipping buckets is transmitted to the recording device and provides a measure of rainfall intensity.
The number of tips from the bucket assembly is registered with a 1 min sampling frequency.

In Denmark two types of rainfall are predominant. Convective rain is high intensity rainfall
usually of rather short duration, as seen for example during thunderstorms. An example of a
typical convective rain event is shown in Figure 2. The other common type of rain is frontal rain.
Frontal rain usually give rise to longer rain events with almost constant rain intensities, as seen
for example during the passing of a front. An example of a typical frontal rain event is shown in
Figure 3. Rain events are rarely pure in the sense that they can uniquely be said to belong to one
of the two types mentioned previously. They often re¯ect behaviour of both types of rain.

The data used for testing the proposed class of models originates from tipping bucket rain
gauge 20211 in Aalborg, Denmark. A total of 39 single rain events are considered, 16 of which
are classi®ed as being convective and the other 23 are classi®ed as being frontal. The classi®cation
was carried out manually by a meteorological expert. Events re¯ecting both types of behaviour
have mostly been classi®ed as convective. A manual classi®cation is both time-consuming and
subjective, which may result in very di�erent classi®cations depending on the expert and more
important climatic di�erences between countries. The rain events cover a time span of 16 years;
the ®rst rain event is from 1979 and the last is from 1995. They have been selected using either
extreme intensities (over 9 mm/s) or depths over 20 mm as criterion.

The 16 convective events selected have durations of between 75 and 564 min, and have depths
in the interval [9.0; 47.4] mm. The 23 frontal events selected have durations between 308 and
1460 min, and have depths in the interval [20.2; 72.4] mm.

Figure 2. Convective rain event from August 30th 1990
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3. THE INAR CLASS OF MODELS

In time series analysis, modelling of processes with a continuous output space has gained the
most attention. However, measurements are generally stored and processed in a discrete form.
For the majority of applications the resolution of data is su�ciently good to justify the choice of
a continuous probability distribution function. In the case of rainfall measurements from a
tipping bucket rain gauge, data have a distinctive discrete output space requiring the use of
discrete marginal distributions in the models. One model to consider for this type of data is the
INteger valued AutoRegressive (INAR) process introduced by (Al-Osh and Alzaid 1987).

Although the properties of the INAR class of models have been studied extensively, it seems
that only few applications have yet been published. One application of the INAR class of models
is found in Franke and Seligmann (1993), where daily counts of epileptic seizures in one patient
are considered.

In order to present the INAR class of models, ®rst the de®nition of the �-operator will be
presented. Let X be a non-negative integer valued random variable, then for any a 2 [0, 1] the
operator � is de®ned by

a � X �
XX
i�1

Yi

where Yi is a sequence of iid random variables, independent of X, satisfying:

PfYi � 1g � 1 ÿ PfYi � 0g � a

In the following the INAR process of order 1 will be presented and further extended to include
INAR-processes of order p.

Figure 3. Frontal rain event from September 4th 1990

Copyright # 1999 John Wiley & Sons, Ltd. Environmetrics, 10, 395±411 (1999)

398 P. THYREGOD ET AL.



3.1. The INAR process of order 1

Now the INAR(1) process can be de®ned for t � 1; 2; . . . as

Xt � a � Xtÿ1 � et �1�

where a 2 �0; 1�, and fetg is a sequence of uncorrelated non-negative integer valued random
variables with mean m and variance s2. In this work the innovation, fetg, is assumed to be a
Poisson process, thus m � s2 � l.

The form of the INAR(1) model is analogous to that of the standard AR(1) model with the
scalar-multiplication replaced by the � operator.

The INAR(1) model de®ned by equation (1) simply states that the count of the process at time t
is the sum of the survivors of the process at time tÿ 1, each with a probability of survival a, and
the new elements that entered the system in the interval �t ÿ 1; t�.

The following results are of importance when calculating the variance and autocorrelation
function of the process. The marginal distribution of the model (1) can be expressed in terms of
the innovation sequence fetg

Xt �
X1
j�0

aj � etÿj �2�

Another important property of the INAR(1) process is

Xt � a � �a � �� � � �a � Xtÿk � etÿk�1� � � ���

� ak � Xtÿk �
Xkÿ1
j�0

aj � etÿj
�3�

These results are similar to those obtained for the ordinary AR(1) process. Another important
property of the INAR(1) process is that Xt follows a Poisson distribution (Al-Osh and Alzaid
(1987) if and only if et follows a Poisson distribution. Consequently, the role which the
distribution of et plays in determining the distribution of Xt in the INAR(1) process is similar to
the role played by the normal distributed errors in the AR(1) process.

The conditional mean and variance of the INAR(1) process, fXtg, are directly found to be

EfXtjXtÿ1g � EfBin�Xtÿ1; a� � Po�l�g � sXtÿ1 � l �4�
varfXtjXtÿ1g � a�1 ÿ a�Xtÿ1 � l �5�

The unconditional mean of the INAR(1) process is then relatively easy found by recursive
application of (4)

EfXtg � aEfXtÿ1g � l � atEfX0g � l
Xtÿ1
j�0

aj
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For large t this is equal to

EfXtg � atEfX0g � l
Xtÿ1
j�0

aj ' l
1

1 ÿ a

Now the variance of the INAR(1) process can be found by applying the following text-book
result

varfXg � E�varfXjYg� � var�EfXjYg�
This yields the following expression for the unconditional variance

varfXtg � a2varfXtÿ1g � a�1 ÿ a�EfXtÿ1g � l

� a2tvarfX0g � �1 ÿ a�
Xt
j�1

a2jÿ1EfXtÿjg � l
Xt
j�1

a2�jÿ1�

Even though the INAR(1) process possesses some of the same properties as the AR(1) process,
the estimation of the parameters in an INAR(1) model is more complicated than is the case for an
AR(1) model.

3.2. The INAR process of order p

A natural extension of the INAR(1) model is to extend the dependency to include lags of higher
order than one.

The pth order integer autoregressive model (INAR(p)) is de®ned as

Xt �
Xp
i�1

ai � Xtÿi � et �6�

where ai 2 �0; 1� and et 2 Po�l�.
Though the form of the INAR(p) Model is very similar to that of an ordinary AR(p) model

some important di�erences exist. The dependency across time of the �-operator is the reason for
these di�erences.

The mutual dependence structure between the components of Xt , i.e.a � Xtÿi, i � 1; 2; . . . ; p
appearing at di�erent times induces a moving-average structure into the process. In fact, it can be
shown that the behaviour of the autocorrelation function of the INAR(p) process behaves like
that of the ordinary ARMA(p, pÿ 1) process. See Alzaid and Al-Osh (1990) for details.

3.3. Self-exciting threshold INAR model

As mentioned previously, some of the rain events change during the event from being frontal to
being convective. These events may lead to rather bad parameter estimates and possible
misclassi®cation if an INAR(1) model is used for classi®cation. By combining two INAR(1)
models in a threshold model, it is hoped that these critical rain events may be divided into more
homogeneous parts. As an indicator of what regime to choose we observe the number of tips
during the previous two 10-min samples.

Copyright # 1999 John Wiley & Sons, Ltd. Environmetrics, 10, 395±411 (1999)

400 P. THYREGOD ET AL.



Thus, the Self-exciting threshold INAR(1) (SETINAR) model can be formulated as

Xt �
a1 � Xtÿ1 � e1;t for

X2
j�1

xtÿj 4 b

a2 � Xtÿ1 � e2;t for
X2
j�1

xtÿj 4 b

8>>>><>>>>:
where e1;t 2 Po�l1� and e2;t 2 Po�l2�.

4. ESTIMATION

The estimation of INAR processes is more complicated than the straightforward estimation of
AR-processes. This is due to that the conditional distribution of xt given, xtÿ1; . . . ; xtÿp in the
INAR(p) process is the convolution of the Poisson distribution of et and p binomial distributions
with scale parameters ai and index parameter xi . Thus, the conditional distribution of Xt in an
INAR(p) process is the convolution of p � 1 distributions, which for large p requires a lot of
computation. In the following, estimation procedures for the INAR(1), INAR(2) and SETINAR
processes are given.

4.1. INAR(1)

In this section three methods for estimating the parameters in the simplest INAR model are
presented. It is shown how the two parameters ± a and l ± can be estimated from the moments of
the process, least squares and likelihood function. For the two ®rst methods, the similarity to the
AR(1) is obvious. In the maximum likelihood method, the marginal distribution will be di�erent.

4.1.1. Yule±Walker estimation

For any non-negative integer k the covariance at lag k, g(k), is

g�k� � cov Xt;Xtÿk� � cov�ak � Xtÿk �
Xkÿ1
i�0

ai � etÿi;Xtÿk

 !

� cov�ak � Xtÿk;Xtÿk� � cov
Xkÿ1
i�0

ai � etÿi;Xtÿk

 !

� akvarfXtÿkg �
Xkÿ1
i�0

cov�Xtÿk; etÿj�

� akvarfXtÿkg � akg�0�

�7�

the last equality is caused by the fact that cov�Xtÿk; etÿj� � 0 for j5 k.
Hence, the Yule±Walker estimator for a can be found from

a � g�1�
g�0� �8�
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Thus, by replacing g(1) with the sample auto covariance function and g(0) with the sample
variance, an estimator for a is

â �

Xnÿ1
t�0
�xt ÿ �x��xt�1 ÿ �x�
Xn
t�0
�xt ÿ �x�2

�9�

An estimate for l can be obtained by calculating êt � xt ÿ âxtÿ1. As et is assumed to follow a
Poisson distribution, a reasonable estimator for l is

l̂ � 1

n

Xn
t�1

êt �10�

4.1.2. Conditional least squares

In (4) the conditional mean of Xt given Xtÿ1 was found as

EfXtjXtÿ1g � aXtÿ1 � l

The conditional least squares (CLS) estimation is based on minimisation of the sum of squared
derivations from the conditional expectation. Thus, the CLS estimates for a and l are those
values which minimise

S�a; l� �
Xn
t�1
�Xt ÿ �aXtÿ1 � l��2 �11�

Evaluation of @S=@a � 0 and @S=@l � 0 give the following estimators for a and l

â � Sxtxtÿ1 ÿ �SxtSxtÿ1�=n
Sx2tÿ1 ÿ �Sxtÿ1�2=n

�12�

l̂ � 1

n
�Sxt ÿ âSxtÿ1� �13�

where all sums are over the interval [0, n].
In Madsen (1995) it is shown that the conditional least squares estimate and the Yule±Walker

estimate are asymptotically identical. All rain series used in the present work have ®rst and last
observation equal to zero. When this is the case, the two estimates will be exactly identical.

It should be stressed that Yule±Walker and Conditional Least Squares estimation can lead to
negative values of a. This will violate the basis of the INAR model, the � operator.
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4.1.3. Maximum likelihood

The conditional density for an INAR(1) model is given by the convolution of a binomial and a
Poisson distribution:

f1�i� �
xtÿ1
i

� �
ai�1 ÿ a�xtÿ1ÿi �14�

f2�i� �
li

i!
exp�ÿl� �15�

g�xtjxtÿ1� � f1*f2 �
X1
i�0

f1�i�f2�xt ÿ i� � exp�ÿl�
Xmin�xt;xtÿ1�

i�0

lxtÿi

�xt ÿ i�!
xtÿ1
i

� �
ai�1 ÿ a�xtÿ1ÿi �16�

Thus, the likelihood function becomes

L�a; l;x� �
Yn
t�1

g�xtjxtÿ1� �17�

The estimates of a and l are found as those values of a and l that minimises the negative
logarithm of the likelihood function.

logL�a; l;x� �
Xn
t�1

g�xtjxtÿ1� �18�

4.2. INAR(2)

Below a method for maximum likelihood estimation in the INAR(2) case is presented. This is an
extension to the work of Alzaid and Al-Osh (1990). The density of the INAR(2) process is the
convolution of two binomial distributions and a Poisson distribution. The two binomial
distributions have number of trials as Xtÿ1 and Xtÿ2 respectively.

f1�i� �
xtÿ1
i

� �
ai1�1 ÿ a1�xtÿ1ÿi

f2�i� �
xtÿ2
i

� �
ai2�1 ÿ a2�xtÿ2ÿi

f3�i� �
li

i!
exp�ÿl�

�19�

The density for U � Bin�xtÿ1; a1� � Bin�xtÿ2; a2� is:

h�u� � f1*f2 �
X1
i�0

f1�i�f2�u ÿ i�

�
Xmin�u;xtÿ1�

i�max�0;uÿxtÿ2�

xtÿ1
i

� �
xtÿ2
u ÿ i

� �
ai1a

uÿi
2 � �1 ÿ a1�xtÿ1ÿi�1 ÿ a2�xtÿ2ÿ�uÿi�

�20�
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The limits of the summations are found as those values of i for which f1 and f2 are de®ned

xtÿ1
i

� �
) xtÿ1 5 i

xtÿ2
u ÿ i

� �
) xtÿ2 5 u ÿ i, i5 u ÿ xtÿ2

xtÿ2
u ÿ i

� �
) u ÿ i5 , i4 u

9>>>>>>=>>>>>>;
) �21�

i 2 �max�0; u ÿ xtÿ2�;min�u; xtÿ1�� � I1

The resulting density is that of X � U � Po�l� which becomes

g�xjxtÿ1; xtÿ2� � �f1*f2�*f3 �
X1
j�0

h�j�f3�x ÿ j�

� exp�ÿl�
Xx
j�0

lxÿj

�x ÿ j�!
X
i2I1

xtÿ1
i

� �
xtÿ2
j ÿ i

� �
� ai1a

jÿi
2 �1 ÿ a1�xtÿ1ÿi�1 ÿ a2�xtÿ2ÿ�jÿi�

�22�

Thus, giving the following likelihood function

L�a1; a2; l; x� �
Yn
t�1

g�xtjxtjxtÿ1; xtÿ2� �23�

For a2 � 0 the terms of the inner sum of the density g( ) are seen to be di�erent from zero only for
i � j, in which case the value is

xtÿ1
j

� �
xtÿ2
0

� �
aj1a

0
2�1 ÿ a1�xtÿ1ÿj1xtÿ1ÿ�xtÿj� �

xtÿ1
j

� �
aj1�1 ÿ a1�xtÿ1ÿj �24�

The right-hand side of (24) are exactly the components of the sum for the INAR(1) model, thus
making the INAR(1) model a true sub-model of the INAR(2) model.

4.3. SETINAR

The number of tips in a 20-min interval is used to determine the appropriate regime. Thus, the
following two index sets are de®ned

T1 � tj
X2
i�1

xtÿi 4 b

( )
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and

T2 � tj
X2
i�1

xtÿi 4 b

( )

Let g�xtjxtÿ1; a1; l1� denote the one-step conditional density of the INAR(1) process. The
likelihood function for each of the two regimes is

L�a1; l1;x� �
Y
t2T1

g�xtjxtÿ1; a1; l1�

and

L�a2; l2;x� �
Y
t2T2

g�xtjxtÿ1; a2; l2�

Hence, the joint likelihood function of all observations may be expressed as

L�a1; a2; l1; l2; x� � L�a1; l1;x� � L�a2; l2;x� �25�

5. RESULTS

The parameters of the INAR(1) model have been estimated for each of the 39 rain events by
optimising the maximum likelihood function derived in the previous chapter. Only the maximum
likelihood is used as this makes it possible to compare the results of the three models. The results
are presented in plots showing connected values of the two parameters. Those rain events
classi®ed as being frontal have been marked with a `F' and those classi®ed as being convective are
marked with a `C'.

5.1. INAR(1)

When estimating the parameters of the INAR(1) model using series of one-minute sampled
values it was found that these series do not contain enough information for modelling in the time
domain. Many events do not have any minute-to-minute correlation that is worth considering.
Hence, all the series have been aggregated into 10 min sampling intervals. Aggregating data
corresponds to a low pass ®ltering making the fast variations less dominating, thus bringing out
the slower dynamics of the process.

The parameter space is restricted to a 2 [0; 1]. The expression for the logarithm of the
likelihood found in (18) is also seen only to be de®ned for values of a in this interval. The
numerical optimisation routine used for minimising the negative log-likelihood function is called
NPSOL. NPSOL is a procedure for constrained optimisation and uses a quadratic programming
algorithm with a BFGS quasi-Newton update of the Hessian.

In Figure 4 the maximum likelihood estimates are shown for the aggregated series. It is noticed
that there is still a noticeable separation of the events. When the fast variations are no longer
dominating, the rain events classi®ed as being frontal seem to be associated with a higher degree
of memory than the rain classi®ed as being convective. The opposite is the case for the innovation

Copyright # 1999 John Wiley & Sons, Ltd. Environmetrics, 10, 395±411 (1999)

MODELLING RAINFALL MEASUREMENTS 405



parameter, l, where the convective events tend to give rise to higher estimates than frontal events.
As the innovation parameter, l, describes what can not be described by the carry-over e�ect, it
can be claimed that the frontal events are better described by the INAR(1) model than the
convective events.

These ®ndings are in very good agreement with the common meteorological understanding
that convective rain events are innovation processes, whereas frontal rain events have more
memory. The parameter estimates from a rain event provide a good means for characterising the
event. The above ®ndings indicate that classi®cation of rain can be carried out by evaluating the
parameters in an INAR(1) model.

As the results from using 10-min aggregated data seems reasonable, in the rest of this chapter,
where extensions of the INAR(1) model will be considered, only 10 min aggregated values will be
used.

5.2. INAR(2)

When estimating the parameters of the INAR(2) model, it was found that only half the events
gave rise to estimates of a2 that were signi®cantly di�erent from zero.

In Figure 5 the likelihood ratios against INAR(1) are shown. Naturally the events having a2s
not signi®cantly di�erent from zero will have likelihood ratio test statistics close to zero, which
can also be seen from the ®gure. Only very few of the events are found to give a signi®cantly
better description of the data at a 95% level.

5.3. SETINAR

For the SETINAR model, ®rst the threshold has to be estimated. Utilising the discrete nature of
the problem and the fact that the sum of some maxima is again a maximum, this is solved using a

Figure 4. ML estimates of aggregated series
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maximum likelihood approach. For a given value of the threshold, the sum of the logarithm of
the maximised likelihood functions for all events is calculated. This is done for seven di�erent
values of the threshold. This resulted in the values in Table I, hence a threshold of nine tips in the
past two 10-min samplings was chosen.

The resulting parameter estimates are shown in Figures 6 and 7. Now there are four parameters
for each event. In Figure 6 the parameters have been marked with the type of rain and in Figure 7
they have been marked with `1' and `2' according to the character of the regime.

The parameters marked with a `2' belong to the regime determined by S2
i�1xtÿi 4 9. The

parameters of that group are characterised by a higher innovation, just as expected for the
convective parts of the rain events. The tendency, however, is not as clear as anticipated. One
reason for this might be that some of the events do not change regime at all, thus giving rise to
unreliable parameter estimates. Another reason might be that many of the convective events
when aggregated have become rather short. Roughly 10 observations are rather on the small side
for estimating four parameters.

In Figure 8 the likelihood ratios are shown. The values should be compared with quantiles of a
w2(2) distribution. The 95% and 99% quantiles are 5.991 and 9.210, respectively. As the

Figure 5. Likelihood ratios for INAR(2)/INAR(1)

Table I. Maximised likelihood functions
for seven di�erent threshold values

Threshold ÿS log L

b � 6 3218.454
b � 7 3214.453
b � 8 3205.839
b � 9* 3203.911
b � 10 3212.592
b � 11 3214.339
b � 12 3215.469
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likelihood ratios for a majority of the convective events are larger than 10, the SETINAR model
is seen to give a signi®cantly better description of a large fraction of the convective rain events.
On the other hand, the rain events classi®ed as being frontal do not bene®t from the extension in
quite the same way, indicating that they are not that prone to shift between regimes.

6. APPLICTION OF INAR-MODELS

The INAR-model as well as the SETINAR-model can be used to generate synthetic rain, for
instance used for assessing long term extreme statistics. The simple structure of the model makes
the simulation procedure straightforward. In each step the value of Xt is found as the sum of a

Figure 6. Parameter estimates for 39 rain events for SETINAR

Figure 7. Parameter estimates for 39 rain events for SETINAR
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randomly generated binomial variable with number of trials Xtÿ1 and probability a, and a
randomly generated Poisson variable with intensity parameter l.

In Figure 9 a rain event has been simulated using the estimated parameters of one of the 39
events. The simulated rain series is compared to the original series. Although, the simulated and
original rain series do not re¯ect exactly the same dynamics, it appears that the behaviour of
the two rain series is similar. It should be stressed that simulation of the rain process with an

Figure 8. Likelihood ratios for SETINAR/INAR(1)

Figure 9. Simulation of rain with the INAR(1) process compared to an observed rain event
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INAR-model should be restrained to a ®xed length of simulation, because the INAR-process will
generate innovations of rain for as long as the simulation runs.

Short term predictions of rain is useful for instance for on-line control of sewer systems and
treatment plants. Figure 10 shows the one-step predictions of the INAR(1)-model for the same
rain event as in Figure 9. The resemblance to the AR(1) process is clearly visible.

7. CONCLUSION

In this paper a class of models for integer valued processes has been suggested to describe the
rainfall measurement process, and the models have been estimated and tested on observed
rainfall data. The suggested INAR-models are new within the ®eld of rainfall modelling. Only
models with a few parameters are investigated. Models with many parameters have the
disadvantage that they require a large amount of data for estimation with a reasonable precision.
Furthermore, models with many parameters tend to have a high degree of substitutability, i.e. the
parameter estimates tend to be highly correlated, and therefore the identi®cation of the individual
and independent parameters may be doubtful. Models with few parameters, on the other hand,
provide better possibility of interpreting and comparing the estimates of the parameters. Finally,
models with less parameters are often more robust.

Models were estimated for each of the available 39 rain events. It is shown that when estimating
a set of parameters based on one rain event only, the parameters re¯ect properties of this
particular rain event. Speci®cally, the estimated parameters can be used as an objective method
for classifying the rain event as being either frontal or convective. Such classi®cation is today
done manually and thus subjectively, but the estimated parameters of the models presented can
be used in this classi®cation.

One extension of the INAR model considered in this paper was to incorporate two ®rst order
INAR models into a threshold structure. In this way the model has two carry-over parameters,
and more importantly two innovation parameters. The threshold INAR model showed an

Figure 10. One step predictions using an INAR(1)-model (predictions: dotted line)
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evident improvement for a large fraction of the convective rain events, whereas no improvements
were seen for the frontal rain events.

Finally, the INAR model has been used for simulation and prediction. The simulated series
show the same characteristics as the actual series of rainfall measurements. The INAR model
produces short-term predictions which can be used as input to rainfall±runo� models in real time
control of sewer systems.
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