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Abstract:  This paper presents an overview of the progress of research on parameter 
estimation methods for stochastic differential equations (mostly in the sense of It6 
calculus) over the period 1981-99. These are considered both without measurement 
noise and with measurement noise, where the discretely observed stochastic differen- 
tial equations are embedded in a continuous-discrete time state space model. Every 
attempt has been made to include results from other scientific disciplines. Maximum 
likelihood estimation of parameters in nonlinear stochastic differential equations is 
in general not possible due to the unavailability of closed form expressions for the 
transition and stationary probability density functions of the states. However, major 
developments are classified according to their approximation to the "true" maximum 
likelihood solution as opposed to a historical order of presentation. 
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1. INTRODUCTION 

Following the survey paper (Young, 1981), a re- 
markable development in methods for parameter 
estimation in stochastic systems has taken place 
in a variety of fields with only limited cross fer- 
tilization of ideas. The objective of this paper is 
to provide a survey of new and existing methods 
for parameter estimation in discretely observed 
stochastic differential equation (SDEs), where the 
latter are embedded in a continuous-discrete time 
state space model. 

Mathematical modelling of dynamical systems in 
continuous-time has recently received much atten- 
tion in diverse fields, see e.g. (Young, 1984; Unbe- 
hauen and Rao, 1990; Kloeden and Platen, 1995), 
where the latter focuses on It6 stochastic dif- 
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ferential equations. The use of continuous-time 
stochastic models is also advocated in (Bergstrom, 
1990; Bohlin and Graebe, 1995; Unbehauen and 
Rao, 1997). Following (AstrSm, 1970) little work 
has been reported on It6 SDEs in the control liter- 
ature, whereas a partial list of applications include 
biological waste treatment (Unny and Karmeshu, 
1983), communications (Horstkempe and Lefever, 
1984), structural mechanics (Hennig and Grun- 
wald, 1984), climatology (Madsen, 1985), heat 
dynamics of buildings (Madsen and Holst, 1995; 
Nielsen and Madsen, 1996), hydrology (Jacobsen 
et al., 1996), and finance (Nielsen et al., 1999; 
Nielsen et al., 2000). Yet it is evident that there 
are numerous open research problems with respect 
to model structure identification and related top- 
ics. 

reserved. 
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SDEs provide a means of combining the hall- 
marks of grey box modelling in system identifica- 
tion (Ljung, 1987; Shderstrhm and Stoica, 1989), 
namely by combining a priori knowledge about 
the system and statistical methods for parameter 
estimation and model validation. However, the 
formal definition of SDEs in the system identifi- 
cation community e.g. (Shderstrhm et al., 1997; 
Haverkamp et al., 1997) differs from the defi- 
nition in other fields (Protter, 1990; Karatzas 
and Shreve, 1996) in a way that makes genuine 
probabilistic methods difficult to apply. It is, for 
instance, essential that the distribution of the 
solution of an It6 SDE is obtained from the Kol- 
mogorov partial differential equation, which in 
turn forms the basis for e.g. exact filtering and 
maximum likelihood estimation. 

Parameter estimation in nonlinear SDEs driven 
by Wiener proc/esses using discrete-time measure- 
ments is an inherently difficult problem to which 
an increasing number of solutions exist in the lit- 
erature. It6 SDEs imply that estimation methods 
in addition to e.g. (Young, 1981; Ljung, 1987; 
Shderstrhm and Stoica, 1989; Sagara and Zhao, 
1990; Unbehauen and Rao, 1990; Shderstrhm et 
al., 1991; Shderstrhm et al., 1997; Haverkamp et 
al., 1997) are called for. 

There is increasing evidence of both a theoretical 
and an empirical nature that the level of the 
(process) noise depends on the state variables 
in a variety of applications, which represents a 
challenge to the estimation methods listed above. 
This multiplicative process noise is an important 
reason for considering SDEs more rigorously in 
the It6 sense 1 An alternative formulation is 
stochastic integration in the Stratonovitch sense, 
which adheres to the classical rules of calculus, 
yet as argued in (Kloeden and Platen, 1995) it is 
unsuitable for state and parameter estimation. 

The remainder of the paper is organized as follows: 
Section 2 describes the mathematical framework. 
In Section 3 the generalized method of moments 
(GMM), the efficient method of moments (EMM) 
and indirect inference (II) will be discussed. Sec- 
tion 4 considers methods that approximate the 
probability density functions and, if applicable, 
the likelihood function by Monte Carlo simula- 
tion. Section 5 considers new methods for conven- 
tional, stochastic state space models and a linear 
observation space formulation in which the model 
is defined in terms of continuous-time, Transfer 
Function (TF) models. Section 6 considers non- 
linear filtering methods. Finally, Section 7 sum- 
marizes. 

2. STOCHASTIC DIFFERENTIAL 
EQUATIONS 

Let the time evolution of the states of a dynamical 
system Xt E IRd, to < t < T, be described by the 
solution to the stochastic differential equation in 
the It6 sense 

dXt = b(t, Xt; O)dt + o,(t, Xt; O)dWt (1) 

or, written componentwise as, 

dX~ = ¢(t,  Xt; Oldt + ~ ~'~(t, Xt; O)dW/(2) 
j = l  

for j = 1 , . . . ,  d, where Xto  is a stochastic initial 
condition satisfying E[llXt0][ 2] < co. The drift 
function b: [t0, T] x IRa × IRP ~+ IR a accounts 
for the evolution in mean of the state variables 
in the interval [t, t + dr). The evolution of the 
covariance of the states in the same time interval, 
which is defined in terms of the dispersion matrix 
a: [to, 7] x ~d x II~P ~-~ ~axm is described by the 
diffusion matrix 

= r .  (3) 

The infinitesimal characteristics b and a are non- 
linear and time-varying, assumptions which reflect 
the idea that systems will, in general, be both dy- 
namically nonlinear and nonstationary. It is also 
assumed throughout that they satisfy sufficient 
regularity (Lipschitz and bounded growth) con- 
ditions to ensure the existence and uniqueness of 
strong solutions to (1), see e.g. (Oksendal, 1995). 
The process noise is modelled as a standard 
Wiener process Wt -- (W~, . . . ,  Win) T. The pa- 
rameter vector 0 may be restricted to a subset O 
of IRP. Such parameter restrictions may readily be 
applied to the model, because it is formulated in 
continuous-time. 

It is convenient to think of Xt as the output of a 
system described by b and a with inputs Wt and 
Xt0, see Figure 1. 

input W t " 

Xt o 

b ,o  - X t output 

Fig. 1. A schematic of a stochastic differential 
equation with drift b and diffusion a driven 
by the Wiener process Wt and the initial 
condition Xto. 

1 In discrete-time, a plethora of Generalized AutoRegres- 
sive with Conditional Heteroscedasticity (GARCH) mod- 
els have been proposed to describe such phenomena, see 
e.g. (Bollerslev et al., 1992; Engle, 1995; Rossi, 1996). 

Remark 1. The specification in (1) does not allow 
for time delays as in socalled stochastic functional 
equations (stochastic differential delay equations 
and stochastic hereditary equations). 
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Discrete observations Yt~ (l - dim(Ytk)) of the 
SDE (1) are obtained at the sampling instants 
t~ < t2 < . . .  < tN = T, where N denotes 
the number of observations, and T is the final 
time in the time interval [t0,T] (to < tl):  The 
measurement equation is 

Ytk = h ( t k , x t k ; 0 ) + e t k ;  k =  1 . . . .  ,N(4)  

specified pdf. Of course, this pdf follows from the 
specification of the initial condition in (1). 

Assuming that  the states are observed discretely 
(without measurement noise), Maximum Likeli- 
hood (ML) estimates are given by 

OML - -  arg m a x  L N  (0) (9)  
0e® 

where h(tk, xt~ ;0) is a nonlinear function, which 
is assumed to be continuously differentiable with 
respect to xt~, and {e} is a zero mean Gaussian 
white noise process with covariance ETk' The 
stochastic entities Xto, {W} and {e} are assumed 
to be mutually independent for all t and tk. 

Remark 2. The methods described in Sections 3- 
4 do not allow for measurement errors, so (4) will 
be excluded from the discussion until Section 5. 

Denote the transition probability density function 
(pdf) of the state vector by 

(5)  

for t > r,  i.e. loosely speaking the probability 
that the process is in state xt at time t provided 
that  it was in state x~ at time r. It may be 
shown that p(t, x; r, ~, 0) satisfies the Kolmogorov 
forward equation 

Op 
gi =Z(p) (6) 

with the initial condition ~impxdx,(Xl( ) = 5 ( x -  

() (Dirac's delta function) and the forward diffu- 
sion operator £(p) defined by 

z ( p )  = - 
0x i 

i=1 

I ~'~- '~ O~(P ~ij) (-, 
- -  + ,,,) 

i----1 j = l  

where b i and Eij denote the elements of b 
and E evaluated at ( t ,x ;0) ,  and p is short for 
p(t, x; r, ~, 0). Assuming stationarity, it holds that  
p ( t ,  x ;  o) = p ( t -  7, x;  0,  0) or x;  0) for 
short. The stationary pdfsolves f_.(p) = 0 provided 
that  it exists. 

With discrete observations the stationary pdf is 
denoted by p(Ak, xtk ; xtk_~, 0), where Ak = tk - 
tk-1 denote the sampling instants, such that  the 
likelihood function of the parameter given the 
observations X N = (xt~, x t2 , . . . ,  xtN) T follows 

LN(0) = p ( A k , x t ~ ; X t k _ l , 0  p ( x 0 ;  0 ) ( 8 )  

where p(x0; O) is the pdf of the initial condition. 
This may be a Dirac delta function 5(x0) or a 

Following standard likelihood theory the score 
function (or score vector) is given by 

SN(0) = ~ l n L N ( 0 )  (10) 

such that the ML estimates may be found by 
solving the estimating equation SN(0) = 0. As 
might be expected closed form solutions to (6) are 
rarely available - except for the linear case, which 
implies that ML estimates cannot be obtained 
explicitly. 

2.1 Discretization schemes 

Some estimation methods involve numerical solu- 
tions of the SDE (1), so some comments and for- 
mulae regarding numerical discretization schemes 
for SDEs will be made here for easy reference, 
see also (Kloeden and Platen, 1995) and the ref- 
erences therein. A numerical solution of the SDE 
(1) is obtained by iteratively solving a stochastic 
difference equation obtained by computing an It6- 
Taylor expansion of the drift and diffusion func- 
tions b and tr. 

Assume, for simplicity, that  N equidistant obser- 
vations are available, i.e. Ak = A. Let 5 = A / K  
denote the length of the discretization time step, 
where K > 1 is the number of time steps in each 
interval [tk-l,tk] for k = 1 , . . . ,  N. Furthermore, 
introduce rk-l,i = t k - 1  "4-i5 for i = 0 , . . . , K ,  and 
let the stochastic process {Z} be a discrete-time 
approximation of {X}. For the SDE (1) the u ' th 
component of the Euler discretization scheme is 
given by the stochastic difference equation 

Z l ]  12 ,~_,,, = Z,~_I,,_ ~ + b ' ( rk- l ,~- l ,  Z,~_~.,_, ;0)5 
m 

+ E (r~J(vk-l,i-l,Z~,-,,-~ O) 5Wjk-l,, (11) 
j= l  

for i = 0 , . . . , K  with the initial condition 
Z T k  1 0 - -  Xtk--1 and 5wJ k 1 i : w J  -- 

-- , - -  --  , T k - - l , I  

W j is the N(0,5) distributed increment of 
T k - - l , i - - I  

the j t h  component of the m-dimensional standard 
Wiener process Wt .  

Kloeden and Platen (1995) contains a vast range 
of discretization schemes for It6 SDEs driven 
by Wiener processes, but there is a need for 
more research work on numerical properties such 
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as stability, convergence and the magnitude of 
approximation error of these schemes. There is 
also a need for schemes allowing for variable step 

-sizes. 

3. METHODS OF MOMENTS 

An important class of widely used estimation 
methods is method of moments, because they 
do not rely upon distributional assumptions. 
In this section the Generalized Method of Mo- 
ments (GMM) attributable to (Hansen, 1982), see 
also (Ogaki, 1993), will be discussed prior to con- 
sidering some more efficient generalizations and 
implementations. 

It may be shown that other estimation methods 
such as ordinary least squares (OLS), nonlinear 
Instrumental Variable (IV) estimation, Two-Stage 
Least Squares (2SLS) and, under some regularity 
conditions, maximum likelihood, may be viewed 
as special cases of GMM (and subsequently EMM 
and SMM). Hamilton (1994, Section 14.2) dis- 
cusses the technical details of these special cases. 
GMM was originally developed for discrete-time 
stochastic models, yet it may be applied to SDEs 
by computing moment conditions from a dis- 
cretized version of the SDE (Chan et al., 1992). 

3.1 The generalized method o f  momen t s  

The main advantage of the GMM method is that  
it requires specification only of certain moment 
conditions rather than the full density. This can 
also be a drawback, because then GMM does 
not make efficient use of all the information in 
the sample, which may lead to a loss of effi- 
ciency. Furthermore the parameter estimates de- 
pend on the choice of the moment conditions 
and the theory does not provide any guidance 
regarding the choice of the moment conditions. 
A lot of research work in parallel has been re- 
ported in the system parameter estimation liter- 
ature eg. (Young, 1981; Sbderstrbm and Stoica, 
1989; Young, 1993) that  is clearly related to GMM 
and provides various extensions, in particular in 
terms of recursive implementations, see eg. (Ljung 
and Sbderstrbm, 1983; Young, 19847 Unbehauen 
and Rao, 1987). However, to our knowledge, these 
relationships have not been explored further in the 
literature. Let Xtk, k = 1 , . . . , N  denote the ob- 
servations and let f(Xk; 0) denote a r-dimensional 
vector function (r > p) satisfying 

E[f(X,  k ; O)] = 0 (12) 

which consists of r moment conditions of the 
discretized SDE 2. The r moment conditions that 
may include instrumental variables must be cho- 
sen (subjectively) by the modeller. See (Bates and 
White, 1988; Hall, 1993) and Section 3.2 herein for 
a discussion on instrument selection. 

By the law of large numbers E[f(Xtk ; 0)] may be 
estimated by 

1 u 
g (0 ;X ¢)  = ~ E f ( X t k ; 0 )  (13) 

k=l 

where it is duly noted that  g: ~P ~-+ ~ r  such that 
the GMM estimate 0 solves 

g(0; X N) = 0 (14) 

The GMM method provides an estimate 0 by 
minimizing a quadratic function 

QN(O; X N) = [g(0; a'N)]r EN[g(e; XN)](15) 

where ]EN is a (r x r) positive semidefinite weight 
matrix. By using X~N ---- SN 1, where SN denotes 
the covariance matrix of the moment restrictions, 
the estimate of 0 is said to be efficient, although, 
unfortunately, the efficiency depends on the choice 
of the moment conditions f (Xtk;0) .  Newey and 
West (1987) provides consistent estimates of )-IN 
in the presence of heteroscedasticity and autocor- 
relation in the moment conditions. However, the 
modeller may be willing to sacrifice asymptotic 
efficiency in exchange for not having to specify 
completely the nature of the heterescedasticity 
and/or  autocorrelation. See (Andrews, 1991) for 
a nonparametric approach. 

Hansen (1982) shows that  the GMM estimate 
obtained by solving 

N T {°oTg(°;x )o_-0} 
is consistent and asymptotic normal, i .e.  

x/-N(0 - 0) -+ i ( 0 ,  V) (16) 

where V = ( D S - I D )  -1 and D is estimated by 

DN = Gq0Tg(0; xN)  0=8 (17) 

The GMM method also provides Wald, La- 
grange multiplier and Likelihood Ratio (LR) type 
statistics for hypothesis and diagnostics test- 
ing (Hansen, 1982). Considering the number of 
well-known estimation methods that  GMM en- 
compasses, it is a very useful method and it is 

2 In the special case r --+ oo such that all moments of order 
less than or equal to r are contained in f(X,i;8 ), GMM 
may be considered as a ML method. 
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easy to implement. However, it has a number of 
drawbacks: i) The parameter estimates depend on 
the subjective choice of moment  conditions, and 
there is no theory available for selecting neither 
optimal moment  conditions nor instruments; and 
ii) The needed discretization of the SDE (1) in- 
troduces biases in the parameter estimates that 
are difficult to quantify and thus to correct for, 
see (Baadsgaard, 1996) for some Monte Carlo ex- 
periments. The amount  of bias clearly depends on 
the choice of discretization scheme and sampling 
time in a complicated way that it is arguably not 
worth exploring fllrther. 

Hansen and Scheinkman (1995) considers a gener- 
alization to more general continuous-time Markov 
processes, where two sets of moment conditions 
based on (7) are obtained. Thus the methods 
for parameter estimation and statistical inference 
inherent to GMM may be used, although the issue 
of statistical efficiency is not formally addressed 
in (Hansen and Scheinkman, 1995). 

3.2 The efficient method of moments 

The Efficient Method of Moments (EMM) de- 
veloped by (Gallant and Tauchen, 1996) and 
elaborated in a series of papers (Andersen and 
Lund, 1997; Gallant et al., 1997; Gallant and 
Tauchen, 1999) is a natural progression from 
GMM that alleviates some of the problems listed 
above - except that  it cannot handle neither mea- 
surement noise nor nonstationary data. A com- 
puter implementation is described in (Gallant and 
Tauchen, 1995). Obviously the EMM method is 
also based on matching moments, but the crucial 
moment conditions are obtained from the score 
vector of an auxiliary discrete-time model (see 
details later). This construction also facilitates 
detailed model specification tests that are based 
directly on each individual moment condition, see 
e.g. (Andersen et al., 1998). 

The first step in EMM is to fit an auxiliary model 
(which is often called a score generator) to the 
observed data. The model is characterized by 
the cpdf p ( x l X g ;  ~b), where X N contains lagged 
values of the process XN,XN_I,... (and possi- 
bly explanatory variables) and ~b E I~q is a q- 
dimensional parameter vector (p < q). Not all the 
elements of XN need be observed. 

To fix ideas, assume, for a moment,  that d = 
1. The score generator may consist of any or- 
der of, say, an ARMA-model for the condi- 
tional mean Pt and any order of, say, a GARCH 
model (Bollerslev, 1986) for the conditional vari- 
ance ht. Compute the normalized variables zt = 
(xt - # t ) / v ~ t  and express the pdf p(x]2dg; ~b) in 
terms of the semi-nonparametric (SNP) density 

estimator attr ibutable to (Gallant and Tauchen, 
1989), i.e. 

[PK(zt, xt)] 2 ¢(zt) (18) 
P(z tJxg;  ¢)  = f [Pg (u ,  zt)l~¢(u)du v~ t  

where ¢(.) is the standard normal density and the 
Hermite polynomials 

PK(Zt 'Xt)  = Z ai j (x t ) i  (zt)i (19) 
i=0 \ j=O 

with (K~, Kz) E I~ × l~ should account for any 
deviance from the normal density. To achieve 
identifiability, the parameter  a00 is set to 1. 

The standard information criteria such as BIC, 
AIC, YIC and Hannan-Quinn may be used to 
identify K~, K~, and the order of the ARMA and 
GARCH models. Given a properly identified pdf 
p, quasi-maximum likelihood (QML) estimates of 
~b may be obtained and the first step of EMM is 
completed. 

The expected value of the score vector (10) now 
provides the moment conditions for simulated 
method of moments estimation of the continuous- 

2 M time model. Let {:~t(8), t (8 )} t=  1 denote a sam- 
ple of size M simulated from a discretized ver- 
sion of (1) using the parameter  vector 8, where 
M >> N. The EMM estimator is then defined by 

0n  = arg rain mM (8, ~ ) Z N m M  (8, ~b) T (20) 
¢IEO 

where raM(8, ~b) is the expected value of the score 
vector, evaluated by Monte Carlo integration at 
the QML estimate of the score generator param- 
eter ~b, i.e. 

1 M 
mM (0, ~ )  = ~ Z O~b In p(xt ,  (0)[~tk (0); ¢ )  

k=l  

As before the weight matr ix  ]~N is a consistent 
estimator of the inverse asymptotic covariance 
matrix of the auxiliary score vector. It may be 
estimated by 

= ~ m M  (8, 6 ) m ~  (8, q,) T (21) 
I v  

with ZN = SN 1 under the assumption that  there 
is no autocorrelation in the expected likelihood 
scores. Gallant and Tauchen (1996) presents al- 
ternate formulae in the presence of autocorrela- 
tion. This construction is very similar to GMM, 
although the moment  conditions are obtained in 
another way. However, the covariance matrix is 
independent of 8 such that  the usual iterative 
computation of it in GMM is avoided. This re- 
duces the computational  burden considerably. 
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The asymptotic properties of the EMM estima- 
tor (20) is summarized in (Gallant and Tauchen, 
1999): If the score generator encompasses the true 
generating process (DGP), then the QML esti- 
mates become sufficient statistics and EMM is 
fully efficient. Gallant and Tauchen (1999) per- 
forms an analysis of the relative efficiency of 
EMM compared to other method of moments 
using the Matron and Wand (1992) test suite of 
scale mixtures of normals and concludes that the 
relative efficiency of EMM is uniformly higher. 
The small-sample properties of EMM are stud- 
ied by (Chumacero, 1997; Ng and Michaelides, 
1997; Andersen et al., 1999) using Monte Carlo 
simulation. Their work support the conjecture 
that EMM is more efficient than other method of 
moments, but apparently no one has performed 
a comparative study with ML in those models, 
where ML is feasible. This is an interesting subject 
for further study that might clarify the concept of 
an "efficient" method in this context. 

The Indirect Inference (II) method attributable 
to (Gourieroux et al., 1993; Smith, 1993) is closely 
related to EMM, yet it is computationally more 
demanding, because the QML estimates of the 
score generator must be computed repeatedly. 
EMM requires only one computation of the QML 
estimates such that the score generator may be 
more elaborate. EMM and II both encompass a 
Simulated Method of Moments (SMM) developed 
by (Duffle and Singleton, 1993). Duffle and Glynn 
(1996) proposes a method similar to the infinites- 
imal generator-based method due to (Hansen and 
Scheinkman, 1995) that is based on random sam- 
pling instants. Yet both these methods cannot 
handle unobserved states. 

4. LIKELIHOOD-BASED METHODS 

In this section three likelihood-based methods are 
considered. The first method consists of a dis- 
cretization of the likelihood function that, under 
some technical conditions, follows from an as- 
sumption of continuous observations being avail- 
able. Secondly, a likelihood function is derived for 
a discretized version of the SDE (1), where the 
discretization time step ~ is equal to the sampling 
interval A. The extension proposed by (Pedersen, 
1995b) assumes that (f << A. 

Assume initially that the diffusion function is 
known, i.e. o'(t,Xt;/9) = a( t ,Xt) .  Under some 
technical conditions (Liptser and Shiryayev, 1977) 
the log-likelihood function for/9 based on contin- 
uous observations of Xt in the time interval [to, T] 
can be written in terms of the integrals 

T 

l~(O) = f b(s, X, ;/9)T~](s, Xs)-ldX~ 

to 

T 

_1  b(s ,X,;  Xs)- lb(s ,  X, 2 / /9)T~(s' ;/9)ds(22) 
to 

The usual approximation of these integrals by 
finite It6 and Riemann sums, respectively, leads 
to the approximate log-likelihood function for /9 
based on discrete observations 

N 

[ T ( 0 )  = A ( t , _ l ,  - 
k = l  

1 f i  A(tk_ 1, Xtk 1 ;/9)b(tk_ 1, Xt._l ;/9) x 
2 

k = l  

- t _l) (23)  

with 

A(-, .; .) = b(tk_l, Xt~_, ;/9)T~(tk-1, Xt,_l)-l. 

This method can also be used if /9 admits a 
partition 19 = (sToT) T, 191 being a subset of 
]~p-1, such that b( t ,Xt;8)  depends only on /91 
and a(t,  Xt;8) is known up to the scale factor 
02, i.e. er(t,Xt;/9) = 02&(t,Xt), because [7.(0) 
essentially only depends on 81, and (0~) ~ can 
be estimated by a quadratic-variation-like for- 
mula (Florens-Zmirou, 1989). In cases where the 
diffusion function depends on/9 in a more general 
way, Hutton and Nelson (1986) shows that the 
discretized score function ST(/9) ~ - -  (9/9[~(/9) can, 
under certain regularity conditions, still be used to 
obtain an estimator for 19 with some nice proper- 
ties, see also (Pedersen, 1993). It is, however, not a 
ML-estimator. The last approach is also feasible if 
]E (tk- 1, Xtk_l)- 1 is not regular provided that the 
Moore-Penrose pseudo-inverse of ~(tk- 1, Xtk_x) 
is used. Whereas Dacunha-Castelle and Florens- 
Zmirou (1986) shows consistency for the esti- 
mates obtained from continuous observations (22) 
for N -+ c¢ (irrespective of the value of A), 
inconsistency of the estimates in the case of 
time-equidistant observations obtained from (23) 
are shown in (Florens-Zmirou, 1989). In gen- 
eral, it holds that estimation methods originating 
from the theory of continuous observations yield 
strongly biased estimators, unless max1<k<g Ak 
is very "small", because the drift and diffusion 
functions only provide an accurate description of 
the process {X} on an infinitesimal time scale. 

An alternative to discretizing the likelihood func- 
tion for continuous observations is to derive the 
likelihood of a discretized version of the SDE (1). 
This approach has been proposed by (Pedersen, 
1995b) and shortly thereafter by (Santa-Clara, 
1995). Pedersen (1995b) proposes a method that 
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is based on simulating the SDE using the Euler 
scheme (11) with a discretization time step or- 
ders of magnitude smaller than the sampling time 
(~ << A). This method is called an Approximate 
ML (AML) method. 

The basic idea is to split the time interval be- 
tween two subsequent observations into a num- 
ber of subintervals, K,  and construct a se- 
quence of pdfs that converges to the true pdf 
for K -+ cxD by averaging over J simulations. 
To fix ideas, assume that  d = 1. Assume fur- 
ther that  equidistant observations are available 
A k = A for k = 1 , . . . , N  and that  the dis- 
cretization time step ~ satisfies A = K~. Let 
Z[ j) denote the value of the pseudo-observation 
at time rk-:,i  = tk - :  + i3 in the j th  simulation 
for i = 1 , . . . , K  and j = 1 , . . . ,  J using the Euler 
scheme (11). Introduce the sequence of approx- 
imate pdfs {p(K)(rk_:,i_:, z i- : ,  Vk-:,i, Zi; 0)}~= 1 
as an approximation to the true pdf. For a suf- 
ficiently small ~, it holds that  Z~ j) .., N ( x t , _ a  + 
b(tk-:, xtk_,; 0)6, cr2(tk_:, xtk_~; 0)~) using the Eu- 
let scheme (11), i.e. that  p(:) is Gaussian. This 
does, however, not hold for p(g) for K ~> 2. 
If the Euler scheme is used again to compute 
the next pseudo-observation Z~ j) the Chapman- 
Kolmogorov equation yields 

£ p(2) 

£ 

p(:) (r:, xtk_,, ~:; 0)d~:(24) 

where the intermediate pseudo-observation E: 
(capital ~:) is integrated out. If this scheme is 
repeated K - 1 times, the transition pdf can 
be approximated by E[p(:)(rg_: ,  Z~,-1, xt~ ;0)]. 
The idea attributable to (Pedersen, 1995b; Ped- 
ersen, 1995a) is to use Monte Carlo methods 
to compute the expectation, i.e. a (K - 1)- 
dimensional integral, by simulating J sample 
paths of the pseudo-observations and then average 
over these sample paths to get an approxima- 
tion of p(/<)(A, xt~_,, xt~;O). The conditional (on 
x0) likelihood function (8) then readily follows. 
However, this method is very time-consuming due 
to the Monte Carlo-based integration. Variance- 
reduction methods may be applied to minimize 
the Monte Carlo variance using weak discretiza- 
tion schemes, see eg. (Kloeden and Platen, 1995; 
Fishman, 1996; Fang and Wang, 1994) and the ref- 
erences therein, but this has not been considered 
in the literature. 

Bergstrom (1990) proposes a methodology, where 
the diffusion function a is assumed to be constant 
during the sampling intervals such that  a may be 
moved outside the stochastic integral. This implies 
that  the pdf is Gaussian. An application is given 
by (Nowman, 1997) for a univariate SDE. 

5. OTHER APPROACHES 

In this section, we review briefly two other ap- 
proaches to the estimation of stochastic ODE 
models: the first, which is set within the conven- 
tional, stochastic state space formulation of the 
problem and relates closely to the methodology 
based on It6 calculus discussed in previous sec- 
tions of the paper; and the second, applied to 
an alternative linear, observation space formula- 
tion, in which the model is defined in terms of 
continuous-time, transfer function models. These 
methods do not allow for both process noise and 
measurement noise, see Section 6 for a treatment 
of the general setting. 

Early research of the estimation of stochastic 
ODE models utilised the Extended Kalman Filter 
(EKF) approach (Jazwinski, 1970; Gelb, 1974; 
Young and Beck, 1974), in which both the state 
variables and any unknown parameters, jointly 
considered as the elements of an 'extended' state 
vector, are estimated simultaneously using 're- 
linearization' of the filter-estimation equations 
about the latest recursive estimates at each re- 
cursive update, see (Ljung, 1978; Ljung, 1979) 
for an analysis of the properties of the estimated 
parameters. In parameter estimation terms, how- 
ever, a more satisfactory approach to the param- 
eter/state estimation problem is the ML method 
proposed by (Stepner and Mehra, 1973; /~strSm 
and KallstrSm, 1973). This is reviewed in (Young, 
1981; Young, 1984), who discusses other related 
references using similarly motivated methodology. 

Since this ML approach is closely related to 
the methods discussed previously, it will not 
be discussed in detail here. Basically, however, 
it involves numerical optimization of the state 
space model parameters and associated hyper- 
parameters (i.e. noise variances and covariances) 
based on a cost function of the general form, 
see (Young, 1984, Chapter 9): 

N 

k = l  t k l t k -~  

+ l l 0  - (25)  

where @k is the innovation (recursive residual); 
Ptkltk-1 is the covariance matrix generated by 
the associated continuous-discrete Kalman Filter 
(KF), or its nonlinear equivalent, at the kth sam- 
pling instant; 00 is the a priori estimate of the 
model parameter vector ; and P0(0) is its asso- 
ciated error-covariance matrix. This latter term 
reveals an alternative Bayesian interpretation of 
the method that  allows for the introduction of a 
priori information on the parameters. This ML 
approach exploits the 'prediction error decom- 
position' (PED) method of Schweppe (1965) to 
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generate the likelihood function from the KF 
equations, see e.g. (Harvey, 1989; Young, 1998c; 
Young, 1998b) and Section 6 herein. 

Within the linear, automatic control context, 
continuous-time models are often formulated in 
terms of continuous-time Laplace transform trans- 
fer functions and the estimation of such mod- 
els has received a lot of interest since the early 
nineteen sixties, see (Young, 1981; Sinha and 
Rao, 1991) and the many references therein. Con- 
sidering, for simplicity, the single input-single out- 
put case, this model is normally written in the 
following form: 

B ( s )  , .  
• (t) = - (26)  

y ( t )  = + d r )  (27)  

Here x(t) and u(t) denote, respectively, the deter- 
ministic output and input signals of the system; 
y(t) is the observed output, which is assumed to 
be contaminated by a noise signal ~(t); r is a pure 
time (transport) delay affecting the input signal; 
A(s) and B(s)  are polynomials in the Laplace 
operator s of the following form, 

A(s)  = s "  + a l s " - '  + a2s " -2  + . . .  + an (28) 

B(s)  =bos "~ + bls m-1 + b2s 'n-2 + . . . +  bm (29) 

where n and m can take on any positive integer 
values; the transfer function (TF) does not need 
to be proper (i.e. there is no restriction that 
m < n); and the pure time delay of 7- time units 
is introduced to reflect the fact that real systems 
are often characterized by pure transport delays 
(note that in the state space situation, this would 
necessitate the use of a differential-delay form of 
the state equations). 

For the purposes of stochastic estimation e.g. 
(Young et al., 1991; Young, 1996), the noise signal 
~(t) is assumed to be a zero mean stochastic 
disturbance with rational spectral density, which 
can be described by the following TF model, 

D(s) . . 
~(t) = ~7-:T_~ e(t) (30), 

where, 

C ( 8 )  = 8 p 3¢ e l sP - 1  -4- c 2 5  p - 2 -~- . . . Jr- Cp (31) 

D(s) = s q + dis q-1 + d2s q-2 + . . .  + dq (32) 

while e(t) is a zero mean, serially uncorrelated 
and normally distributed random variable (white 
noise) with variance ~r~. This model is the s 
operator equivalent of the well known discrete- 
time Alq.MA process; however, it is often sufficient 
to consider only the simpler equivalent of the AR 
process, i.e. when D(s) = 1. 

The complete model obtained in the above man- 
ner can be written in the form, 

B(s)  . .  D(s) . .  

y(t) = ~(s )  U(t) + -~-~e( t )  (33) 

and estimates of the model parameters can be 
obtained by standard numerical optimisation of 
the associated Gaussian Likelihood function. An 
attractive alternative approach is obtained by 
noting that ~k can be written in the alternative 
form, 

= - , b ( , , ) , . 4  ( 3 4 )  

where y~ and u~ are sampled values of the 
continuous-time "prefiltered" variables obtained 
in the following manner, 

( 0  - A c(s )  y(O (35) 
D(s),4(s) 

_ . D(s)A(s )  u(t) (36) 

Equation (34) is now linear-in-the-parameters of 
the deterministic part of TF model from u~ to 
yk, so that it is possible to estimate these pa- 
rameters by an iterative or recursive/iterative re- 
laxation optimization process based on discrete- 
time data sampled from the above continuous- 
time operations and involving the use of linear 
least squares or instrumental variable (IV) algo- 
rithms at each iteration. The continuous-time pre- 
filters and the auxiliary model in the IV case are 
updated adaptively at each iteration, as described 
in (Young, 1984; Young, 1996; Young and Jake- 
man, 1980). In the case of non-uniformly sampled 
y(t), these filtering operations are implemented in 
a continuous-discrete KF form to allow for inter- 
polation. The inclusion of the prefilters in (35)- 
(36) is not only justified statistically but it also 
nicely solves the problem of time-derivative mea- 
surement by providing the physically realizable 
filtered time derivatives of the input and output 
signals as by-products of these prefiltering oper- 
ations. This relaxation solution is justified the- 
oretically by the discrete-time analysis of Pierce 
(1972), which can be extended to this continuous- 
time situation. 

The IV solution is particularly robust since it 
can yield sub-optimal solutions that do not rely 
on restrictive assumptions on the nature of ~(t) 
provided the deterministic input signal u(t) is 
independent of ~(t). The simplest and most ro- 
bust solution of this type is the Simplified Re- 
fined Instrumental Variable (SR.IV) method, see 
e.g. (Young et al., 1991; Young, 1996), where it 
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is assumed for convenience that the ~(t) is white 
noise, so that the adaptive prefilters are simply of 
the form 1/A(s ) .  Although this is a sub-optimal 
solution, the parameter estimates are consistent 
and relatively efficient. Consequently, it provides 
a very practical method of identifying and esti- 
mating continuous-time models of stochastic sys- 
tems and has advantages over alternative, more ad 
hoc methods (e.g. most of the methods described 
in (Sinha and Rao, 1991)) since the prefilters 
are selected on a more objective statistical basis, 
thus improving the efficiency of the estimates. 
Recent examples of its practical application in 
terms of databased mechanistic modelling (DBM) 
are given in (Young, 1998a; Young, 1998b; Young, 
1998c; Young et al., 1999). The DBM approach 
allows for state-dependent parameters such that 
nonlinear stochastic systems may be modelled. 

6. NONLINEAR FILTERING 

In this section the continuous-discrete nonlinear 
filtering problem for the state space model (1)+(4) 
is considered. This framework allows for both 
process and measurement noise compared to the 
methods surveyed in the previous sections. Em- 
phasis is placed on parameter estimation. 

If b, h are linear in the states Xt, and a does 
not depend on Xt, the SDE (1) is linear in 
the narrow-sense and an explicit solution may 
be found, see eg. (Arnold, 1974; Kloeden and 
Platen, 1995). The Kalman-Bucy filter (Kalman 
and Bucy, 1961) provides an exact solution to 
the filtering problem. The filter also provides re- 
cursive residuals such that a Gaussian likelihood 
function follows from a Prediction Error Decom- 
position (PED) approach (Schweppe, 1965). A 
maximum likelihood method for direct estima- 
tion of embedded parameters in SDEs is proposed 
in (Madsen, 1985; Graebe, 1990; Madsen and Mel- 
gaard, 1991; Melgaard and Madsen, 1993; Bohlin 
and Graebe, 1995) based on the EKF and the 
PED. The EKF supplies state estimates and the 
recursive residuals, where the latter are used 
to compute QML estimates of the parameters 
using the Gaussian likelihood function implied 
by the PED. This approach may also be used 
for nonlinear systems. For SDEs with a state- 
dependent diffusion function higher order filters 
are needed (Maybeck, 1982), see, however, the 
discussion of a particular transformation below. 
This also holds for linear SDEs in the wide-sense, 
i.e. SDEs where both the drift and the diffusion 
functions are linear in the states. An approach 
based on the iterated EKF (Jazwinski, 1970) is 
given in (Melgaard and Madsen, 1993). 

Nielsen and Madsen (2000) introduces a gen- 
eralization of the transformation proposed by 

(Baadsgaard et al., 1997) such that the method 
described in (Graebe, 1990; Melgaard and Mad- 
sen, 1993) may be applied to a restricted class of 
SDEs with a state-dependent diffusion term. 

7. DISCUSSIONS AND CONCLUSIONS 

The overview provided here focuses on estima- 
tion methods for discretely observed It6 stochastic 
differential equations. It indicates that only non- 
linear filtering methods provide an approximate 
solution to the full state and parameter estima- 
tion problem posed in (1) and (4) using nonlin- 
ear filters and a PED approach to obtain ML- 
estimates. The method-of-moments GMM can be 
used only for models with fully observed states 
with no measurement noise, where EMM/II allows 
for partially observed states. GMM is fairly easy 
to implement, but being based on a discretized 
version of the SDE, it is not an optimal choice. If 
it is possible to derive explicit expressions for the 
moment resctrictions, GMM will lead to unbiased 
and efficient estimators. However, in such simple 
cases, it is most likely the true ML solution is 
also feasible. EMM is more efficient than other 
methods of moments, and it relies on the test 
methodology that is an inherent part of GMM 
also. However, for both methods, the efficiency 
loss will inevitably lead to low power of these tests. 

It seems evident that the most general and useful 
approach today is nonlinear filtering augmented 
by the prediction error decomposition. Unfortu- 
nately, it is difficult to assess the model error 
introduced by the approximate filtering equations 
in terms of biasedness and efficiency loss. It is, 
however, possible to test for the correct model, 
see e.g. (Bak et al., 1998). 
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