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SUMMARY

A method for adaptive and recursive estimation in a class of non-linear autoregressive models with external
input is proposed. The model class considered is conditionally parametric ARX-models (CPARX-models),
which is conventional ARX-models in which the parameters are replaced by smooth, but otherwise
unknown, functions of a low-dimensional input process. These coe$cient functions are estimated adaptively
and recursively without specifying a global parametric form, i.e. the method allows for on-line tracking of the
coe$cient functions. Essentially, in its most simple form, the method is a combination of recursive least
squares with exponential forgetting and local polynomial regression. It is argued, that it is appropriate to let
the forgetting factor vary with the value of the external signal which is the argument of the coe$cient
functions. Some of the key properties of the modi"ed method are studied by simulation. Copyright ( 2000
John Wiley & Sons, Ltd.

KEY WORDS: adaptive and recursive estimation; non-linear models; time-varying functions; conditional
parametric models; non-parametric method

1. INTRODUCTION

The conditional parametric ARX-model (CPARX-model) is a non-linear model formulated as
a linear ARX-model in which the parameters are replaced by smooth, but otherwise unknown,
functions of one or more explanatory variables. These functions are called coe$cient functions. In
Reference [1] this class of models is used in relation to district heating systems to model the
non-linear dynamic response of network temperature on supply temperature and #ow at the
plant. A particular feature of district heating systems is, that the response on supply temperature



depends on the #ow. This is modelled by describing the relation between temperatures by an
ARX-model in which the coe$cients depend on the #ow.

For on-line applications it is advantageous to allow the function estimates to be modi"ed as
data become available. Furthermore, because the system may change slowly over time, observa-
tions should be down-weighted as they become older. For this reason a time-adaptive and
recursive estimation method is proposed. Essentially, the estimates at each time step are the
solution to a set of weighted least-squares regressions and therefore the estimates are unique
under quite general conditions. For this reason the proposed method provides a simple way to
perform adaptive and recursive estimation in a class of non-linear models. The method is
a combination of the recursive least squares with exponential forgetting [2] and locally weighted
polynomial regression [3]. In the paper adaptive estimation is used to denote, that old observa-
tions are down-weighted, i.e. in the sense of adaptive in time. Some of the key properties of the
method are discussed and demonstrated by simulation.

Cleveland and Devlin [3] gives an excellent account for non-adaptive estimation of a regres-
sion function by use of local polynomial approximations. Non-adaptive recursive estimation of
a regression function is a related problem, which has been studied recently by Thuvesholmen [4]
using kernel methods and by Vilar-Fernandez and Vilar Fernandez [5] using local polynomial
regression. Since these methods are non-adaptive one of the aspects considered in these papers is
how to decrease the bandwidth as new observations become available. This problem does not
arise for adaptive estimation since old observations are down-weighted and eventually disre-
garded as part of the algorithm. Hastie and Tibshirani [6] considered varying-coe$cient models
which are similar in structure to conditional parametric models and have close resemblance to
additive models [7] with respect to estimation. However, varying-coe$cient models include
additional assumptions on the structure. Some speci"c time-series counterparts of these models
are the functional-coe$cient autoregressive models [8] and the non-linear additive ARX-models
[9].

The paper is organized as follows. In Section 2 the conditional parametric model is introduced
and a procedure for estimation is described. Adaptive and recursive estimation in the model are
described in Section 3, which also contains a summary of the method. To illustrate the method
some simulated examples are included in Section 4. Further topics, such as optimal bandwidths
and optimal forgetting factors are considered in Section 5. Finally, we conclude on the paper in
Section 6.

2. CONDITIONAL PARAMETRIC MODELS AND LOCAL
POLYNOMIAL ESTIMATES

When using a conditional parametric model to model the response y
4
the explanatory variables

are split in two groups. One group of variables x
s
enter globally through coe$cients depending

on the other group of variables u
s
, i.e.

y
s
"xT

4
h (u

4
)#e

s
(1)

where h ( ) ) is a vector of coe$cient functions to be estimated and e
4
is the noise term. Note that

x
4
may contain lagged values of the response. The dimension of x

4
can be quite large, but the

dimension of u
4
must be low (1 or 2) for practical purposes [7, pp. 83}84]. In Reference [1] the
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dimensions 30 and 1 is used. Estimation in (1), using methods similar to the methods by Cleveland
and Devlin [3] is described for some special cases in References [10, 6]. A more general
description can be found in Reference [1]. To make the paper self-contained the method is
outlined below.

The functions h ( ) ) in (1) are estimated at a number of distinct points by approximating the
functions using polynomials and "tting the resulting linear model locally to each of these ,tting
points. To be more speci"c let u denote a particular "tting point. Let h

j
( ) ) be the jth element of

h ( ) ) and let p
d(j)

(u) be a column vector of terms in the corresponding d-order polynomial
evaluated at u, if for instance u"[u

1
u
2
]T then p

2
(u)"[1 u

1
u
2

u2
1

u
1
u
2

u2
2
]T. Furthermore, let

x
s
"[x

1,s2
x
p,s

]T. With

zT
s
"[x

1,s
pT
d(1)

(u
s
)2x

j,s
pT
d(j)

(u
s
)2x

p,s
pT
d(p)

(u
s
)] (2)

and

/T
u
"[/T

u,12
/T
u,j2

/T
u,p

] (3)

where /
u,j

is a column vector of local coe$cients at u corresponding to x
j,s

p
d(j)

(u
s
). The linear

model

y
s
"zT

s
/
u
#e

s
, i"1,2,N (4)

is then "tted locally to u using weighted least squares (WLS), i.e.

/K (u)"argmin
/
u

N
+
s/1

w
u
(u

s
) (y

s
!zT

s
/
u
)2 (5)

for which a unique closed-form solution exists provided the matrix with rows zT
s
corresponding to

non-zero weights has full rank. The weights are assigned as

w
u
(u

s
)"=A

Eu
s
!uE
+(u) B (6)

where E ) E denotes the Euclidean norm, + (u) is the bandwidth used for the particular "tting point,
and = ( ) ) is a weight function taking non-negative arguments. Here we follow Cleveland and
Devlin [3] and use

= (u)"G
(1!u3)3, u3[0; 1)

0, u3[1; R)
(7)

i.e. the weights are between 0 and 1. The elements of h (u) are estimated by

hK
j
(u)"pT

d(j)
(u)/K

j
(u), j"1,2p (8)
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where /K
j
(u) is the WLS estimate of /

u,j
. The estimates of the coe$cient functions obtained as

outlined above are called local polynomial estimates. For the special case where all coe$cient
functions are approximated by constants we use the term local constant estimates.

If + (u) is constant for all values of u it is denoted a "xed bandwidth. If +(u) is chosen so that
a certain fraction a of the observations ful"ll Eu

s
!uE)+ (u) then a is denoted as a nearest-

neighbour bandwidth. A bandwidth speci"ed according to the nearest-neighbour principle is
often used as a tool to vary the actual bandwidth with the local density of the data.

Interpolation is used for approximating the estimates of the coe$cient functions for other
values of the arguments than the "tting points. This interpolation should only have marginal
e!ect on the estimates. Therefore, it sets requirements on the number and placement of the "tting
points. If a nearest-neighbour bandwidth is used it is reasonable to select the "tting points
according to the density of the data as it is done when using k}d trees [11, Section 8.4.2].
However, in this paper the approach is to select the "tting points on an equidistant grid and
ensure that several "tting points are within the (smallest) bandwidth so that linear interpolation
can be applied safely.

3. ADAPTIVE ESTIMATION

As pointed out in the previous section local polynomial estimation can be viewed as local
constant estimation in a model (4) derived from the original model (1). This observation forms the
basis of the method suggested, which is described as a generalization of estimation in (4). For
simplicity the adaptive estimation method is described as a generalization of exponential
forgetting. However, the more general forgetting methods described by Ljung and SoK derstroK m
[2] could also serve as a basis.

3.1. The proposed method

Using exponential forgetting and assuming observations at time s"1,2,t are available, the
adaptive least-squares estimate of the parameters / relating the explanatory variables z

s
to the

response y
s
using the linear model y

s
"zT

s
/#e

s
is found as

/K
t
"argmin

(

t
+
s/1

jt~s (y
s
!zT

s
/)2 (9)

where 0(j(1 is called the forgetting factor, see also Reference [2]. The estimate can be seen as
a local constant approximation in the direction of time. This suggests that the estimator may also
be de"ned locally with respect to some other explanatory variables u

t
. If the estimates are de"ned

locally to a "tting point u, the adaptive estimate corresponding to this point can be expressed as

/K
t
(u)"argmin

/
u

t
+
s/1

jt~sw
u
(u

s
) (y

s
!zT

s
/

u
)2 (10)

where w
u
(u

s
) is a weight on observation s depending on the "tting point u and u

s
, see Section 2.

In Section 3.2 it will be shown how estimator (10) can be formulated recursively, but here we
will brie#y comment on the estimator and its relations to non-parametric regression. A special
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case is obtained if x
s
in (1) is 1 for all s and d(1) is chosen to be 0, then it follows from (2) that z

s
"1

for all s, and simple calculations show that

/K
t
(u)"

+ t
s/1

jt~sw
u
(u

s
)y

s
+ t

s/1
jt~sw

u
(u

s
)

(11)

for j"1 this is a kernel estimator of / ( ) ) in y
s
"/ (u

s
)#e

s
, (cf. Reference [12, p. 30]). For this

reason (11) is called an adaptive kernel estimator of / ( ) ) and the estimator (10) may be called an
adaptive local constant estimator of the coe$cient functions / ( ) ) in the conditional parametric
model y

s
"zT

s
/ (u

s
)#e

s
. Using the same techniques as in Section 2 this can be used to implement

adaptive local polynomial estimation in models like (1).

3.2. Recursive formulation

Following the same arguments as in Ljung and SoK derstroK m [2] it is readily shown that the
adaptive estimates (10) can be found recursively as

/K
t
(u)"/K

t~1
(u)#w

u
(u

t
)R~1

u,t
z
t
[y

t
!zT

t
/K

t~1
(u)] (12)

and

R
u,t
"jR

u,t~1
#w

u
(u

t
)z

t
zT
t

(13)

It is seen that existing numerical procedures implementing adaptive recursive least squares for

linear models can be applied, by replacing z
t
and y

t
in the existing procedures with z

t
Jw

u
(u

t
) and

y
t
Jw

u
(u

t
), respectively. Note that zT

t
/K
t~1

(u) is a predictor of y
t
locally with respect to u and for

this reason it is used in (12). To predict y
t
a predictor like zT

t
/K
t~1

(u
t
) is appropriate.

3.3. Modixed updating formula

When u
t
is far from the particular "tting point u it is clear from (12) and (13) that /K

t
(u)+/K

t~1
(u)

and R
u,t
+jR

u,t~1
, i.e. old observations are down-weighted without new information becoming

available. This may result in abruptly changing estimates if u is not visited regularly, since the
matrix R is decreasing exponentially in this case. Hence it is proposed to modify (13) to ensure
that the past is weighted down only when new information becomes available, i.e.

R
u,t
"jv (w

u
(u

t
); j)R

u,t~1
#w

u
(u

t
)z

t
zT
t
, (14)

where v ( ) ; j) is a nowhere increasing function on [0;1] ful"lling v (0; j)"1/j and v (1; j)"1. Note
that this requires that the weights span the interval ranging from zero to one. This is ful"lled for
weights generated as described in Section 2. In this paper we consider only the linear function
v(w;j)"1/j!(1/j!1)w, for which (14) becomes

R
u,t
"(1!(1!j)w

u
(u

t
))R

u,t~1
#w

u
(u

t
) z

t
zT
t

(15)
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It is reasonable to denote

ju
%&&

(t)"1!(1!j)w
u
(u

t
) (16)

the e+ective forgetting factor for point u at time t.
When using (14) or (15) it is ensured that R

u,t
cannot become singular if the process Mu

t
N moves

away from the "tting point for a longer period. However, the process Mz
t
N should be persistently

excited as for linear ARX-models. In this case, given the weights, the estimates de"ne a global
minimum corresponding to (10).

3.4. Nearest-neighbour bandwidth

Assume that u
t
is a stochastic variable and that the pdf f ( ) ) of u

t
is known and constant over t.

Based on a nearest-neighbour bandwidth the actual bandwidth can then be calculated for
a number of "tting points u placed within the domain of f ( ) ) and used to generate the weights
w
u
(u

t
). The actual bandwidth +(u) corresponding to the point u will be related to the nearest-

neighbour bandwidth a by

a"PD
u

f (m) dm (17)

where D
u
"Mm3RdD Em!uE)+(u)N is the neighbourhood, d is the dimension of u, and E ) E is the

Euclidean norm. In applications the density f ( ) ) is often unknown. However, f ( ) ) can be
estimated from data, e.g. by the empirical pdf.

3.5. Ewective number of observations

In order to select an appropriate value for a the e!ective number of observations used for
estimation must be considered. In Appendix A it is shown that under certain conditions, when the
modi"ed updating (15) is used,

gJ
u
"

1
1!E[ju

%&&
(t)]

"

1
(1!j)E [w

u
(u

t
)]

(18)

is a lower bound on the e!ective number of observations (in the direction of time) corresponding
to a "tting point u. Generally (18) can be considered an approximation. When selecting a and j it
is then natural to require that the number of observations within the bandwidth, i.e. agJ

u
, is

su$ciently large to justify the complexity of the model and the order of the local polynomial
approximations.

As an example consider u
t
&N(0, 1) and j"0.99 where the e!ective number of observations

within the bandwidth, agJ
u
, is displayed in Figure 1. It is seen that agJ

u
depends strongly on the

"tting point u but only moderately on a. When investigating the dependence of agJ
u
on j and a it

turns out that agJ
u
is almost solely determined by j. In conclusion, for the example considered, the

e!ective forgetting factor ju
%&&

(t) will be a!ected by the nearest-neighbour bandwidth, so that the
e!ective number of observations within the bandwidth will be strongly dependent on j, but only
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Figure 1. E!ective number of observations within the bandwidth (agJ
u
(u)) for a"0.1,2,0.9 and j"0.99.

weakly dependent on the bandwidth (a). The ratio between the rate at which the weights on
observations goes to zero in the direction of time and the corresponding rate in the direction of
u
t
will be determined by a.
As it is illustrated by Figure 1 the e!ective number of observations behind each of the local

approximations depends on the "tting point. This is contrary to the non-adaptive nearest-
neighbour method, cf. Section 2, and may result in a somewhat unexpected behaviour of the
estimates. If the system follows a linear ARX-model and if the coe$cients of the system are
estimated as coe$cient functions then both adaptive and non-adaptive nearest-neighbour ap-
proaches will be unbiased. However, for this example the variance of local constant estimates will
decrease for increasing values of DuD. This is veri"ed by simulations, which also show that local
linear and quadratic approximations result in increased variance for large DuD. Note that, when the
true function is not a constant, the local constant approximation may result in excess bias (see e.g.
Reference [1]).

If j is varied with the "tting point as j (u)"1!1/(¹
0
E[w

u
(u

t
)]) then gJ

u
"¹

0
. Thus, the

e!ective number of observations within the bandwidth is constant across "tting points. Further-
more, ¹

0
can be interpreted as the memory time constant. To avoid highly variable estimates of

E[w
u
(u

t
)] in the tails of the distribution of u

t
the estimates should be based on a parametric family

of distributions. However, in the remaining part of this paper j is not varied across "tting points.

3.6. Summary of the method

To clarify the method the actual algorithm is brie#y described in this section. It is assumed that at
each time step t measurements of the output y

t
and the two sets of inputs x

t
and u

t
are received.

The aim is to obtain adaptive estimates of the coe$cient functions in the non-linear model (1).
Besides j in (15), prior to the application of the algorithm a number of "tting points u(i);

i"1,2, n
fp

in which the coe$cient functions are to be estimated has to be selected. Further-
more the bandwidth associated with each of the "tting points +(i); i"1,2,n

fp
and the degrees of

the approximating polynomials d ( j); j"1,2,p have to be selected for each of the p coe$cient
functions. For simplicity the degree of the approximating polynomial for a particular coe$cient
function will be "xed across "tting points. Finally, initial estimates of the coe$cient functions in
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the model corresponding to local constant estimates, i.e. /K
0
(u (i)), must be chosen. Also, the

matrices Ru(i),0 must be chosen. One possibility is diag(e,2,e), where e is a small positive number.
In the following description of the algorithm it will be assumed that Ru(i),t is non-singular for all
"tting points. In practice, we would just stop updating the estimates if the matrix become
singular. Under the assumption mentioned the algorithm can be described as

For each time step t: Loop over the "tting points u(i); i"1,2,n
fp

and for each "tting point:

f Construct the explanatory variables corresponding to local constant estimates using (2):

zT
t
"[x

1,t
pT
d(1)

(u
t
)2x

p,t
pT
d(p)

(u
t
)]

f Calculate the weight using (6) and (7):

wu(i) (ut)"(1!(Eu
t
!u(i)E/+(i))3)3 if Eu

t
!u(i)E(+(i) and zero otherwise

f Find the e!ective forgetting factor using (16):

j(i)
%&&

(t)"1!(1!j)wu(i) (ut)

f Update Ru(i),t!1 using (15):

Ru(i),t"j(i)
%&&

(t)Ru(i),t!1#wu(i) (ut)ztzTt

f Update /K
t~1

(u(i)) using (12):

/K
t
(u(i))"/K

t~1
(u(i))#wu(i) (ut)R~1u(i), tzt [yt!zT

t
/K
t~1

(u(i))]

f Calculate the updated local polynomial estimates of the coe$cient functions using (8):

hK
jt
(u(i))"pT

d(j)
(u(i))/K

j,t
(u(i)); j"1,2p

The algorithm could also be implemented using the matrix inversion lemma as in Reference
[2].

4. SIMULATIONS

Aspects of the proposed method are illustrated in this section. When the modi"ed updating
formula (15) is used the general behaviour of the method for di!erent bandwidths is illustrated in
Section 4.1. In Section 4.2 results obtained using the two updating formulas (13) and (15) are
compared.

The simulations are performed using the non-linear model

y
t
"a (t, u

t~1
)y

t~1
#b (t, u

t~1
)x

t
#e

t
, (19)

where Mx
t
N is the input process, Mu

t
N is the process controlling the coe$cients, My

t
N is the output

process, and Me
t
N is a white noise standard Gaussian process. The coe$cient functions are

simulated as

a (t, u)"0.3#A0.6!
1.5
N

tB expA!
(u!(0.8/N) t)2

2(0.6!(0.1/N) t)2B
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Figure 2. The time-varying-coe$cient functions plotted for equidistant points in time as
indicated on the plots.

and

b (t, u)"2!expA!
(u#1!(2/N) t)2

0.32 B
where t"1,2,N and N"5000, i.e. a (t, u) ranges from !0.6 to 0.9 and b (t, u) ranges from 1 to 2.
The functions are displayed in Figure 2. As indicated by the "gure both coe$cient functions are
based on a Gaussian density in which the mean and variance varies linearly with time.

Local linear (d ( j)"1 for all j) adaptive estimates of the functions a ( ) and b( ) are then found
using the proposed procedure with the model

y
t
"a (u

t~1
)y

t~1
#b (u

t~1
)x

t
#e

t
(20)

In all cases initial estimates of the coe$cient functions are set to zero and during the initialization
the estimates are not updated, for the "tting point considered, until 10 observations have received
a weight of 0.5 or larger.

4.1. Highly correlated input processes

In the simulation presented in this section a strongly correlated Mu
t
N process is used and also

the Mx
t
N process is quite strongly correlated. This allows us to illustrate various aspects

of the method. For less correlated series the performance is much improved. The data
are generated using (19) where Mx

t
N and Mu

t
N are zero mean AR(1)-processes with poles in 0.9

and 0.98, respectively. The variance for both series is one and the series are mutually independent.
In Figure 3 the data are displayed. Based on these data adaptive estimation in (20) are performed
using nearest-neighbour bandwidths, calculated assuming a standard Gaussian distribution
for u

t
.

The results obtained using the modi"ed updating formula (15) are displayed for "tting points
u"!2,!1,0,1,2 in Figures 4 and 5. For the "rst 2/3 of the period the estimates at u"!2, i.e.
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Figure 3. Simulated output (bottom) when x
t
(top) and u

t
(middle) are AR(1)-processes.

Figure 4. Adaptive estimates of a (u) using local linear approximations and nearest neighbour bandwidths
0.3 (dashed), 0.5 (dotted), and 0.7 (solid). True values are indicated by smooth dashed lines.
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Figure 5. Adaptive estimates of b (u) using local linear approximations and nearest-neighbour bandwidths
0.3 (dashed), 0.5 (dotted), and 0.7 (solid). True values are indicated by smooth dashed lines.

aL (!2) and bK (!2), only gets updated occasionally. This is due to the correlation structure of Mu
t
N

as illustrated by the realization displayed in Figure 3.
For both estimates the bias is most pronounced during periods in which the true coe$cient

function changes quickly for values of u
t

near the "tting point considered. This is further
illustrated by the true functions in Figure 2 and it is, for instance clear that adaption to a (t, 1) is
di$cult for t'3000. Furthermore, u"1 is rarely visited by Mu

t
N for t'3000, see Figure 3. In

general, the low bandwidth (a"0.3) seems to result in large bias, presumably because the
e!ective forgetting factor is increased on average, cf. Section 3.5. Similarly, the high bandwidth
(a"0.7) result in large bias for u"2 and t'4000. A nearest-neighbour bandwidth of 0.7
corresponds to an actual bandwidth of approximately 2.5 at u"2 and since most values of u

t
are

below one, it is clear that the estimates at u"2 will be highly in#uenced by the actual function
values for u near one. From Figure 2 it is seen that for t'4000 the true values at u"1 is
markedly lower that the true values at u"2. Together with the fact that u"2 is not visited by
Mu

t
N for t'4000 this explains the observed bias at u"2, see Figure 6.
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Figure 6. Adaptive estimates for the example considered in Section 4.1 at t"5000 for a"0.3
(dashed), 0.5 (dotted), 0.7 (solid). True values are indicated by circles and "tting points ranging from

!2 to 2 in steps of 0.2 are used.

4.2. Abrupt changes in input signals

One of the main advantages of the modi"ed updating formula (15) over the normal updating
formula (13) is that it does not allow fast changes in the estimates at "tting points which have not
been visited by the process Mu

t
N for a longer period. If, for instance, we wish to adaptively estimate

the stationary relation between the heat consumption of a town and the ambient air temperature
then Mu

t
N contains an annual #uctuation and at some geographical locations the transition from,

say, warm to cold periods may be quite fast. In such a situation the normal updating formula (13)
will, essentially, forget the preceding winter during the summer, allowing for large changes in the
estimate at low temperatures during some initial period of the following winter. Actually, it is
possible that, using the normal updating formula will result in a nearly singular R

t
.

To illustrate this aspect 5000 observations are simulated using model (19). The sequence Mx
t
N is

simulated as a standard Gaussian AR(1)-process with a pole in 0.9. Furthermore, Mu
t
N is simulated

as an iid process where

u
t
&G

N(0, 1), t"1,2,1000,

N(3/2,1/62), t"1001,2,4000,

N(!3/2,1/62), t"4001,2,5000

To compare the two methods of updating, i.e. (13) and (15), a "xed j is used in (15) across the
"tting points and the e!ective forgetting factors are designed to be equal. If jI is the forgetting
factor corresponding to (13) it can be varied with u as

jI (u)"E[ju
%&&

(t)]"1!(1!j)E[w
u
(u

t
)]

where E[w
u
(u

t
)] is calculated assuming that u

t
is standard Gaussian, i.e. corresponding to

1)t)1000. A nearest-neighbour bandwidth of 0.5 and j"0.99 are used, which results in
jI (0)"0.997 and jI ($2)"0.9978.

The corresponding adaptive estimates obtained for the "tting point u"!1 are shown in
Figure 7. The "gure illustrates that for both methods the updating of the estimates stops as Mu

t
N
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Figure 7. Realization of Mu
t
N (top) and adaptive estimates of a (!1) (middle) and b(!1) (bottom),

using the normal updating formula (solid) and the modi"ed updating formula (dotted). True values
are indicated by dashed lines.

leaves the "tting point u"!1. Using the normal updating (13) of R
t
its value is multiplied by

jI (!1)3000+0.00015 as Mu
t
N returns to the vicinity of the "tting point. This results in large

#uctuations of the estimates, starting at t"4001. As opposed to this, the modi"ed updating (15)
does not lead to such #uctuations after t"4000.

5. FURTHER TOPICS

5.1. Optimal bandwidth and forgetting factor

So far in this paper it has been assumed that the bandwidths used over the range of u
t
is derived

from the nearest-neighbour bandwidth a and it has been indicated how it can be ensured that the
average forgetting factor is large enough.

However, the adaptive and recursive method is well suited for forward validation [13] and
hence tuning parameters can be selected by minimizing, e.g. the root-mean-square of the one-step
prediction error (using observed u

t
and x

t
to predict y

t
, together with interpolation between "tting

points to obtain hK
t~1

(u
t
)).

There are numerous ways to de"ne the tuning parameters. A simple approach is to use (j, a), cf.
(15) and (17). A more ambiguous approach is to use both j and + for each "tting point u.
Furthermore, tuning parameters controlling scaling and rotation of u

s
and the degree of the local

polynomial approximations may also be considered.
If n "tting points are used this amounts to 2n, or more, tuning parameters. To make the

dimension of the (global) optimization problem independent of n and to have j(u) and +(u) vary
smoothly with u we may choose to restrict j(u) and +(u), or appropriate transformations of these
(logit for j and log for +), to follow a spline basis [14, 15]. This is similar to the smoothing of spans
described by Friedman [16].
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5.2. Local time-polynomials

In this paper local polynomial approximations in the direction of time are not considered. Such
a method is proposed for usual ARX-models by Joensen et al. [17]. This method can be combined
with the method described here and will result in local polynomial approximations where cross-
products between time and the conditioning variables (u

t
) are excluded.

6. CONCLUSION AND DISCUSSION

In this paper methods for adaptive and recursive estimation in a class of non-linear autoregressive
models with external input are proposed. The model class considered is conditionally parametric
ARX-models (CPARX-model), which is a conventional ARX-model in which the parameters are
replaced by smooth, but otherwise unknown, functions of a low-dimensional input process. These
functions are estimated adaptively and recursively without specifying a global parametric
form. One possible application of CPARX-models is the modelling of varying time delays, (cf.
Reference [1]).

The methods can be seen as generalizations or combinations of recursive least squares with
exponential forgetting [2], local polynomial regression [3], and conditional parametric "ts [10].
Hence, the methods constitute an extension to the notion of local polynomial estimation. The
so-called modi"ed method is suggested for cases where the process controlling the coe$cients are
highly correlated or exhibit seasonal behaviour. The estimates at each time step can be seen as
solutions to a range of weighted least-squares regressions and therefore the solution is unique for
well-behaved input processes. A particular feature of the modi"ed method is that the e!ective
number of observations behind the estimates will be almost independent of the actual bandwidth.
This is accomplished by varying the e!ective forgetting factor with the bandwidth. The band-
width mainly controls the rate at which the weights corresponding to exponential forgetting goes
to zero relatively to the rate at which the remaining weights goes to zero.

For some applications it may be possible to specify global polynomial approximations to the
coe$cient functions of a CPARX-model. In this situation the adaptive recursive least-squares
method can be applied for tracking the parameters de"ning the coe$cient functions for all values
of the input process. However, if the argument(s) of the coe$cient functions only stays in parts of
the space corresponding to the possible values of the argument(s) for longer periods this may
seriously a!ect the estimates of the coe$cient functions for other values of the argument(s), as it
corresponds to extrapolation using a "tted polynomial. This problem is e!ectively solved using
the conditional parametric model in combination with the modi"ed updating formula.

APPENDIX A: EFFECTIVE NUMBER OF OBSERVATIONS

Using the modi"ed updating formula, as described in Section 3.3, the estimates at time t can be
written as

/K
t
(u)"argmin

/
u

t
+
s/1

b (t, s)w
u
(u

s
) (y

s
!zT

s
/
u
)2
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where

b (t, t)"1

and, for s(t

b (t, s)"
t

<
j/s`1

ju
%&&

( j)"ju
%&&

(t)b (t!1, s)

where ju
%&&

(t) is given by (16). It is then obvious to de"ne the e!ective number of observations (in
the direction of time) as

g
u
(t)"

=
+
i/0

b (t, t!i)"1#ju
%&&

(t)#ju
%&&

(t)ju
%&&

(t!1)#2 (A1)

Suppose that the "tting point u is chosen so that E[g
u
(t)] exists. Consequently, when Mju

%&&
(t)N is

i.i.d. and when jM
u
3[0, 1) denotes E[ju

%&&
(t)], the average e!ective number of observations is

g6
u
"1#jM

u
#jM 2

u
#2"

1

1!jM
u

When Mju
%&&

(t)N is not i.i.d., it is noted that since the expectation operator is linear, E [g
u
(t)] is the

sum of the expected values of each summand in (A1). Hence, E[g
u
(t)] is independent of t if Mju

%&&
(t)N

is strongly stationary, i.e. if Mu
t
N is strongly stationary. From (A1)

g
u
(t)"1#ju

%&&
(t)g

u
(t!1) (A2)

is obtained, and from the de"nition of covariance it then follows, that

gN
u
"

1#Cov[ju
%&&

(t), g
u
(t!1)]

1!jM
u

*

1

1!jM
u

(A3)

since 0(j(1 and assuming, that the covariance between ju
%&&

(t) and g
u
(t!1) is positive. Note

that, if the process Mu
t
N behaves such that if it has been near u for a longer period up to time t!1

it will tend to be near u at time t also, a positive covariance is obtained. It is the experience of the
authors that such a behaviour of a stochastic process is often encountered in practice.

As an alternative to the calculations above ju
%&&

(t)g
u
(t!1) may be linearized around jM

u
and g6

u
.

From this it follows, that if the variances of ju
%&&

(t) and g
u
(t!1) are small then

gN
u
+

1

1!jM
u

Therefore we may use 1/(1!jM
u
) as an approximation to the e!ective number of observations, and

in many practical applications it will be an lower bound, c.f. (A3). By assuming a stochastic
process for Mu

t
N the process Mg

u
(t)N can be simulated using (A2) whereby the validity of the

approximation can be addressed.

TRACKING TIME-VARYING-COEFFICIENT FUNCTIONS 827

Int. J. Adapt. Control Signal Process. 2000; 14:813}828Copyright ( 2000 John Wiley & Sons, Ltd.



REFERENCES

1. Nielsen HA, Nielsen TS, Madsen H. ARX-models with parameter variations estimated by local "tting. In 11th IFAC
Symposium on System Identi,cation, Sawaragi Y, Sagara S (eds). vol. 2, 1997; 475}480.

2. Ljung L, SoK derstroK m T. ¹heory and Practice of Recursive Identi,cation. MIT Press: Cambridge, MA, 1983.
3. Cleveland WS, Devlin SJ. Locally weighted regression: An approach to regression analysis by local "tting. Journal of

the American Statistical Association 1988; 83:596}610.
4. Thuvesholmen M. An on-line crossvalidation bandwidth selector for reursive kernel regression. ¸ic ¹hesis, Depart-

ment of Mathematical Statistics, Lund University, Sweden, 1997.
5. Vilar-FernaH ndez JA, Vilar-FernaH ndez JM. Recursive estimation of regression functions by local polynomial "tting.

Annals of the Institute of Statistical Mathematics 1998; 50:729}754.
6. Hastie T, Tibshirani R. Varying-coe$cient models. Journal of the Royal Statistical Society, Series B, Methodological

1993; 55:757}796.
7. Hastie TJ, Tibshirani RJ. Gerneralized Additive Models. Chapman & Hall: London, 1990.
8. Chen R, Tsay RS. Functional-coe$cient autoregressive models. Journal of the American Statistical Association 1993;

88:298}308.
9. Chen R, Tsay RS. Nonlinear Additive ARX Models. Journal of the American Statistical Association 1993; 88:955}967.

10. Cleveland WS. Coplots, nonparametric regression, and conditionally parametric "ts. In Multivariate Analysis and Its
Applications, Anderson TW, Fang KT, Olkin I (eds). Institute of Mathematical Statistics: Hayward, 1994; 21}36.

11. Chambers JM, Hastie TJ (eds). Statistical Models in S. Wadsworth: Belmont, CA, 1991.
12. HaK rdle W. Applied Nonparametric Regression. Cambridge University Press: Cambridge, UK, 1990.
13. Hjorth JSU. Computer Intensive Statistical Methods: <alidation Model Selection and Bootstrap. Chapman & Hall:

London, 1994.
14. de Boor C. A Practical Guide to Splines. Springer: Berlin, 1978.
15. Lancaster P, Salkauskas K. Curve and Surface Fitting: An Introduction. Academic Press: New York, 1986.
16. Friedman JH. A variable span smoother. Technical Report No. 5, Laboratory for Computational Statistics,

Department of Statistics, Stanford University, California, 1984.
17. Joensen AK, Nielsen HA, Nielsen TS, Madsen H. Tracking time-varying parameters with local regression. Auto-

matica 2000; 36(8):1199}1204.

828 H. AA. NIELSEN E¹ A¸.

Int. J. Adapt. Control Signal Process. 2000; 14:813}828Copyright ( 2000 John Wiley & Sons, Ltd.


