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The stylized facts of stock prices, interest and exchange rates have led econometricians
to propose stochastic volatility models in both discrete and continuous time. However,
the volatility as a measure of economic uncertainty is not directly observable in the
financial markets. The objective of the continuous-discrete filtering problem considered
here is to obtain estimates of the stock price and, in particular, the volatility using
discrete-time observations of the stock price. Furthermore, the nonlinear filter acts as an
important part of a proposed method for maximum likelihood for estimating embedded
parameters in stochastic differential equations. In general, only approximate solutions to
the continuous-discrete filtering problem exist in the form of a set of ordinary differential
equations for the mean and covariance of the state variables. In the present paper the
small-sample properties of a second order filter is examined for some bivariate stochas-
tic volatility models and the new combined parameter and state estimation method is
applied to US stock market data.

Keywords: Stochastic volatility, volatility estimation, nonlinear filtering, Monte Carlo
simulation.

1. Introduction

Volatility modelling and estimation play an important role in the valuation of

financial derivatives and the application of risk management systems (for Value-

at-risk computations [47] or more coherent risk measures, see e.g. [4, 16]).

The Black–Scholes model is routinely used to evaluate the price of European

type options, even though it is known to produce systematic pricing biases, e.g. it

does not accommodate volatility smiles. It is now well-documented that stock re-

turns exhibit leptokurtosis, skewness and pronounced conditional heteroscedasticity

in the form of volatility clustering, all features that are at odds with the Black–

Scholes assumptions.

A number of continuous-time stochastic volatility models have been proposed

in the literature under the natural assumption that the failure of the Black–Scholes
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model is attributable to the assumed geometric Brownian motion model for the

stock price dynamics. Valuation of options under stochastic volatility is covered in

[3, 7, 36, 39, 66, 77], whereas [31] treats the valuation of futures, and [38] considers

hedging. Market completeness is, in general, not attainable in stochastic volatil-

ity models, yet [37, 78] suggest a methodology that provides a complete market.

Discrete-time stochastic volatility models have been proposed by [17, 30, 34, 35]

among others. In discrete-time, a plethora of related autoregressive conditional

heteroskedastic (ARCH) models have been proposed, see e.g. [10, 68, 73] and the

collection of papers in [22, 63].

Until recent years, there has been a dichotomy between the discrete-time models

favored for empirical work on economic and financial time series and the continuous-

time models typically used in theoretical work on asset pricing. There is a growing

literature devoted to closing this gap by considering the continuous-time mod-

els obtained when the sampling time tends to zero with obvious applications for

high-frequency data, see e.g. [63]. As opposed to ARMA-models, GARCH models

are not, in general, closed under temporal aggregation, which implies that there

does not exist a continuous-time counterpart of any GARCH model. It has been

shown that jump-diffusion models may arise as limits of a limited class of ARCH

models [55] when the time gap between observations falls. Similar results have been

obtained [18] for the widely used GARCH(1,1) model [9] and for a very large class

of GARCH models [19]. However, for the econometrician, there is no particular

reason for restricting the class of continuous-time stochastic volatility models to

those that are attainable as limits of GARCH models.

Parameter estimation in discretely observed diffusion processes with unobserved

states is an inherently difficult problem to which a number of solutions have been

proposed in the literature. The fundamental problem is that the exact transition

density functions, and hence the likelihood function, cannot generally be expressed

in closed form. For univariate models [1] has proposed a method, where the Kol-

mogorov forward equation is used to extract a semi-nonparametric estimator of the

diffusion function when the drift function is given. The small sample properties of

this method has been studied in [61]. Using the same basic framework [70] has pro-

posed a semi-nonparametric method for estimating discrete-time approximations of

the drift and diffusion functions, and [43] suggested a slightly different approach.a

The work by [1, 70] has been studied extensively by [12], where it is shown that

these kernel based methods may yield spurious non-linearities. Unfortunately, it is

difficult to extend these methods to cope with multivariate diffusion processes, in

particular processes with unobserved states.

Another branch of the literature has extended the [60] approach of considering

the estimation problem as a missing value problem by using Markov Chain Monte

Carlo Methods [21, 25, 46].

A third branch of the literature deals with simulation-based methods and mo-

ment matching. The simulated method of moments [20] obtains moment conditions

aIn [44], the small sample properties of a number of nonparametric estimators have been compared.
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by matching the sample moments with simulated moments from the proposed

model. The basic idea behind the indirect inference method [30, 69] is to match

the moments of a discrete-time auxiliary model identified and estimated using the

real data with the moments of a discretized version of the proposed continuous time

model. This approach is taken for a stochastic volatility model by [24]. The effi-

cient method of moments [26] is a very similar, but slightly refined method.b This

method has been applied to stochastic volatility models in [27, 28]. The drawback

of the very general EMM method is that it requires both an auxiliary model and a

continuous time model that captures all the features of the data and a one-to-one

mapping between the parameters of these models.

The main contribution of this paper is an estimation and filtering method

that allows the estimation of embedded parameters in multivariate continuous-time

stochastic volatility models using discrete-time observations.

A growing interest for filtering methods in the financial engineering literature is

easily detected: Filtering methods for structural models in discrete-time is covered

in [33] and applied to discrete-time stochastic volatility models in [35]. Filtering of

volatility from stock prices in an ARCH-framework is considered in e.g. [56, 57],

and volatility estimation in a linear structural model is treated in [74] using an

ordinary Kalman filter.

For nonlinear systems the extended Kalman filter provides an approximate so-

lution to the filtering problem [42], but for SDEs with a state-dependent diffusion

function higher order filtersc are needed [52]. A maximum likelihood method for

direct estimation of embedded parameters in SDEs is proposed in [58], which also

covers a generalization of the transformation proposed in [5] such that the extended

Kalman filter may be applied to a class of SDEs with a state-dependent diffusion

term. Stochastic volatility models do not, however, belong to this class such that

higher order filters must be used. Furthermore, nonlinear filtering methods make it

possible to estimate unobservable states in a large class of continuous-time models.

In the present paper this will be demonstrated using stochastic volatility models.

Hence the proposed method allows for a simultaneous estimation of the parameters

and the unobserved states such that actual estimates of the stochastic volatility

are provided.

The paper is organized as follows: Sec. 2 presents the continuous-time bivariate

stochastic volatility models to be considered. Section 3 describes the second order

filters that provides an approximate solution to the continuous-discrete filtering

problem. Section 4 provides simulation studies in order to validate the proposed

filtering and estimation method. Section 5 contains empirical work on US stock

market data, and Sec. 6 concludes.

bAn examination of the relative efficiency of the EMM method is reported in [29].
cHigher order filters and some extension for discrete-time state space models have been compared
by [72] using Monte Carlo simulation.
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2. Bivariate Stochastic Volatility Models

This section provides an overview of previously proposed diffusion processes for

modelling of stochastic volatility. It is customary to extend the Black–Scholes model

by letting the volatility itself be modelled as a diffusion process, i.e.

dSt = αStdt+ σtStdW
1
t , (1)

dψ(σt) = a(σt)dt+ b(σt)dW
2
t , (2)

where W 1
t ,W

2
t are correlated Wiener processes with correlation coefficient ρ. The

instantaneous rate-of-return is α, ψ(σt) is some mapping of σt, a(σt) and b2(σt)

account for the instantaneous mean and variance, respectively, of the stochastic

volatility {σt} and ρ accounts for the socalled leverage effect, i.e. the fact that

large upward moves in equity markets typically have smaller volatility impacts

than large downwards moves of the same magnitude. Table 1 lists a number of the

specifications given in the literature.

The real-valued discrete-time observations {Yti} are obtained at the sampling

instants t1 < · · · < ti < · · · < tN , where N denotes the number of observations.

The observation equation is

Yti = Sti + eti , i = 1, . . . , N , (3)

where {eti} is a Gaussian white noise process with mean zero and variance Σti .

The stochastic entities Wt = (W 1
t ,W

2
t )T and eti are assumed to be mutually

independent for all t and ti.

As shown in Table 1, a plethora of continuous-time stochastic volatility models

have been proposed in the literature. The modelling framework (1)–(3) makes it pos-

sible to specify and estimate very general stochastic volatility models. In particular

estimates of the stochastic volatility σt and the parameters in the underlying SDE

(2) may be obtained. However the unique identification of such models is inherently

Table 1. An overview of a number of bivariate stochastic volatility models on the form (1)–(2).

ψ(σt) a(σt) b(σt) Reference(s)

σt κ(β − σt) ξ [71]

σt κ(β − σt) ξσt [14]

σt κσt(β − σt) ξσt [66]

σt κσt ξσt [39, 45, 78]

σt (β − κσ2
t )/σt ξ [6, 36, 40]

σt κ(β − σ2
t ) ξσt [54]

ln σt κ(β − ln σt) ξ [67, 77]
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Fig. 1. The aliasing problem: An infinite number of sample paths may give rise to the same
observed data set. Only three sample paths have been sketched here.

limited due to the aliasing problem.d To be precise, let Ft = σ{Yti} denote the in-

formation set generated by the observations {Yti} and let Gt = σ{Xt, Yti} denote

the information set generated by the states {Xs}t0≤s≤t and the observations {Yti},
i = 1, . . . , N . Obviously Ft ⊆ Gt, which implies that infinitely many sample paths

of (1)–(2) observed through (3) may yield the same observations, as illustrated in

Fig. 1, such that (1)–(2) cannot be uniquely identified from Ft.

3. Nonlinear Filtering Techniques

In this section the continuous-discrete nonlinear filtering problem will be described

for a general stochastic state space model and the approximations made to obtain

the second order filter will be discussed in detail. The presentation follows [52].

Assume that a general model for the state variables Xt ∈ Rn is given by

dXt = f(Xt;θ)dt+ G(Xt;θ)dWt ; Xt0 = X0 , (4)

where X0 is a stochastic initial condition satisfying E[|X0|2] <∞, the drift function

f : Rn×Rp 7→ Rn and the diffusion function G:Rn×Rp 7→ Rn×d are assumed to be

known up to the unknown parameter vector θ ⊆ Θ ∈ Rp and Wt = (W 1
t , . . . ,W

d
t )T

is a d-dimensional Wiener process with incremental covariance Qt defined on the

usual probability space (Ω,F , P ), see [62] for the technical details. Assume that f

and G satisfy necessary and sufficient conditions to ensure the existence of unique

solutions to (4), and that they are twice continuously differentiable with respect

to Xt.

dFor first order scalar SDEs some progress has been made, see [2, 32], where the latter shows that
the aliasing problem does not exist for scalar time reversible SDEs.
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Further assume that observations are made available at discrete time instants

t1 < · · · < ti < · · · tN , where N denotes the number of observations. The rela-

tion between the state variables and the observations is given by the observation

equation. The observation equation is given by

Yti = h(Xti ;θ) + eti , (5)

where h:Rn×Rp 7→ Rm is a known function, which is assumed to be twice continu-

ously differentiable with respect to Xt. Finally {eti} is a m-dimensional zero mean

Gaussian white noise process with covariance Σti . The stochastic entities X0, Wt

and eti are assumed to be mutually independent for all t and ti.

Remark 3.1. Clearly the discretely observed stochastic volatility model (1)–

(3) fits into the general specification (4)–(5) by defining the state vector as

Xt = (St, ψ(σt))
T , and the observation equation as h(Xti ;θ) = Sti . The pro-

posed methodology can also be applied to the augmented state space vector

Xt = (St, ψ(σt), αt)
T if a SDE is specified for the stochastic rate-of-return αt,

see [75].

The filtering problem and the filtering equations will be derived only in the

univariate case (n = m = d = 1) with h(Xti ;θ) = Xti in Sec. 3.1, but the general

results will be stated for the multivariate case in Sec. 3.2.

3.1. The univariate case

Let px(xt, ti|ξ, ti−1) denote the conditional probability density function (cpdf) of

being in state Xt = xt at time ti given that the process was in state Xti−1 = ξ at

time ti−1. It is well known that the solution to (4) is a Markov process, so the process

is completely characterized by the sequence of transition densities px(xt, ti|ξ, ti−1).

The time evolution of px(xt, t|ξ, ti−1) for t ∈ [ti−1, ti), i.e. between sampling instants

ti−1 and ti, is given as the solution to the Kolmogorov forward equation

∂px(xt, t|ξ, ti−1)

∂t
= −∂[px(xt, t|ξ, ti−1)f(xt;θ)]

∂xt

+
1

2
Qt
∂2[px(xt, t|ξ, ti−1)G

2(xt;θ)]

∂x2
t

(6)

for t ∈ [ti−1, ti), where it is assumed that the continuous partial derivatives exist.

Let px|y(xt, ti|Fi) denote cpdf of being in state Xti = xt at time ti given ob-

servations up to and including time ti, where Fi is short for Fti , i.e. the σ-algebra

generated by the observations up to time ti. This cpdf can be obtained as fol-

lows: First consider the time propagation of px|y−(xt, ti|Fi−1) from sample time

ti−1 to ti. Knowing px(xt, t|ξ, ti−1), t ∈ [ti−1, ti), makes it possible to compute

px|y−(xt, ti|Fi−1) using the Chapman–Kolmogorov equation:

px|y−(xt, ti|Fi−1) =

∫ ∞
−∞

px(xt, t|ξ, ti−1)px−|y−(ξ, ti−1|Fi−1)dξ , (7)
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where px(xt, t|ξ, ti−1) is given as the solution to (6) and px−|y−(ξ, ti−1|Fi−1) is

obtained from the previous observation update. Indeed, it can be shown that

px|y−(x, ti|Fi−1) itself satisfies (6) with an initial condition given by the previous

observation update px−|y−(ξ, ti−1|Fi−1).

When a new observation Yti = yti becomes available at time ti, an update of

the cpdf of the state px|y follows from Bayes’ formula, i.e.

px|y(xt, ti|Fi) =
py|x,y−(ηti |xt,Fi−1)px|y−(xt, ti−1|Fi−1)

py|y−(ηti |Fi−1)
, (8)

where the second numerator term has just been derived. For the first numerator

term it is easily seen that

py|x,y−(ηti |xt,Fi−1) = py|x(ηti |xt) =
1√

2πΣti
exp

(
− (ηti − xti)2

2Σti

)
. (9)

The denominator in (8) may be computed using

py|y−(ηti |Fi−1) =

∫ ∞
−∞

py,x|y−(xt, ξ|Fi−1)dξ

=

∫ ∞
−∞

py|x(xt|ξ)px|y−(ξ|Fi−1)dξ . (10)

Knowing py|y−(ηti |Fi−1) from the above propagation and py|x(xt|ξ) from (9) pro-

vide sufficient information to compute px|y(xt, ti|Fi) using (8). Equations (6)–(10)

constitute the general continuous-discrete time filtering problem. Unfortunately, ex-

cept for a few special cases (e.g. narrow-sense linear systems), closed form solutions

to these equations are not available. The computation of the entire density function

px|y(xt, ti|Fi), which provides the connection between the evolution of the state

variable and the observations, requires the solution of partial integro-differential

equations (derived by means of the Kolmogorov forward equation) and observation

updates involve solving functional integral difference equations (derived by means

of the Bayes’ formula). This implies that the general optimal nonlinear filter will be

infinite dimensional. For practical purposes expansions truncated to some low order

are required both in the time propagation and observation update of the nonlinear

filter. One possible approach is to consider expansions of some of the conditional

moments, and this will be pursued in the following. Other approaches are described

in [52].

3.1.1. Conditional moments estimator

Let X̂t|ti−1
= E[Xt|Fi−1] = Ei−1[Xt] and Pt|ti−1

= E[(Xt − X̂t|ti−1
)2|Fi−1],

t ∈ [ti−1, ti), denote the conditional mean and variance, respectively. Using the

Kolmogorov forward Eq. (6) the propagation of these moments between sampling

instants ti−1 and ti may be shown to satisfy

dX̂t|ti−1

dt
= Ei−1[f(Xt;θ)] , (11)
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dPt|ti−1

dt
= 2Ei−1[f(Xt;θ)Xt] +QtEi−1[G

2(Xt;θ)]

− 2Ei−1[f(Xt;θ)]Ei−1[Xt] , (12)

for t ∈ [ti−1, ti). Note that these are not ordinary differential equations (ODEs),

because Ei−1[·] depends on the cpdfs px(xt, t|Fi−1), i.e. all the moments of the

conditional density. However, by disregarding or restricting the moments of higher

order than two it is possible to derive an approximate set of prediction and updating

equations that have a structure similar to the ordinary Kalman filter [33].

Hence by performing Taylor expansions of f(·) and G(·) about the current esti-

mate X̂t|ti−1
, truncating after the second order terms and taking expectations, the

following prediction equations are obtained:

dX̂t|ti−1

dt
= f(X̂t|ti−1

;θ) +
Pt|ti−1

2

∂2f(X̂t|ti−1
;θ)

∂X2
t

(13)

dPt|ti−1

dt
= 2

∂f(X̂t|ti−1
)

∂Xt
Pt|ti−1

+Qt

[
G2(X̂t|ti−1

;θ)

+

(
∂G(X̂t|ti−1

;θ)

∂Xt

)2

Pt|ti−1
+G(X̂t|ti−1

;θ)
∂2G(X̂t|ti−1

;θ)

∂X2
t

Pt|ti−1

+
3

4

∂2G(X̂t|ti−1
;θ)

∂X2
t

2

P 2
t|ti−1

]
(14)

for t ∈ [ti−1, ti), where it has further been assumed that the transition density

is sufficiently close to the Gaussian density to ensure that the third and higher

order odd central moments are essentially zero, i.e. E[(Xt − X̂t|ti−1
)2j+1] ≈ 0,

j = 1, 2, . . ., that the fourth central moment may be expressed in terms of the

variance, i.e. E[(Xt−X̂t|ti−1
)4] = 3P 2

t|ti−1
, and that the sixth and higher order even

central moments are negligible, i.e. E[(Xt − X̂t|ti−1
)2j ] ≈ 0, j = 3, 4 . . . . This filter

is called the Gaussian truncated second order filter. Without the last term in (14),

the filter is called the truncated second order filter. This filter ignores all central

moments of Xt higher than second order. If G(Xt;θ) does not depend on Xt, then

the extended Kalman filter is obtained. For illustration, Eq. (13) may be obtained

as follows: A Taylor series expansion of f(Xt;θ) about the conditional mean, i.e.

the current estimate X̂t|ti−1
, yields

f(Xt;θ) = f(X̂t|ti−1
;θ) +

∂f(x;θ)

∂x

∣∣∣∣
x=X̂t|ti−1

(
Xt − X̂t|ti−1

)

+
1

2

∂2f(x;θ)

∂x2

∣∣∣∣
x=X̂t|ti−1

(
Xt − X̂t|ti−1

)2

+ · · · . (15)

By taking the conditional expectation Ei−1[·] on both sides of (15), the second

term on the right-hand side clearly drops out such that (13) is obtained using the
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definition of Pt|ti−1
. Equation (14) is obtained in a similar manner, see [52] for more

technical details.

Remark 3.2. The last term in (13) is often called a bias-correction term, because

it gives rise to less biased state estimates than the extended Kalman filter [52].

After having obtained the observation Yti at time ti the conditional mean and

variance can be improved or updated. The approximative updating equations are

X̂ti|ti = X̂ti|ti−1
+Kti

{
Yti − X̂ti|ti−1

}
, (16)

Pti|ti = (1−Kti)Pti|ti−1
, (17)

where the Kalman gain Kti is

Kti =
Pti|ti−1

Pti|ti−1
+ Σti

. (18)

The Kalman gain Kti describes the weight of the information provided by a new

observation depending upon the variance associated with the state estimate,Pti|ti−1
,

and the variance of the observation Σti . Equations (13)–(18) constitute the modified

Gaussian second order filter [52]. This filter may be applied as follows: Assume

that the functions f(·) and G(·), and the true parameters θ (including Σti and

Qt) are known. Assume further that initial guesses of the state estimate X̂t1|t0 , the

associated variance Pt1|t0 and henceforth the Kalman gain Kt1 are provided. When

the first observation Yt1 is obtained, an update of the state estimate (16)–(17) may

be computed. These serve as initial conditions for the ODEs (13)–(14) such that

X̂t|t1 and Pt|t1 , t ∈ [t1, t2), may be computed using a numerical ODE solver, e.g. a

Runge–Kutta method. When the next observation Yt2 is obtained the new state

estimate X̂t2|t2 and Pt2|t2 is obtained using (16)–(17), and so forth.

In [59] this filter is applied to the constant elasticity of variance model [15].

This filter and the extended Kalman filter (using a transformation) is compared

for the interest model proposed by [11] in [5]. In the following attention will be

concentrated on the multivariate case. Typically, a numerical method is needed to

solve the ordinary differential Eqs. (13)–(14).

3.2. The multivariate case

In this section the modified truncated second order filter and the modified Gaus-

sian second order filter will be stated for the general modelling framework (4)–(5)

as immediate generalizations of the filters presented in the previous section. A mul-

tivariate version of the derivation of the exact filtering problem given in Sec. 3.1

does not offer any additional insight, so it will be skipped here.
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3.2.1. The truncated second order filter

The time propagation equations are

dX̂t|ti−1

dt
= f(X̂t|ti−1

;θ) +Ei−1[Bt|ti−1
] , (19)

dPt|ti−1

dt
= F(X̂t|ti−1

;θ)Pt|ti−1
+ Pt|ti−1

FT (X̂t|ti−1
;θ)

+Ei−1

[
G(X̂t|ti−1

;θ)QtG
T (X̂t|ti−1

;θ)
]
, (20)

with the initial conditions X̂ti−1|ti−1
and Pti−1|ti−1

.

The bias-correction term Ei−1[Bt|ti−1
] is a n-dimensional vector with the kth

component

Eki−1[Bt|ti−1
] =

1

2
tr

{
∂2fk(x;θ)

∂x2
Pt|ti−1

}∣∣∣∣
x=X̂t|ti−1

(21)

and F(X̂t|ti−1
;θ) is given by the n× n matrix

F(X̂t|ti−1
;θ) =

∂f(x;θ)

∂x

∣∣∣∣
x=X̂t|ti−1

. (22)

The last term in (20) is a n×n symmetric matrix with element ij given by (where

the dependence on X̂t|ti−1
, t|ti−1, and θ have been dropped for convenience)

Eiji−1[GQtG
T ] =

d∑
k=1

d∑
l=1

GikQkl
t (GT )lj + tr

{(
∂Gik

∂x

T

Qkl
t

∂(GT )lj

∂x

)
P

}

+
1

2
GikQkl

t tr

{
∂2(GT )lj

∂x2
P

}
+

1

2
tr

{
P
∂2Gik

∂x2

}
Qkl
t (GT )lj .

(23)

Remark 3.3. Notice that Gik denotes element ik of G, whereas (GT )lj denotes

element lj of the transpose of G. Also notice that the partial derivative of a scalar

with respect to a vector yields a row vector such that, say, ∂(GT )lj

∂x is a row vector,

and ∂Gik

∂x

T
is a column vector.

The updating equations are given by

Ati = H(X̂ti|ti−1
;θ)Pti|ti−1

HT (X̂ti|ti−1
;θ)−Ei−1[B̃ti|ti−1

]ETi−1[B̃ti|ti−1
]

+Σti , (24)

Kti = Pti|ti−1
HT (X̂ti|ti−1

;θ)A−1
ti
, (25)

X̂ti|ti = X̂ti|ti−1
+ Kti

{
yti − h(X̂ti|ti−1

;θ)−Ei−1[B̃ti|ti−1
]
}
, (26)

Pti|ti = Pti|ti−1
−KtiH(X̂ti|ti−1

: θ)Pti|ti−1
, (27)
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where H(X̂ti|ti−1
;θ) is defined as the m× n matrix

H(X̂ti|ti−1
;θ) =

∂h(x;θ)

∂x

∣∣∣∣
x=X̂ti|ti−1

(28)

and the bias-correction term Ei−1[B̃ti|ti−1
] is am×1-vector with the kth component

given by

Eki−1[B̃ti|ti−1
] =

1

2
tr

{
∂2hk(x;θ)

∂x2
Pti|ti−1

}∣∣∣∣
x=X̂ti|ti−1

. (29)

Remark 3.4. For a nonlinear observation function, Eq. (24) shows that the ob-

servation update equations also includes a bias-correction term as opposed to the

linear case (16). Notice that the bias-correction term (29) drops out if the observa-

tion Eq. (5) is linear in the state variables.

Higher order filters can be obtained by including higher order terms from the

Taylor series expansions of f and G. However, the severe computational disad-

vantages makes such filters infeasible, and it is generally recommended to use the

first or second order filters on better models. The numerical work is considerably

more demanding for the multivariate case, i.e. it involves the numerical solution of

n + n
2 (n + 1) = n

2 (n + 3) ODEs for the conditional first and second order central

moments given by (19)–(20) between each sampling instant.

3.2.2. The Gaussian second order filter

The prediction equations for the modified Gaussian second order filter are very

similar to those for the truncated version. The only difference is the computation

of (23), where the results may conveniently be expressed in terms of

G̃(X̂t|ti−1
;θ) = G(X̂t|ti−1

;θ)Q
1/2
t

so that Ei−1[GQtG
T ] = Ei−1[G̃G̃T ] is a n× n symmetric matrix with element ij

given by

Eiji−1[GQtG
T ] =

d∑
k=1

[
G̃ik(G̃T )kj + tr

{(
∂G̃ik

∂x

T
∂(G̃T )kj

∂x

)
P

}

+
1

2
G̃iktr

{
∂2(G̃T )kj

∂x2
P

}
+

1

2
tr

{
P
∂2G̃ik

∂x2

}
(G̃T )kj

+
1

4
tr

{
∂2G̃ik

∂x2
P

}
tr

{
∂2(G̃T )kj

∂x2
P

}

+
1

2
tr

{
∂2G̃ik

∂x2
P
∂2(G̃T )kj

∂x2
P

}]
. (30)
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Remark 3.5. Notice that the first four terms in (30) replicate (23) and the last

two terms correspond to the last term for the scalar case (14).

The Gaussian version of the second order filter is obtained by approximating

the fourth central moments with the values they would assume if the density were

in fact Gaussian, i.e.

Ei−1[(X
i − X̂i)(Xj − X̂j)(Xk − X̂k)(X l − X̂ l)]

= P ijP kl + P ikP jl + P ilP jk (31)

for i, j, k, l = 1, . . . , n, where the time argument of X̂t|ti−1
= (X̂1

t|ti−1
, . . . , X̂n

t|ti−1
)T

and Pt|ti−1
has been left out for brevity. The updating equations for the modified

Gaussian second order filter are almost similar to the truncated version. The only

difference is the equations for the bias-correction term.

Ati = H(X̂ti|ti−1
;θ)Pti|ti−1

HT (X̂ti|ti−1
;θ)−Ei−1[B̄ti|ti−1

] + Σti , (32)

Kti = Pti|ti−1
HT (X̂ti|ti−1

;θ)A−1
ti , (33)

X̂ti|ti = X̂ti|ti−1
+ Kti

{
Yti − h(X̂ti|ti−1

;θ)−Ei−1[B̃ti|ti−1
]
}
, (34)

Pti|ti = Pti|ti−1
−KtiH(X̂t|ti−1

;θ)Pti|ti−1
, (35)

where H(X̂t|ti−1
;θ) is defined in (28) and Ei−1[B̃ti|ti−1

] is given by (29), and the

bias-correction term Ei−1[B̄ti|ti−1
] is a m × m-matrix with the klth component

given by

Ekli−1[B̄ti|ti−1
] =

1

2
tr

{
∂2hk(x;θ)

∂x2
Pti|ti−1

∂2hl(x;θ)

∂x2
Pti|ti−1

}∣∣∣∣
x=X̂ti|ti−1

. (36)

Remark 3.6. Notice again that the bias-correction term (36) drops out if the

observation Eq. (3) is linear in the state variables.

3.3. Maximum likelihood estimation

In this section a maximum likelihood method for estimation of the parameters

in the continuous-discrete state space model (4)–(5) based on an assumption of

Gaussianity for the one-step prediction errors given by the expressions in the curly

brackets in either (16), (26) or (34) is presented.e This assumption may be tested

using standard statistical tests for Gaussian white noise residuals. If these tests are

rejected at all reasonable levels of significance, then the method can be considered

as a prediction error method or a quasi-maximum likelihood method [48, 51].

Assume that Xt, t ≥ t0, solves (4) and that the initial condition X0 is Gaus-

sian, i.e. X0 ∈ Nn(µ0,Σ0). The likelihood function L̃(θ;XtN ), where XtN =

eThe idea follows the prediction error decomposition method proposed by [65].
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(XtN , . . . ,Xt0) denotes the sample path of state variable at the sampling instants

ti, i = 1, . . . , N , is

L̃(θ;XtN ) =

[
N∏
i=1

px(xti , ti|xti−1 , ti−1,θ)

]
p(xt0 |µ0,Σ0) (37)

where the cpdf px(xti , ti|xti−1 , ti−1,θ) solves the multivariate extension of (6), i.e.

∂px(xt, t|xti−1 , ti−1,θ)

∂t

= −
N∑
i=1

∂[px(xt, t|xti−1 , ti−1,θ)f
i(xt;θ)]

∂xt

+
1

2

N∑
i=1

N∑
j=1

∂2[px(xt, t|xti−1 , ti−1,θ)(G(xt;θ)QtG
T (xt;θ))

ij ]

∂x2
t

(38)

and that p(xt0 |µ0,Σ0) denote the multivariate Gaussian pdf with mean µ0 and

covariance Σ0. An explicit solution to (38) is not available (as argued in Sec. 3.1),

and furthermore only a function of Xt encumbered with noise is observed as de-

scribed by (5). However, a similar construction can be made for the observations

Yti , i = 1, . . . , N , i.e.

L̄(θ;FtN ) =

(
N∏
i=1

py(yti |Fi−1,θ)

)
(p(yt0 |µ0, ε0,Σt0) , (39)

where it is necessary, due to the incomplete observation of the state vector, to

condition on all previous observations and not only the previous observation as in

(37). Most frequently, however, the conditional likelihood function

L(θ;FtN ) =

(
N∏
i=1

py(yti |yti−1 ,θ)

)
(p(yt0 |µ0, ε0,Σt0) (40)

is considered.

The cpdf py is rarely available (as argued in Sec. 3.1). However, progress may

be made by considering the density of the one-step prediction errors

εti(θ) ≡ Yti − h(X̂ti|ti−1
;θ) . (41)

Assuming Gaussianity of εti(θ), the likelihood function is completely characterized

by the conditional first and second order central moments

Ŷti|ti−1
= E[Yti |Fi−1,θ] = h(X̂ti|ti−1

;θ) (42)

Rti|ti−1
= V [Yti |Fi−1,θ] (43)

i.e. the conditional likelihood function is given by

L(θ;FtN ) =
N∏
i=1

(
(2π)m det(Rti|ti−1

)
)− 1

2 exp

(
−1

2
εTti(θ)R

−1
ti|ti−1

εti(θ)

)
(44)
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and the log-likelihood function is

ln L(θ;FtN ) = −1

2

N∑
i=1

(ln det(Rti|ti−1
)

+ εTti(θ)R
−1
ti|ti−1

εti(θ)) + constant . (45)

An estimate of the uncertainty of the parameters is obtained using the fact

that the ML-estimator is asymptotically Gaussian distributed with mean V and

covariance Σ given by the lower bound of the Cramer–Rao inequality, i.e. V = H−1,

where the elements of the Hessian matrix are given by

hij = −E
{
∂2 ln L(θ;FtN )

∂θi∂θj

}
(46)

such that the covariance matrix of the estimated parameter vector is readily

available.

Remark 3.7. The one-step prediction errors given in the curly brackets of (16) are

structurally in accordance with the innovations suggested by the observation Eq. (5)

for h(Xti ;θ) = Xti , so the interpretation of (16) is clear. However, in the general

multivariate case, the expressions in the curly brackets in (26) and (34) contain

the additional bias-correction terms given by (29) and (36), respectively. This is

due to the approximative nature of the second order filters, and it suggests that

the one-step prediction errors (residuals) obtained from (41) may be confounded

with some of the deficiencies of the filter in the general case.f Notice, however, that

the bias-correction terms (29) and (36) drop out for the stochastic volatility models

considered here, because the observation Eq. (5) is linear.

4. Monte Carlo Studies

In this section the estimation method proposed in Sec. 3.3 will be evaluated for two

stochastic volatility models belonging to the class (1)–(3), see also Table 1. Explicit

solutions to this class of stochastic volatility models either in terms of a stochastic

process or the cpdf given by (38) do not exist for non-trivial choices of ψ(σt), a(σt)

or b(σt). An efficient and widely applicable approach to solving SDEs is to simulate

sample paths of a time discrete approximation to the continuous-time model [49].

Without loss of generality, assume that t0 = 0 and divide the time interval [0, tN ]

into M (M � N) small time intervals 0 = τ0 < · · · < τn < · · · < τM = tN ,

where the time intervals are assumed to be equally spaced ∆ = τn+1− τn = tN/M .

Approximate the Wiener processes W k
t , k = 1, 2, by the increments

∆W k
n = W k

τn+1
−W k

τn

fSee [72] for a discussion of this in discrete-time structural models.
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with mean E[∆W k
n ] = 0 and variance E[(∆W k

n )2] = ∆. The Euler approximation

of (1)–(2) is given by the bivariate stochastic difference equation

Sn+1 = Sn + αSn∆ + σnSn[ρ∆W̃
1
n +

√
1− ρ2∆W̃ 2

n ] , (47)

σn+1 = σn + a(σn)∆ + b(σn)∆W̃ 1
n , (48)

where it has been assumed that ψ(σt) = σt, and the correlated Wiener processes

∆W 1
n and ∆W 2

n have been replaced by the uncorrelated Wiener processes ∆W̃ 1
n

and ∆W̃ 2
n with mean E[∆W̃ k

n ] = 0 and variance V [∆W̃ k
n ] = ∆ for k = 1, 2.

4.1. The Black Scholes Courtadon model Full information

Consider the following model as an example of the general class (1)–(3), where the

stochastic volatility is modelled as a mean-reverting process proposed by [14], i.e.(
dSt

dσt

)
=

(
αSt

κ(β − σt)

)
dt+

(
σtSt 0

0 ξσt

)(
dW 1

t

dW 2
t

)
, (49)

where (W 1
t ,W

2
t ) is a bivariate Wiener processes with correlation coefficient ρ.

Instead of operating with both a G matrix and a Q matrix, the model may be

written on a form where Q is the identity matrix, i.e.(
dSt

dσt

)
=

(
αSt

κ(β − σt)

)
dt+

(
σtSt 0

ρξσt
√

1− ρ2ξσt

)(
dW̃ 1

t

dW̃ 2
t

)
, (50)

where (W̃ 1
t , W̃

2
t ) is a bivariate Wiener process with uncorrelated elements. In this

case of full information the observation equation is

Ytk =

(
Stk

σtk

)
+

(
etk

0

)
, etk ∈ N (0,Σ) . (51)

Let Xt = (X1
t ,X

2
t )
T = (St, σt)

T denote the state vector. The time propagation

equations of the modified Gaussian second order filter are

dX̂t|ti−1

dt
=

(
αX̂1

t|ti−1

κ(β − X̂2
t|ti−1

)

)
, (52)

dPt|ti−1

dt
=

(
2αP 11

t|ti−1
P 12
t|ti−1

(α− κ)
P 21
t|ti−1

(α− κ) −2κP 22
t|ti−1

)
+

(
P̃ 11
t|ti−1

P̃ 12
t|ti−1

P̃ 21
t|ti−1

P̃ 22
t|ti−1

)
, (53)

where P̃ jkt|ti−1
, with k, j = 1, 2 is defined as

P̃ 11
t|ti−1

= (X̂1
t|ti−1

X̂2
t|ti−1

)2 + P 11
t|ti−1

(X̂2
t|ti−1

)2 + 4X̂1
t|ti−1

X̂2
t|ti−1

P 12
t|ti−1

+ (P 12
t|ti−1

)2

+P 22
t|ti−1

(X̂1
t|ti−1

)2 +
1

2
((P 12

t|ti−1
)2 + (P 21

t|ti−1
)2 + 2P 11

t|ti−1
P 22
t|ti−1

) ,
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P̃ 21
t|ti−1

= P̃ 12
t|ti−1

= ξρ
{
X̂1
t|ti−1

(X̂2
t|ti−1

)2 + P 21
t|ti−1

X̂2
t|ti−1

+ P 22
t|ti−1

X̂1
t|ti−1

+ X̂2
t|ti−1

P 12
t|ti−1

}
,

P̃ 22
t|ti−1

= ξ2((X̂2
t|ti−1

)2 + P 22
t|ti−1

) .

The update equations are given by

X̂ti|ti =

(
X̂1
ti|ti−1

X̂2
ti|ti−1

)
+ Pti|ti−1

(
P 11
ti|ti−1

+ Σ P 12
ti|ti−1

P 21
ti|ti−1

P 22
ti|ti−1

)−1

×
{(

Y 1
ti

Y 2
ti

)
−
(
X̂1
ti|ti−1

X̂2
ti|ti−1

)}
,

Pti|ti = Pti|ti −Pti|ti−1

(
P 11
ti|ti−1

+ Σ P 12
ti|ti−1

P 21
ti|ti−1

P 22
ti|ti−1

)−1

Pti|ti−1
.

The model (50) has been simulated using the Euler scheme (47)–(48) with ∆ =

10−3 to obtain 1 million observations. Every 1000th observation has been sampled

with the sampling time ti− ti−1 = 1 such that N = 1000 observations are obtained.

The parameter values

θ = (α, κ, β, ξ,Σ, ρ)T = (0.00198, 0.0071, 0.01, 0.016, 0.0195, 0.5)T

have been chosen to mimic the properties of real data.

Table 2. Estimation results for the correlated Black–Scholes–Courtadon model (50)–(51), where
θ̄ and sθ denote respectively the mean and standard deviation of the parameter estimates obtained
from the 10 independent simulations, and |t| = (θj − θ̄j)/(sθj /

√
10) is a t-test statistic under the

null hypothesis that the estimated parameters are unbiased.

Parameter α κ β ξ Σ ρ

Simulation no. 0.0019800 0.0071000 0.0100000 0.0160000 0.0195000 0.5000000

1 0.0025093 0.0090798 0.0098299 0.0159729 0.0206965 0.5304104

2 0.0022716 0.0128750 0.0109020 0.0160406 0.0175810 0.5071539

3 0.0017152 0.0103744 0.0092906 0.0164556 0.0194734 0.4753382

4 0.0017658 0.0073760 0.0103590 0.0168831 0.0175455 0.5036983

5 0.0017914 0.0204004 0.0102107 0.0161234 0.0212303 0.5144773

6 0.0017008 0.0067208 0.0089242 0.0163276 0.0194376 0.4212158

7 0.0020048 0.0117637 0.0097847 0.0159738 0.0194874 0.5448961

8 0.0022034 0.0107719 0.0109357 0.0162803 0.0209394 0.5331270

9 0.0019004 0.0035937 0.0102286 0.0160098 0.0205281 0.5870837

10 0.0021469 0.0108092 0.0119591 0.0161880 0.0175823 0.5153257

mean (θ̄) 0.0020010 0.0103765 0.0102424 0.0162255 0.0194502 0.5132726

std. dev. (sθ) 2.7387e-4 0.0044602 8.7563e-4 2.8255e-4 0.0014420 0.0436963

| t |-stat 0.2421484 2.3230069 0.8756128 2.5239735 0.1092857 0.9605341
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Using the filter described above and the maximum likelihood method described

in Sec. 3.3 the estimation results in Table 2 for each of 10 independent simulations

are obtained. For each parameter, a t-test is provided to verify if the estimation

results are unbiased. It is seen that the t-tests show critical test statistics for both κ

and ξ. The problem with the estimation of κ originates from the chosen parametriza-

tion of the drift, which makes it difficult for the method to make a proper separation

of both κ and β. The test statistics for ξ is significant due to the accuracy of the

estimate of ξ thus producing a very small standard deviation.

To verify if the residuals have Gaussian white noise properties the model veri-

fication tests in Appendix A are carried out on the standardized residuals for each

observed process individually.g All these tests are accepted on a 5% level indicating

Gaussian white noise residuals.

4.2. The Black Scholes Courtadon model Partial information

Consider again the model (50) and replace (51) by

Yti = Sti + eti . (54)

The time propagation equations for the modified Gaussian second order filter are

given by (52)–(53). The updating equations are given by

X̂ti|ti =

(
X̂1
ti|ti−1

X̂2
ti|ti−1

)
+

1

P 11
ti|ti−1

+ Σ

(
P 11
ti|ti−1

P 21
ti|ti−1

){
Yti − X̂ti|ti−1

}
(55)

Pti|ti =

(
P 11
ti|ti−1

P 12
ti|ti−1

P 21
ti|ti−1

P 22
ti|ti−1

)

− 1

P 11
ti|ti−1

+ Σ

(
(P 11
ti|ti−1

)2 P 12
ti|ti−1

P 11
ti|ti−1

P 21
ti|ti−1

P 11
ti|ti−1

P 12
ti|ti−1

P 21
ti|ti−1

)
. (56)

4.2.1. Special case κ = 1

The model (50)+(54) has been used for simulation of 10 independent realizations

using the Euler scheme (47)–(48) with ∆ = 10−3 and the sampling time ti −
ti−1 = 10−1 such that N = 1000 observations are obtained for each time series.

The parameter values θ = (α, β, ξ,Σ, ρ)T = (0.035, 0.13, 0.5, 0.12,−0.5)T have been

used. The choice of a positive α implies that the model is non-stationary, but

consistent with observed stock prices.

Using the filter described above the estimation results in Table 3 are obtained

with the parameter restriction κ = 1. For each parameter, a t-test is provided

to verify if the estimation results are unbiased. All the t-tests are accepted on

gThe residuals of the stock price process have been normalized by the factor (Pti|ti−1
+ Σ)−1/2.

A similar result holds for the residuals of the stochastic volatility process.
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Table 3. Estimation results for the model (50) + (54) with the restriction κ = 1 imposed, where
θ̄ and sθ denote respectively the mean and standard deviation of the parameter estimates obtained
from the 10 independent simulations, and |t| = (θj − θ̄j)/(sθj /

√
10) is a t-test statistic under the

null hypothesis that the estimated parameters are unbiased.

Parameter α β ξ Σ ρ

Simulation no. 0.0350000 0.1300000 0.5000000 0.1200000 −0.5000000

1 0.0293474 0.1310356 0.6401490 0.0880917 −0.3535361

2 0.0391841 0.1232693 0.6097279 0.1145222 −0.4564107

3 0.0292487 0.1385571 0.3364275 0.1141113 −0.6220152

4 0.0394285 0.1333746 0.3699841 0.1312704 −0.7702001

5 0.0221745 0.1173381 0.6941756 0.1349321 −0.4016965

6 0.0293484 0.1310349 0.6401513 0.0880908 −0.3535343

7 0.0391843 0.1232701 0.6097097 0.1145213 −0.4564247

8 0.0225359 0.1173069 0.6970154 0.1246237 −0.4882357

9 0.0546890 0.1305796 0.1552850 0.1496985 −0.8602473

10 0.0264529 0.1344481 0.6414826 0.1222545 −0.4648418

mean (θ̄) 0.0331594 0.1280214 0.5394108 0.1182116 −0.5227142

std. dev. (sθ) 9.9906e-3 7.3012e-3 0.1846479 1.9315e-2 0.1732870

| t |-stat 0.5825891 0.8569505 0.6749489 0.2927969 0.4145073

Table 4. Test statistics for the standardized residuals from (50) + (54). JB is the Jarque–Bera
test statistic for normality (A.1) and the critical value is χ2

95%
(2) = 5.991. BL is the Box–Ljung

test statistic for autocorrelation in the residuals (A.2) and the critical value is χ2
95%

(15) = 24.996.
BL2 is the Box–Ljung test statistic autocorrelation in the squared residuals and the critical value
is χ2

95%
(20) = 34.410. NL is a test statistic (A.3) for heteroscedasticity, and the critical set is

C = {H < 0.81 ∧H > 1.24} on a 5% level.

Simulation 1 2 3 4 5 6 7 8 9 10

JB 45.99 25.32 29.95 11.57 4.11 46.00 25.32 15.39 4.42 53.76

BL 10.91 27.23 18.45 14.48 21.47 10.91 27.23 18.20 17.53 13.96

BL2 60.98 95.60 40.67 84.22 33.84 60.98 95.60 15.59 64.42 56.58

NL 1.31 0.96 1.27 1.06 0.96 1.31 0.96 1.10 0.96 1.31

a 40% level giving a strong indication of unbiased estimates. It is seen that the

method is able also to provide reasonable estimates of the parameters β and ξ in the

unobserved stochastic volatility process (54). This also applies for the correlation

coefficient ρ.

In order to verify the assumption of normality of the one-step prediction errors,

the tests in Appendix A have been applied to the normalized residuals, see Table 4.

The Jarque–Bera statistic rejects the assumption of Gaussianity in 8 out of the

10 simulations. The Box–Ljung test for no autocorrelation in the residuals is only
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rejected for simulation No. 2 and 7. The Box–Ljung test for no autocorrelation

in the squared residuals is rejected for all 10 simulations, except simulation 8. The

null hypothesis for no heteroscedasticity is accepted for 6 out of 10 simulations. The

exceptions are simulations No. 1, 3, 6 and 10. These test statistics are not consistent

with the excellent parameter estimates reported in Table 3, so the rejection of the

assumption of Gaussianity must originate from the approximative nature of the

applied second order filter. This conclusion seems to confirm the shortcomings of

the approximative second order filters reported in [72].

4.2.2. General case

Including the κ parameter in the estimation yields the parameter estimates reported

in Table 5. For all the parameters the |t|-test statistics are larger than in Table 3,

but only the estimates of κ and Σ differ significantly (on a 5% level) from their

simulated values. In particular, the upwards biased estimate of κ may be explained

by the smoothing effect of the filter, which gives rise to the same effect as a high

speed-of-adjustment parameter in the mean-reverting drift.

In Fig. 2 the sample paths of the St and σt processes have been plotted along

with their filtered equivalents. It is readily seen that a good estimate of the St-

process is provided. The estimate of the stochastic volatility process σt exhibits

behavior similar to the simulated process, but the variations are more limited in

magnitude such that the difference is noticeable. This illustrates that the filtering

method performs a smoothing of the unobserved stochastic volatility process, which

follows from the fact that the optimal predictor is the conditional mean. In spite of

this smoothing effect, the parameter estimates suggests that the proposed method

captures the dynamics of the simulated time series. The results from Sec. 4.2.1

suggests that the biasedness of the parameter κ is caused by the smoothing effect

of the filter, it is not the parameter κ that causes the smoothing effect.
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Fig. 2. Plot of the simulated and filtered stock price process Sti (a), and the simulated and
filtered stochastic volatility σti (b) from the Black–Scholes–Courtadon model (50) + (54).
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Table 5. Estimation results for the model (50) + (54), where θ̄ and sθ denote respectively the
mean and standard deviation of the parameter estimates obtained from the 10 independent sim-
ulations, and |t| = (θj − θ̄j)/(sθj /

√
10) is a t-test statistic under the null hypothesis that the

estimated parameters are unbiased.

Parameter α κ β ξ Σ ρ

Simulation no. 0.0350000 1.0000000 0.1300000 0.5000000 0.1200000 −0.5000000

1 0.0678985 2.3840620 0.1228596 0.3985797 0.1246835 −0.6301745

2 0.0334874 2.5267987 0.1261216 1.0834183 0.1473596 −0.4257387

3 0.0680778 3.4516496 0.1221268 0.7571279 0.1319948 −0.4423765

4 0.0480507 1.9770827 0.1332794 0.3431033 0.1411092 −0.7409307

5 0.0222548 1.2106302 0.1053715 0.9708950 0.1346723 −0.3175558

6 0.0656793 1.9721291 0.1023120 1.1977318 0.1243178 −0.2089123

7 0.0087756 2.5593195 0.1181904 0.5891934 0.1311660 −0.9665081

8 0.0268085 2.6095114 0.1273615 0.1319957 0.1230215 −0.9819453

9 0.0339221 1.9832019 0.1377474 0.5915995 0.1476529 −0.6779232

10 0.0499857 2.9307014 0.1355141 0.1813567 0.1100203 −0.6962402

mean θ̄ 0.0424940 2.3605087 0.1230893 0.6245001 0.1315998 −0.6088305

std. dev. sθ 0.0207409 0.6153480 0.0118825 0.3724200 0.0117682 0.2589451

| t |-stat 1.1425843 6.9916633 1.8391317 1.0571505 3.1179280 1.3290551

Table 6. Test statistics for the Sti -process of model (50) + (54). JB is the Jarque–Bera test
statistic for normality (A.1) and the critical value is χ2

95%
(2) = 5.991. BL is the Box–Ljung test

statistic for autocorrelation in the residuals (A.2) and the critical value is χ2
95%

(14) = 23.685.
BL2 is the Box–Ljung test statistic autocorrelation in the squared residuals and the critical value
is χ2

95%
(20) = 34.410. NL is a test statistic (A.3) for heteroscedasticity, and the critical set is

C = {H < 0.81 ∧H > 1.24} on a 5% level.

Simulation 1 2 3 4 5 6 7 8 9 10

JB 20.98 145.75 9.72 78.48 4.18 10.93 3.15 3.18 152.14 50.76

BL 15.17 34.76 21.05 19.10 21.50 19.85 17.16 18.75 34.93 23.59

BL2 74.33 99.10 70.64 80.72 33.64 70.45 42.44 29.41 100.77 33.61

NL 0.89 0.90 0.94 0.82 0.96 0.97 1.19 0.83 0.90 1.23

The model validation statistics listed in Table 6 lead to rejection of the assump-

tion of Gaussianity (except for simulations No. 5, 7 and 8). The Box–Ljung test

is accepted for all simulations except 2 and 9. The test for no heteroscedasticity

is accepted for all simulations, whereas the test for no nonlinearities in the model

residuals is clearly rejected.h Thus the parameter estimates (and their covariances)

hThe distinction between nonlinearities and heteroscedasticity is not very clear in the literature,
so the tests should be interpreted with caution.
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and the tests for Gaussian white noise residuals all indicate that a full estimation

of the model (50) + (54) is a difficult problem.

4.3. The Cox Generalized CIR model Full information

Now assume that the stock price is described by a Cox [15] model, where σ is

described by a generalized CIR model [11], i.e.(
dSt

dσt

)
=

(
αSt

κ(β − σt)

)
dt+

(
ξ1σtS

γ1
t 0

0 ξ2σ
γ2

t

)(
dW 1

t

dW 2
t

)
(57)

Ytk =

(
Stk

σtk

)
+

(
etk

0

)
, etk ∈ N(0,Σ) , (58)

where W 1
t and W 2

t are standard correlated Wiener processes with correlation

coefficient ρ.

Let Xt = (X1
t ,X

2
t )
T = (St, σt)

T denote the state vector. The time propagation

equations for the modified Gaussian second order filter are

dX̂t|ti−1

dt
=

(
αX̂1

t|ti−1

κ(β − X̂2
t|ti−1

)

)
, (59)

dPt|ti−1

dt
=

(
2αP 11

t|ti−1
P 12
t|ti−1

(α− κ)
P 21
t|ti−1

(α− κ) −2κP 22
t|ti−1

)
+

(
P̃ 11
t|ti−1

P̃ 12
t|ti−1

P̃ 21
t|ti−1

P̃ 22
t|ti−1

)
(60)

where the expressions for P̃ jkt|ti−1
, with k, j = 1, 2 have been left out for brevity.

The update equations are given by (55)–(56). Data has been simulated as de-

scribed in Sec. 4.3. The simulated parameters and the estimated parameters are

listed in Table 7, where it is noticed that the hypothesis of unbiased estimates is

rejected only for α.

The usual tests for Gaussian white noise residuals are accepted for the St-

process. The results for the σt-process are reported in Table 8. The test statistics

for both processes are in concordance with the parameter estimates reported in

Table 7, so the rejection of Gaussianity in the residuals of the σt-process most

likely originates from the approximative nature of the second order filter.

4.4. The Cox Generalized CIR model Partial information

Consider the model (57) and replace (58) by

Ytk = Stk + etk , etk ∈ N(0, σ2
e) . (61)

The time propagation equations are given by (59)–(60) and the update equations

are again (55)–(56).
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Table 7. Estimation results for the correlated Cox–Generalized CIR model (57)–(58).

Parameter α ξ1 γ1 κ β ξ2 γ2 σ2
e ρ

Simulation no. 0.0300 0.7000 1.5000 1.3000 0.1000 0.8000 1.5000 0.1200 −0.5000

1 0.0494 0.7078 1.4917 1.2507 0.1015 0.3798 1.1633 0.1143 −0.5392

2 0.0383 0.6312 1.5257 1.1916 0.1005 0.6253 1.3984 0.1321 −0.4822

3 0.0494 0.7079 1.4917 1.2507 0.1015 0.3795 1.1630 0.1143 −0.5392

4 0.0402 1.1203 1.3077 1.5115 0.1002 1.0448 1.6082 0.1145 −0.4885

5 0.0360 0.5794 1.5732 1.1575 0.1006 1.2141 1.6874 0.1226 −0.5328

6 0.0530 0.4034 1.7592 1.2837 0.0978 0.8965 1.5406 0.1175 −0.5477

7 0.0252 0.8533 1.3941 1.5926 0.0965 0.5905 1.3848 0.1143 −0.4305

8 0.0505 0.6893 1.4980 1.3414 0.0989 1.3188 1.7183 0.1159 −0.5231

9 0.0276 0.3823 1.8642 1.4752 0.1008 1.2938 1.6820 0.1271 −0.5278

10 0.0184 0.7037 1.4499 1.4789 0.0985 0.6633 1.4137 0.1255 −0.5370

mean (θ̄) 0.0388 0.6778 1.5355 1.3534 0.0997 0.8406 1.4760 0.1198 −0.5148

std. dev. (sθ) 0.0120 0.2118 0.1647 0.1503 0.0017 0.3627 0.2059 0.0065 0.0368

| t |-stat 2.3132 0.3307 0.6823 1.1227 0.6330 0.3542 0.3694 0.0968 1.2715

Table 8. Test statistics for the standardized residuals of the σt-process of the correlated
Cox–Generalized CIR model (57)–(58). JB is the Jarque–Bera test statistic for normality (A.1)
and the critical value is χ2

95%
(2) = 5.991. BL is the Box–Ljung test statistic for autocorrelation in

the residuals (A.2) and the critical value is χ2
95%

(11) = 19.670. BL2 is the Box–Ljung test statistic

autocorrelation in the squared residuals and the critical value is χ2
95%(20) = 34.410. NL is a test

statistic (A.3) for heteroscedasticity, and the critical set is C = {H < 0.81 ∧H > 1.24} on a 5%
level.

Simulation 1 2 3 4 5 6 7 8 9 10

JB 18.93 24.90 14.93 26.57 14.64 6.73 3.63 24.74 39.89 36.82

BL 21.19 15.94 12.19 22.45 21.65 12.01 14.06 15.53 22.17 14.24

BL2 0.95 0.92 0.98 0.90 1.08 1.02 0.99 1.01 0.77 0.93

NL 15.57 22.06 15.34 27.66 21.30 26.89 35.04 20.60 14.85 15.97

The estimation results are reported in Table 9. It is noted that the method

underestimates ξ1 and γ2 and overestimates κ, β and ξ2. The overestimate of κ

originates most likely from the significant smoothing that the filter perform on the

volatility process σt (see Fig. 3). From this figure it is also noted that the filter

provides a biased estimate of the σt-process resulting in an overestimate of β. Note

that the β parameter cannot, in general, be interpreted as “the average volatility”,

i.e. the unconditional mean of σt depends on the value of γ2 in a complicated way

(the diffusion term ξ2σ
γ2

t is only a local martingale for γ2 > 1), see [50]. For ρ = 0,

the specification of σt in (57) is the CKLS (or the generalized CIR) model [11], and

the unconditional mean in this process is computed in [50]. Our results (and others
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Table 9. Estimation results for Cox–Generalized CIR model (57)–(61).

Parameter α ξ1 γ1 κ β ξ2 γ2 σ2
e ρ

Simulation no. 0.0350 0.3000 1.5000 1.3000 0.1000 0.2000 1.5000 0.0012 −0.5000

1 0.0364 0.2628 1.4943 10.7223 0.1148 0.3389 1.1897 0.0017 −0.5358

2 0.0444 0.2190 1.5737 9.2252 0.1110 0.3034 1.2256 0.0016 −0.7013

3 0.0345 0.2435 1.4732 9.5033 0.1390 0.2493 1.2007 0.0009 −0.2880

4 0.0333 0.2340 1.4889 12.0573 0.1308 0.2028 1.3204 0.0009 −0.1880

5 0.0388 0.2258 1.4249 10.0626 0.1619 0.4128 1.1835 0.0011 −0.4569

6 0.0493 0.2224 1.5511 11.1048 0.1173 0.4073 1.3974 0.0012 −0.4575

7 0.0429 0.1665 1.5849 9.7006 0.1457 0.4309 1.3248 0.0017 −0.6146

8 0.0281 0.2297 1.4734 9.8498 0.1334 0.4016 1.0473 0.0014 −0.5893

9 0.0306 0.2676 1.4116 11.2849 0.1433 0.2981 1.8505 0.0009 −0.6132

10 0.0277 0.1666 1.5971 19.9419 0.1464 0.4971 1.1658 0.0013 −0.3676

mean (θ̄) 0.0366 0.2238 1.5073 11.3453 0.1344 0.3542 1.2906 0.0013 −0.4812

std. dev. (sθ) 0.0072 0.0342 0.0660 3.1505 0.0162 0.0911 0.2200 0.0004 0.1618

| t |-stat 0.7020 7.0391 0.3509 10.0827 6.7057 5.3526 3.0102 0.9014 0.3668
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Fig. 3. Plot of the simulated and filtered stock price process St (a) and the simulated and filtered
volatility σt (b) of the Cox–Generalized CIR model (57)–(61).

not reported here, see [75]) suggest that an alternative parameterization of the drift

term for the σt process in (57) should be considered. However, a proper identification

of bivariate SDEs is outside the scope of this paper. The tests in Appendix A for

Gaussian white noise properties are carried out on the standardized residuals of the

observed St-process. All tests are accepted on a 5% level.
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Fig. 4. A time series plot of the price of Chrysler and Ford stocks.

Table 10. Descriptive statistics for log returns of the Chrysler and Ford time series, where x̄ is
the mean, S2 is the variance, γ1 is the skewness, γ2 is the excess kurtosis, JB is the Jarque–Bera
statistic (χ2

95%
(2) = 5.991), BL is the Box–Ljung statistic (χ2

95%
(20) = 31.410) and BL2 is the

Box–Ljung statistic for the squared log returns. The sample correlation coefficient between the
two time series of stock prices is 0.8866.

Company x̄ s2 γ1 γ2 JB BL BL2

Chrysler 0.0008 0.0004 1.19 13.86 10420 22.06 17.36

Ford 0.0007 0.0003 0.18 0.42 16.02 21.08 15.09

5. Empirical Work

In this section the model (50) + (54) will be estimated using real data. The data

set consists of 2 time series of 1295 daily observations of Chrysler and Ford stock

prices in the time period from the 20th of October 1992 to the 20th of October

1997, see Fig. 4 and Table 10. The sample time is equal to one.i

Estimating the parameters in the model (50)–(54) using the Chrysler and Ford

time series yields the results reported in Table 11. The estimates of the instanta-

neous rate-of-return α and the long-term mean of the stochastic volatility β, respec-

tively, are almost identical for the two time series. The estimates of ξ differ markedly

iNo provisions are made for weekend and holiday effects.
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Table 11. The estimated parameters for the Chrysler and Ford time series using the model
(50)–(54) (the associated standard deviation in parenthesis).

Company α̂ κ̂ β̂ ξ̂ Σ̂ ρ̂

Chrysler
0.000897 10.353779 0.017633 0.343640 0.018710 −0.923491

(1.38 · 10−5) (4.50 · 10−4) (1.90 · 10−6) (2.72 · 10−6) (8.59 · 10−7) (4.34 · 10−4)

Ford
0.000896 6.480520 0.015444 0.069672 0.012684 −0.579696

(7.64 · 10−5) (4.09 · 10−5) (4.09 · 10−5) (1.91 · 10−4) (1.35 · 10−4) (1.32 · 10−4)

Table 12. Model validation tests for the Chrysler and Ford time series. JB is the Jarque–Bera
test statistic for normality (A.1) and the critical value is χ2

95%
(2) = 5.991. BL is the Box–Ljung

test statistic for autocorrelation in the residuals (A.2) and the critical value is χ2
95%(15) = 24.996.

BL2 is the Box–Ljung test statistic autocorrelation in the squared residuals and the critical value
is χ2

95%
(20) = 34.410. NL is a test statistic (A.3) for heteroscedasticity, and the critical set is

C = {H < 0.81 ∧H > 1.24} on a 5% level.

Jarque–Bera Box–Ljung Nonlinear Heterosce.

16586 32.0803 13.2795 0.7384

21.23 19.6932 14.4921 0.7964

for the 2 time series, where the largest value of ξ is obtained for the Chrysler time

series. This result seems reasonable considering that the descriptive statistics in

Table 10 exhibit strong departure from normality for the Chrysler time series. In

particular, the excess kurtosis is relatively large (13.86), which indicates heavy tails

in the unconditional distribution of the returns, and this effect, ceteris paribus, is

captured by the ξ parameter.j The estimates of the speed-of-adjustment parame-

ter κ differ, but these estimates are most likely overestimated (see Table 5). The

standard deviation of the Wiener process W 2
t , i.e. ξ, is significantly higher for the

Chrysler stock. This also applies for the variance of the observation noise Σ.

The negative correlation between stock returns and changes in volatility have

also been documented by [8, 13, 64], and this feature is a major reason for modelling

the volatility itself as a diffusion process. The leverage effect is most pronounced for

the Chrysler stock. It would be interesting to model the leverage effect originally

introduced by [8, 13] dynamically, because [23] suggests that this effect is only a

temporary behavior in the stock market. The usual model validation tests are listed

in Table 12. The assumption of normality of the standardized model residuals is

clearly rejected by the Jarque–Bera test. The Box–Ljung test is only rejected for

the Chrysler time series, but the Box–Ljung test for no autocorrelation in the

squared standardized model residuals is accepted for both time series. The test for

heteroscedasticity is clearly rejected with the same critical set as used before.

jThis is confirmed by simulation studies (not reported here), which also indicates that increasing
the ξ parameter has an adverse effect on the autocorrelations of the squared log returns.
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6. Conclusion

In this paper, a maximum likelihood method for direct estimation of parameters in

discretely observed continuous-time stochastic volatility models has been presented,

which is based on approximative second order filters. The filtering approach may,

in principle, also be applied if continuous observations were available. In that case

the volatility is observable (using the quadratic variation), but the inherent dis-

creteness of market prices makes the use of SDEs inappropriate. It is shown that

the method in most cases provides unbiased estimates, also of the parameters in

the unobservable stochastic volatility process. The inherent smoothing of the filter

does, however, lead to biased estimates of some state variables. The bias may be

reduced by incorporating ODEs for the third moments [76]. Work is in progress

along these lines.

The proposed modelling framework allows for a number of interesting general-

izations: (i) A dynamic leverage effect may be modelled by making Qt time-varying.

It is also possible to specify a process for the leverage effect that is, say, consistent

with the findings of [23]; and (ii) Log-returns may be used as observations in order

to obtain a stationary model. These topics are left for future research.

Appendix A

Consider a time xi, i = 1, . . . , N , where N denotes the number of observations. The

Jarque–Bera test for normality proposed by [41] is given by

JB = (N/6)γ2
1 + (N/24)γ2

2 ∈ χ2
1−α(2) , (A.1)

where

γ1 =
E[(X −E[X])3]

(V [X])3/2
; γ2 =

E[(X −E[X])4]

(V [X])2
− 3 .

The Box–Ljung test statistic for autocorrelation in a time series is given by

N(N + 2)
L∑
τ=1

ρ2(τ)

N − τ ∈ χ
2
1−α(L− p) , (A.2)

where ρ2(τ) is the autocorrelation function computed up to lag L (here L = 20) and

p is the number of parameters. The Box–Ljung test statistic may be used to test for

nonlinearity by using the autocorrelation function of the squared time series [53]. A

simple test for heteroscedasticity in a time series is made by comparing estimates

of the variance of the first and last third parts of the time series, i.e.

H(h) =
N∑

i=N−h+1

x2
i

(
1+h∑
t=1

x2
i

)−1

∈ F1−α(h, h) , (A.3)

where h is the nearest integer to N/3, see e.g. [33].
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