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Abstract

In classical time series analysis the sample autocorrelation function (SACF) and the sample partial
autocorrelation function (SPACF) has gained wide application for structural identi/cation of linear time
series models. We suggest generalizations, founded on smoothing techniques, applicable for structural
identi/cation of non-linear time series models. A similar generalization of the sample cross correlation
function is discussed. Furthermore, a measure of the departure from linearity is suggested. It is shown
how bootstrapping can be applied to construct con/dence intervals under independence or linearity.
The generalizations do not prescribe a particular smoothing technique. In fact, when the smoother
is replaced by a linear regression the generalizations reduce to close approximations of SACF and
SPACF. For this reason a smooth transition from the linear to the non-linear case can be obtained
by varying the bandwidth of a local linear smoother. By adjusting the 8exibility of the smoother, the
power of the tests for independence and linearity against speci/c alternatives can be adjusted. The
generalizations allow for graphical presentations, very similar to those used for SACF and SPACF. In
this paper the generalizations are applied to some simulated data sets and to the Canadian lynx data.
The generalizations seem to perform well and the measure of the departure from linearity proves to
be an important additional tool. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The sample autocorrelation function and the sample partial autocorrelation function
have gained wide application for structural identi/cation of linear time series models.
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For non-linear time series these tools are not suCcient because they only address
linear dependencies.

During the last couple of decades a number of results on properties of, and estima-
tion and testing in, non-linear models have been obtained. For an overview (Priestley,
1988; Tong, 1990; TjHstheim, 1994) can be consulted. However, considerable fewer
results have been seen on the problem of structural identi/cation. TjHstheim and
Auestad (1994) have suggested a method based on kernel estimates to select the
signi/cant lags in a non-linear model, and Granger and Lin (1994) used the mutual
information coeCcient and Kendall’s � as generalizations of the correlation coeC-
cient and Kendall’s partial � as a generalization of the partial correlation coeCcient.
Chen and Tsay (1993) have considered a best subset modelling procedure and the
ACE and BRUTO algorithms see, e.g. (Hastie and Tibshirani, 1990), for identi/-
cation of non-linear additive ARX models. Lin and Pourahmadi (1998) have used
the BRUTO algorithm to identify the lags needed in a semi-parametric non-linear
model. Multivariate adaptive regression splines (Friedman, 1991) were introduced
for modelling of non-linear autoregressive time series by Lewis and Stevens (1991).
TerJasvirta (1994) suggested a modelling procedure for non-linear autoregressive time
series in which a (parametric) smooth threshold autoregressive model is used in case
a linear model proves to be inadequate. For the case of non-linear transfer functions
Hinich (1979) considered the case where the impulse response function of the trans-
fer function depends linearly on the input process.

In this paper we suggest the new tools Lag Dependence Function (LDF), Par-
tial Lag Dependence Function (PLDF), and Non-linear Lag Dependence Fun-
ction (NLDF) for structural identi/cation of non-linear time series. The tools can be
applied in a way very similar to the sample autocorrelation function and the sample
partial autocorrelation function. Smoothing techniques are used, but the tools are not
dependent on any particular smoother, see, e.g. (Hastie and Tibshirani, 1990,
Chapter 3) for an overview of smoothing techniques. For some smoothers an (al-
most) continuous transition from the linear to the non-linear case can be obtained
by varying the smoothing parameter. Also, smoothers applying optimal selection
of the bandwidth may be used; however, see, e.g. (Chen and Tsay, 1993) for a
discussion of the potential problems in applying criteria such as generalized cross
validation to time series data. Under a hypothesis of independence bootstrap con-
/dence intervals (Efron and Tibshirani, 1993) of the lag dependence function are
readily calculated, and we propose that these can also be applied for the partial lag
dependence function. Furthermore, under a speci/c linear hypothesis, bootstrapping
can be used to construct con/dence intervals for the non-linear lag dependence func-
tion. The lag dependence function and the non-linear lag dependence function are
readily calculated in that only univariate smoothing is needed, whereas multivariate
smoothing or back/tting is required for the application of the partial lag dependence
function.

It is noted that the tools suggested do not claim to estimate any underlying property
of the stochastic process by which the data are generated. Instead they, essentially,
measure the in-sample variance reduction of a speci/c model compared to a reduced
model, see also (Anderson-Sprecher, 1994). The models are speci/ed both in terms of
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the lags included and the smoothers applied. The lags identi/ed are thus conditional
on the generality of the non-linearity allowed for. Since the size of the con/dence
intervals depend on the 8exibility of the smoother used it is informative to apply the
tools using a range of smoothing parameters.

The tools are illustrated both by using simulated linear and non-linear time se-
ries models, and by considering the Canadian lynx data (Moran, 1953), which
have attained a bench-mark status in time series literature. Using the Canadian
lynx data results very similar to those found by Lin and Pourahmadi (1998) are
obtained.

In Section 2 the study is motivated by considering a simple deterministic non-linear
process for which the sample autocorrelation function is non-signi/cant. Section 3
describes the relations between multiple linear regression, correlation, and partial
correlation with focus on aspects leading to the generalization. The proposed tools are
described in Sections 4–6 and bootstrapping is considered in Section 7. Examples of
application by considering simulated linear and non-linear processes and the Canadian
lynx data (Moran, 1953) are found in Section 8. In Section 9 a generalization of the
sample cross correlation function is brie8y discussed. Finally, in Section 10 some
further remarks are given.

2. Motivation

The sample autocorrelation function (Brockwell and Davis, 1987), commonly used
for structural identi/cation in classical time series analysis, measures only the de-
gree of linear dependency. In fact deterministic series exists for which the sample
autocorrelation function is almost zero, see also (Granger, 1983). One such example
is xt = 4xt−1(1 − xt−1) for which Fig. 1 shows 1000 values using x1 = 0:8 and the
corresponding sample autocorrelation function SACF together with an approximative
95% con/dence interval of the estimates under the hypothesis that the underlying
process is i.i.d. Furthermore, lagged scatter plots for lag one and two are shown.
From the plot of the series and the SACF the deterministic structure is not revealed.
However, the lagged scatter plots clearly reveal that the series contains a non-linear
dynamic dependency.

In practice the series will often be contaminated with noise and it is then diCcult
to judge from the lagged scatter plots whether any dependence is present. Smoothing
the lagged scatter plots will aid the interpretation but diNerent smoothing parameters
may result in quite diNerent estimates. Therefore, it is important to separate the
variability of the smooth from the underlying dependence.

From Fig. 1 it is revealed that, in principle, xt can be regarded as a function of
xt−k for any k ¿ 0, but k = 1 is suCcient, since xt can be predicted exactly from
xt−1 alone. This indicates that there may exist a non-linear equivalent to the partial
autocorrelation function (Brockwell and Davis, 1987) and reveals that substantial
information can be obtained by adjusting for the dependence of lag 1; : : : ; k − 1
when xt and xt−k are addressed. The sample partial autocorrelation function amounts
to a linear adjustment.
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Fig. 1. The time series (top), SACF (bottom, left), xt versus xt−1 (bottom, middle), and xt versus xt−2

(bottom, right) for 1000 values from the recursion xt = 4xt−1(1− xt−1).

3. Preliminaries

Estimates of correlation and partial correlation are closely related to values of
the coeCcient of determination (R-squared) obtained using linear regression models.
The generalizations of the sample autocorrelation function SACF and the sample
partial autocorrelation function SPACF are based on similar R-squared values ob-
tained using non-linear models. In this section, the relations between multiple linear
regression, correlation, and partial correlation are presented.

Consider the multivariate stochastic variable (Y; X1; : : : ; Xk). The squared multiple
correlation coeCcient �2

0(1::: k) between Y and (X1; : : : ; Xk) can be written (Kendall and
Stuart, 1961, p. 334, Eq. (27:56))

�2
0(1::: k) =

V [Y ]− V [Y |X1; : : : ; Xk]
V [Y ]

: (1)

Given observations yi; x1i ; : : : ; xki; i=1; : : : ; N of the stochastic variables (Y; X1; : : : ; Xk)
and assuming normality the maximum likelihood estimate of �2

0(1::: k) is

R2
0(1::: k) =

SS0 − SS0(1::: k)
SS0

; (2)

where SS0 =
∑
(yi −∑yi=N )2 and SS0(1::: k) is the sum of squares of the least squares

residuals when regressing yi linearly on x1i ; : : : ; xki (i=1; : : : ; N ). R2
0(1::: k) is also called

the coeCcient of determination of the regression and can be interpreted as the relative
reduction in variance due to the regressors.

Hence it follows that when regressing yi linearly on xki the coeCcient of deter-
mination R2

0(k) equals the squared estimate of correlation between Y and Xk , and
furthermore it follows that R2

0(k) = R2
k(0).
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The partial correlation coeCcient �(0k)|(1::: k−1) between Y and Xk given X1; : : : ; Xk−1

measures the extent to which, by using linear models, the variation in Y , which
cannot be explained by X1; : : : ; Xk−1, can be explained by Xk . Consequently, the partial
correlation coeCcient is the correlation between (Y |X1; : : : ; Xk−1) and (Xk |X1; : : : ;
Xk−1), see also Rao (1965, p. 270). Using Whittaker (1990, p. 140) we obtain

�2
(0k)|(1::: k−1) =

V [Y |X1; : : : ; Xk−1]− V [Y |X1; : : : ; Xk]
V [Y |X1; : : : ; Xk−1]

: (3)

For k=1 it is readily seen that �2
(0k)|(1::: k−1)=�2

0(1). If the variances are estimated using
the maximum likelihood estimator, assuming normality, it follows that an estimate
of �2

(0k)|(1::: k−1) is

R2
(0k)|(1::: k−1) =

SS0(1::: k−1) − SS0(1::: k)
SS0(1::: k−1)

: (4)

Besides an estimate of �2
(0k)|(1::: k−1) this value can also be interpreted as the relative

decrease in the variance when including xki as an additional predictor in the linear
regression of yi on x1i ; : : : ; xk−1; i. Note that (4) may also be derived from (Ezekiel
and Fox, 1959, p. 193).

Interpreting R2
0(1::: k); R

2
0(k), and R2

(0k)|(1::: k−1) as measures of variance reduction when
comparing models (Anderson-Sprecher, 1994), these can be calculated and interpreted
for a wider class of models such as smoothers and additive models. For non-linear
models, KvQalseth (1985, p. 282) suggests the use of a statistic like the square root
of (2) as what is called “a generalized correlation coeCcient or index suitable for
both linear and non-linear models”. For the remainder of this paper “˜” will be used
above values of SS and R2 obtained from models other than linear models.

4. Lag dependence

Assume that observations {x1; : : : ; xN} from a stationary stochastic process {Xt}
exists. It is readily shown that except for minor diNerences in the denominators
the estimate of the autocorrelation function in lag k is equal to the estimate of the
correlation coeCcient between Xt and Xt−k using the observations {x1; : : : ; xN}. Fur-
thermore, asymptotically the estimates are equivalent. Hence, the squared SACF(k)
can be closely approximated by the coeCcient of determination when regressing xt
linearly on xt−k , i.e. R2

0(k).

This observation leads to a generalization of SACF(k), based on R̃
2
0(k) obtained

from a smooth of the k-lagged scatter plot, i.e. a plot of xt against xt−k . The smooth
is an estimate of the conditional mean fk(x)=E[Xt|Xt−k=x]. Thus, the lag dependence
function in lag k; LDF(k), is calculated as

LDF(k) = sign(f̂k(b)− f̂k(a))

√
(R̃

2
0(k))+ (5)

where a and b are the minimum and maximum over the observations and the sub-
script “+” indicates truncation of negative values. The sign is included to provide
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information about the direction of the average slope. The truncation is necessary
to ensure that (5) is de/ned. However, the truncation will only become active in
extreme cases. Using a local linear smoother with a nearest neighbour bandwidth
of 1=3 results in a negative R-squared at lag 4 for the series considered in Fig. 1.
Due to the combination of bandwidth and periodicity at this lag the smooth ob-
tained is in opposite phase of the data. The negative R-squared is thus consistent
with the observations made by KvQalseth (1985) for the case of gross model mis-
speci/cation.

Due to the reasons mentioned in the beginning of this section, when f̂k(·) is
restricted to be linear, LDF(k) is a close approximation of SACF(k) and, hence, it
can be interpreted as a correlation. In the general case LDF(k) can be interpreted
as (the signed square-root of) the part of the overall variation in xt which can be
explained by xt−k . Generally, R-squared for the non-parametric regression of xt on
xt−k ; R̃

2
0(k) does not equal R-squared for the corresponding non-parametric regression

of xt−k on xt , and consequently, unlike SACF(k), the lag dependence function is not
an even function. In this paper only causal models will be considered and (5) will
only be used for k ¿ 0 and by de/nition LDF(0) will be set equal to one.

5. Partial lag dependence

For the time series {x1; : : : ; xN} the sample partial autocorrelation function in lag
k, denoted SPACF(k) or �̂kk , is obtainable as the Yule–Walker estimate of �kk in
the AR(k) model

Xt = �k0 + �k1Xt−1 + · · ·+ �kkXt−k + et; (6)

where {et} is i.i.d. with zero mean and constant variance, see also (Brockwell and
Davis, 1987, p. 235). An additive, but non-linear, alternative to (6) is

Xt = ’k0 + fk1(Xt−1) + · · ·+ fkk(Xt−k) + et: (7)

This model may be /tted using the back/tting algorithm (Hastie and Tibshirani,
1990), see also Section 5.1. The function fkk(·) can be interpreted as a partial de-
pendence function in lag k when the eNect of lags 1; : : : ; k − 1 is accounted for. If
the functions fkj(·); (j = 1; : : : ; k) are restricted to be linear then f̂kk(x) = �̂kkx and
the function can be uniquely identi/ed by its slope �̂kk .

However, since the partial autocorrelation function in lag k is the correlation be-
tween (Xt |Xt−1; : : : ; Xt−(k−1)) and (Xt−k |Xt−1; : : : ; Xt−(k−1)), the squared SPACF(k)
may also be calculated as R2

(0k)|(1::: k−1), based on linear autoregressive models of or-
der k−1 and k. Using models of type (7) SPACF(k) may then be generalized using
an R-squared value obtained from a comparison of models (7) of order k − 1 and
k. This value is denoted R̃

2
(0k)|(1::: k−1) and we calculate the Partial Lag Dependence

Function in lag k; PLDF(k), as

PLDF(k) = sign(f̂kk(b)− f̂kk(a))

√
(R̃

2
(0k)|(1::: k−1))+: (8)
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When (7) is replaced by (6) PLDF(k) is a close approximation of SPACF(k). As
for LDF(k), generally, PLDF(k) cannot be interpreted as a correlation. However,
PLDF(k) can be interpreted as (the signed square-root of) the relative decrease in
one-step prediction variance when lag k is included as an additional predictor. For
k=1 model (7) corresponding to k−1 reduces to an overall mean and the R-squared
value in (8) is thus R̃

2
0(1), whereby PLDF(1)=LDF(1) if the same smoother is used

for both functions. It can be noticed that the same relation exists between the partial
autocorrelation function and the autocorrelation function. For k = 0 the partial lag
dependence function is set equal to one.

Except for the sign PLDF(k) may also be based on the completely general au-
toregressive model

xt = gk(xt−1; : : : ; xt−k) + et (9)

where g :Rk → R. However, the estimation of gk(·; : : : ; ·) without other than an
assumption of smoothness is not feasible in practice for k larger than, say, three, see
also (Hastie and Tibshirani, 1990). Alternatives to (9) have been considered by Lin
and Pourahmadi (1998).

5.1. Fitting the additive models

To /t the non-linear additive autoregressive model (7) the back/tting algorithm
(Hastie and Tibshirani, 1990) is suggested. However, concurvity (Hastie and Tibshi-
rani, 1990) between the lagged values of the time series may exist and, hence, the
estimates may not be uniquely de/ned. This indicates that the same predictive ability
can be achieved by a subset of the lags. For this reason it is suggested to /t models
of increasing order, starting with k =1 and ending with the highest lag K for which
PLDF(k) is to be calculated. In the calculation of the residual sum of squares only
residuals corresponding to t = K + 1; : : : ; N should be used.
For the numerical examples considered in this paper local polynomial regression

(Cleveland and Devlin, 1988) is used for smoothing. The convergence criterion used
is the maximum absolute change in any of the estimates relative to the range of the
/tted values. An iteration limit is applied as a simple test for convergence.

For k=1 the estimation problem reduces to local polynomial regression and hence
convergence is guaranteed. If for any k = 2; : : : ; K convergence is not obtained,
or if the residual sum of squares increases compared to the previous lag, we put
f̂jk(·) = 0; (j = k; : : : ; K) and f̂kj(·) = f̂k−1; j(·); (j = 1; : : : ; k − 1). This ensures that
convergence is possible for k + 1.

6. Strictly non-linear lag dependence

The lag dependence function described in Section 4 measures both linear and
non-linear dependence. If, in the de/nition of R̃

2
0(k), the sum of squares from a overall

mean SS0 is replaced by the sum of squares SSL
0(k) of the residuals from /tting a

straight line to the k-lagged scatter plot, a measure of non-linearity is obtained. In
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this paper this will be called the strictly Non-linear Lag Dependence Function in lag
k, or NLDF(k). Hence

NLDF(k) = sign(f̂k(b)− f̂k(a))

√√√√(SSL
0(k) − S̃S0(k)

SSL
0(k)

)
+

; (10)

where f̂k is obtained as for (5), i.e. it is a smooth of the k-lagged scatter plot and
S̃S0(k) is the sum of squares of the residuals from this smooth.

7. Con#dence intervals

Smoothers usually require one or more smoothing parameters to be selected, see,
e.g. (Hastie and Tibshirani, 1990, Chapter 3) and, in principle, these can be selected
to obtain R-squared values arbitrarily close to one. For this reason it is important to
obtain con/dence intervals for, e.g., the lag dependence function under the hypothesis
that the underlying process is i.i.d. and for a given set of smoothing parameters.
Furthermore, it is applicable to calculate a con/dence interval under a hypothesis
of linearity for the strictly non-linear lag dependence function. These aspects are
considered in this section.

As indicated above it is clear that the range of the con/dence intervals will de-
pend on the 8exibility of the smoother. To detect a general non-linearity a 8exible
smoother must be used whereby the range of the con/dence interval will be increased
compared to the case where we are only interested in detecting minor departures from
linearity or departures in the direction of near-global higher order polynomials. Thus,
the bandwidth of the smoother can be used to adjust the properties of the test. It
is recommended to apply the methods using a range of bandwidths and smoothers.
These aspects are exempli/ed in Sections 8.1 and 8.3.

Under the hypothesis that the time series {x1; : : : ; xN} are observations from an i.i.d.
process the distribution of any of the quantities discussed in the previous sections can
be approximated by generating a large number of i.i.d. time series of length N from
an estimate of the distribution function of the process and recalculating the quantities
for each of the generated time series. Methods such as that outlined above are often
denoted bootstrap methods and in this context various approaches to the calculation
of approximate con/dence intervals have been addressed extensively in the literature,
see, e.g. (Efron and Tibshirani, 1993). Except for NLDF in the examples considered
in this paper the empirical distribution function is used. However, for short time series
it may be more appropriate to condition on a parametric form of the distribution
function.

7.1. Con5dence limit for |LDF(k)|

Calculation of LDF(k) involves only scatter plot smoothing and, thus, it is faster
to calculate than PLDF(k). For this reason we shall /rst consider LDF(k) for some
range k =1; : : : ; K . For an i.i.d. process it is obvious that the distribution of LDF(k)
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Fig. 2. Absolute value of the lag dependence function of the deterministic series presented in Fig. 1
and of 1000 observations from a standard Gaussian i.i.d. process. The dots indicate the maximum over
the 1000 bootstrap replicates. Standard, percentile, and BCa 95% con/dence limits are indicated by

lines (BCa dotted).

will depend on k only due to the fact that k aNects the number of points on the
k-lagged scatter plot. Hence, when k�N the distribution of LDF(k) under the hy-
pothesis of independence is approximately independent of k.

The sign in the de/nition of LDF(k) is included only to establish an approximate
equality with SACF(k) when linear models are used and to include information about
the sign of the average value of the slope. When the observations originate from an
i.i.d. process the distribution of LDF(k) will be symmetric about zero. Consequently,
when the smoother is 8exible enough the null-distribution of LDF(k) will be bimodal,
since in this case R̃

2
0(k) will be strictly positive. The most eCcient way of handling

this problem is to base the bootstrap calculations on the absolute value of LDF(k).
Hence, an upper con/dence limit on |LDF(k)| is to be approximated.

Below the standard, percentile, and BCa methods, all de/ned by Efron and Tibshi-
rani (1993, Chapters 13 and 14), will be brie8y discussed. For the series considered
in Fig. 1 the LDF(k) was calculated for k ≤ 12 using a local linear smoother and
a nearest neighbour bandwidth of 1=3. The result is shown in Fig. 2a together with
95% bootstrap con/dence limits calculated separately for each lag and based on 1000
bootstrap replicates, generated under the hypothesis of independence. The BCa limit
could not be calculated for lags 1–4, since all the bootstrap replicates were either
smaller or larger than the actual value of |LDF(k)|. Results corresponding to Fig. 2a
when the true process is standard Gaussian i.i.d. are shown in Fig. 2b. For practical
purposes an equality of the standard and percentile methods are observed (no diNer-
ence is visible on the plots), whereas the results obtained using the BCa method is
highly dependent on the lag through the value of |LDF(k)|. Hence, the BCa method
cannot be used when the con/dence limit is only calculated for one lag and used for
the remaining lags as outlined above. The high degree of correspondence between
the standard and percentile method indicates that suCcient precision can be obtained
using the standard method on fewer bootstrap replicates. This is highly related to
the approximate normality of |LDF(k)| and it is suggested that this is investigated
for each application before a choice between the standard and percentile method is
made.

The underlying model of the BCa method assumes that the estimate in question
may be biased and that the variance of the estimate depends linearly on an increasing
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transformation of the true parameter (Efron and Tibshirani, 1993, pp. 326–328),
and furthermore the estimate is assumed to be normally distributed. The bias and
the slope of the line are then estimated from the data. With " being the fraction
of the bootstrap replicates strictly below the original estimate, the bias is #−1(")
(# is the cumulative standard Gaussian distribution function). This explains why
the BCa limit is non-existing for lags 1–4 of the deterministic series. The slope is
estimated by use of the jackknife procedure (Efron and Tibshirani, 1993, p. 186) It
seems that, although the underlying model of the BCa method is a superset of the
underlying model of the standard method, the estimation of bias and slope induces
some additional variation in the con/dence limit obtained. As a consequence it may
be advantageous to average the BCa limits over the lags and use this value instead
of the individual values. However, the standard and percentile methods seem to be
appropriate for this application and since signi/cant savings of computational eNort
can be implemented by use of these methods it is suggested that only these are
applied on a routine basis.

7.2. Con5dence limit for |PLDF(k)|

In Section 7.1 it is shown how bootstrapping can be used to construct an approx-
imative con/dence limit for |LDF(k)|. There is some indication that this limit can
be used also for |PLDF(k)| if the same smoother is used for calculation of LDF(k)
and f̂k1(·); : : : ; f̂kk(·) (Sections 4 and 5).
For (linear) autoregressive models of order p, with i.i.d. N (0; %2) errors, and

/tted using N observations it holds that the residual sum of squares is distributed
as %2&2(N − p) (Brockwell and Davis, 1987, pp. 251 and 254). We can conclude
that if the true process is Gaussian, i.i.d. with variance %2 the following apply when
linear autoregressive models are used:

SS0 ∼ %2&2(N − 1); (11)

SS0(k) ∼ %2&2(N − 2); (12)

SS0(1::: k−1) ∼ %2&2(N − k); (13)

SS0(1::: k) ∼ %2&2(N − k − 1): (14)

For N�k the distribution of all four sums of squares are approximately equal.
For locally weighted regression, Cleveland and Devlin (1988) stated that the dis-

tribution of the residual sum of squares can be approximated by a constant multiplied
by a &2 variable, see also (Hastie and Tibshirani, 1990, Section 3:9). Furthermore,
for generalized additive models Hastie and Tibshirani (1990, Section 8.1) uses a &2

distribution with degrees of freedom equal to the number of observations minus a
quantity depending on the 8exibility of the smoothers used.

For these reasons we conjecture that, when the true process is i.i.d., when N�k,
and when the same smoother is used for LDF(k) and PLDF(k), as outlined in the
beginning of this section, then the sum of squares SS0; S̃S0(k); S̃S0(1::: k−1), and S̃S0(1::: k)

will follow approximately the same distribution.
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This conjecture leads to approximate equality of means and variances of the sums
of squares. Since for both LDF(k) and PLDF(k) the compared models diNer by an
additive term, estimated by the same smoother in both cases, we also conjecture that
for an i.i.d. process.

Cor[S̃S0(k); SS0] ≈ Cor[S̃S0(1::: k); S̃S0(1::: k−1)]: (15)

Using linearizations about the mean of the sums of squares it then follows from the
approximate equality of means that

E[|LDF(k)|] ≈ E[|PLDF(k)|]; (16)

and from both conjectures that

V [|LDF(k)|] ≈ V [|PLDF(k)|]: (17)

Eqs. (16) and (17) tell us that the approximate i.i.d. con/dence limit obtained for
|LDF(k)| can be used also as an approximate limit for |PLDF(k)|. In Section 8
(Canadian lynx data) an example of the quality of the approximation is given, and
the mentioned arguments seems to be con/rmed by the bootstrap limits obtained in
that example.

7.3. Con5dence limit for |NLDF(k)|

The con/dence limit for |NLDF(k)| should be constructed under the hypothesis
that the true process is linear. This complicates the generation of bootstrap replicates
in that an appropriate linear model must be selected /rst. It is also clear that the
alternative contains both linear and non-linear models. To make the approach sen-
sible the linear model needs to be selected using the standard time series tools of
identi/cation, estimation, and validation. When the parametric bootstrap is applied
the procedure outlined above is an example of the procedures proposed by Tsay
(1992).

Hjellvik and TjHstheim (1996) consider a similar test for linearity and use Akaike’s
information criterion (Brockwell and Davis, 1987) to select an appropriate AR(p)-
model under which the bootstrap replicates are generated. In (Theiler et al., 1992)
a range of alternative linear null hypotheses is considered. Especially, the random
sampling in the phase spectrum described in Section 2:4:1 of this reference seems to
be a relevant linear null hypothesis.

8. Examples

8.1. Linear processes

Below it is brie8y illustrated how LDF and PLDF behaves for smoothers of
diNerent 8exibility compared to SACF and SPACF in the case of simple linear
processes. The AR(2) process

Xt = 1:13Xt−1 − 0:64Xt−2 + et (18)
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Fig. 3. Plots of autocorrelation functions and their generalizations for 100 observations from the AR(2)
process (18) and the MA(2) process (19). Bandwidths: 1.00 (2nd row), 0.50 (3rd row), and 0.1

(bottom row).

and the MA(2) process

Xt = et + 0:6983et−1 + 0:5247et−2 (19)

are considered, where in both cases {et} is i.i.d. N (0; 1).
Fig. 3 contain plots based on 100 simulated values from (18) and (19), respectively

(the default random number generator of S-PLUS version 3.4 for HP-UX was used).
Each /gure shows the SACF and the SPACF. The remaining plots are LDF and
PLDF for local linear smoothers using a nearest neighbour bandwidth of 1.00 (2nd
row), 0.50 (3rd row), and 0.1 (bottom row). 95% con/dence intervals are indicated
by dotted lines. The con/dence intervals obtained for LDF are included on the plots
of PLDF.
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Fig. 4. Plots of the series NLAR(1) (top) and NLMA(1) bottom.

For the calculation of PLDF a convergence criterion (see Section 5.1) of 0.01 and
an iteration limit of 20 is used. Standard bootstrap intervals are calculated for LDF
under the i.i.d. hypothesis using 200 replicates. For LDF the agreement with SACF
is large for nearest neighbour bandwidths 1.0 and 0.5. As expected, the range of
the con/dence interval increases with decreasing bandwidth, and, using the smallest
bandwidth, it is almost not possible to reject the i.i.d. hypothesis, cf. the arguments
mentioned in the beginning of Section 7.

When a nearest neighbour bandwidth of 1.0 is used PLDF agrees well with
SPACF for the lower half of the lags, whereas PLDF is exactly zero for most
of the larger half of the lags. Similar comments apply for nearest neighbour band-
widths 0.5 and 0.1. This is due to the function estimates being set equal to zero
when the iteration limit is reached.

8.2. Non-linear processes

Three non-linear processes are addressed, namely (i) the non-linear autoregressive
process (NLAR(1))

Xt =
1

1 + exp(−5Xt−1 + 2:5)
+ et; (20)

where {et} i.i.d. N (0; 0:12), and (ii) the non-linear moving average process (NLMA(1))

Xt = et + 2cos(et−1); (21)

where {et} i.i.d. N (0; 1) and (iii) the non-linear and deterministic process described
in Section 2, called DNLAR(1) in the following. For all three cases 1000 observations
are generated. The starting value for NLAR(1) is set to 0.5 and for DNLAR(1) it is
set to 0.8. Plots of the series NLAR(1) and NLMA(1) are shown in Fig. 4. The plot
of DNLAR(1) is shown in Fig. 1.

For the calculation of LDF, PLDF, and NLDF a local linear smoother with a
nearest neighbour bandwidth of 0.5 is used. Actually, lagged scatter plots indicate that
a local quadratic smoother should be applied, at least for NLMA(1) and DNLAR(1),
but to avoid a perfect /t for the deterministic series a local linear smoother is used.
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Fig. 5. SACF, SPACF, LDF, and PLDF (columns, left to right) for series NLAR(1), NLMA(1), and
DNLAR(1) (rows, top to bottom).

Con/dence intervals are constructed using standard normal intervals, since normal
QQ-plots of the absolute values of the 200 bootstrap replicates showed this to be
appropriate. The con/dence interval obtained for LDF is included on the plots of
PLDF.

Fig. 5 shows SACF, SPACF, LDF, and PLDF for the three series. For NLMA(1)
and DNLAR(1) the linear tools, SACF and SPACF, indicate independence and LDF
shows that lag dependence is present. From these observations it can be concluded
that NLMA(1) and DNLAR(1) are non-linear processes. From the plots of LDF and
PLDF it cannot be inferred whether NLMA(1) is of the autoregressive or of the
moving average type. For DNLAR(1) the autoregressive property is more clear since
PLDF drops to exactly zero after lag two. In the case of DNLAR(1) a more 8exible
smoother will result in values of LDF being signi/cantly diNerent from zero for
lags larger than two, while, for NLMA(1), LDF will be close to zero for lags larger
than one independent of the 8exibility of the smoother used. This is an indication
of DNLAR(1) being of the autoregressive type and NLMA(1) being of the moving
average type.

For NLAR(1) the linear tools indicate that the observations come from an AR(1)
process. This is not seriously contradicted by LDF or PLDF, although LDF de-
clines somewhat slower to zero than SACF. To investigate if the underlying process
is linear, a Gaussian AR(1) model is /tted to the data and this model is used as the
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Fig. 6. NLDF for NLAR(1), including a 95% con/dence interval under the assumption of an AR(1)
process (dotted).

Fig. 7. Scatter plot of xt against xt−1 for NLAR(1), together with the true (solid) and estimated (dotted)
relation using a local linear smoother and a nearest neighbour bandwidth of 0.5.

hypothesis under which 200 (parametric) bootstrap replicates of NLDF are gener-
ated. Normal QQ-plots show that the absolute values of the bootstrap replicates are
approximately Gaussian. Fig. 6 shows NLDF and 95% standard normal intervals,
constructed under the hypothesis mentioned above. From Fig. 6 it is concluded that
the underlying process is not the estimated AR(1)-model, and based on PLDF it
is thus concluded that the observations originate from a non-linear process of the
AR(1) type.

For NLAR(1) Fig. 7 shows the estimated relation between xt and xt−1 using the
same smoother as used above. This should only be regarded as a preliminary estimate.
Note that although the investigation above indicates that NLMA(1) is of the non-linear
MA(1) type the models /tted with the purpose of calculating LDF, PLDF, and
NLDF are not of this type. A diNerent method is required for estimation.
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8.3. Canadian lynx data

Lin and Pourahmadi (1998) analyzed the Canadian lynx data (Moran, 1953) using
non-parametric methods similar to the methods presented in this paper. The data is
included in the software S-PLUS (version 3.4 for HP-UX) and described in Tong
(1990, Section 7.2). In this paper a thorough analysis of the data will not be pre-
sented, but the data will be used to illustrate how the methods suggested can be
applied. As in (Lin and Pourahmadi, 1998) the data is log10-transformed prior to the
analysis.

For the transformed data LDF, PLDF, and NLDF are computed using a local
quadratic smoother and nearest neighbour bandwidths of 0.5 and 1. A local quadratic
smoother is used since lagged scatter plots indicate that for some lags the underly-
ing dependence may contain peaks. For LDF 200 bootstrap replicates are generated
under the i.i.d. hypothesis and QQ-plots indicate that standard normal intervals are
appropriate. The same apply for NLDF with the exception that the bootstrap repli-
cates are generated under the hypothesis that the AR(2) model of Moran (1953),
also described by Lin and Pourahmadi (1998), is true. Con/dence intervals are com-
puted also for PLDF for the nearest neighbour bandwidth of 1.0. The intervals are
based one hundred bootstrap replicates of PLDF generated under the i.i.d. hypoth-
esis. QQ-plots indicate that the percentile method should be applied to the absolute
values of PLDF.

In Fig. 8 plots of LDF, NLDF, and PLDF are shown. Dotted lines indicate 95%
con/dence intervals under the i.i.d. hypothesis (LDF) and under the AR(2) model
of Moran (1953) (NLDF). The intervals obtained for LDF are also shown on the
plots of PLDF. Furthermore, for the nearest neighbour bandwidth of 1.0, a 95%
con/dence interval for white noise is included on the plot of PLDF (solid lines).

Fig. 8. Canadian lynx data (log10-transformed). Plots of LDF, NLDF, and PLDF using local quadratic
smoothers and nearest neighbour bandwidths 0.5 (top row) and 1.0 (bottom row).
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Fig. 9. Non-linear additive autoregressive model for the log10-transformed Canadian lynx data (f̂21(·)
solid, f̂22(·) dotted). The estimate of the constant term is 2.76 and the MSE of the residuals is 0.0414.

From the plots of LDF it is clearly revealed that the process is not i.i.d. The
plots of NLDF for a nearest neighbour bandwidth of 0.5 show hardly any signi/cant
values, but when a nearest neighbour bandwidth of 1.0 is used, lags two to four show
weak signi/cance. This indicates that a departure from linearity in the direction of
an almost quadratic relationship is present in the data. See also the comments about
the 8exibility of smoothers in the beginning of Section 7. Finally, the plots of PLDF
clearly illustrate that lag one and two are the most important lags and that other lags
are, practically, non-signi/cant. In conclusion, an appropriate model seems to be a
non-linear autoregressive model containing lag one and two, i.e. a model of type (7)
with k = 2.

Estimating this model using local quadratic smoothers and a nearest neighbour
bandwidth of 1.0 yields the results shown in Fig. 9. The response for lag one seems
to be nearly linear. This aspect should be further investigated. The results agree well
with the results of Lin and Pourahmadi (1998).

9. Lagged cross dependence

Given two time series {x1; : : : ; xN} and {y1; : : : ; yN} the Sample Cross Correla-
tion Function between processes {Xt} and {Yt} in lag k (SCCFxy(k)) is an estimate
of the correlation between Xt−k and Yt . It is possible to generalize this in a way
similar to the way LDF is constructed. Like SCCF this generalization will be sen-
sitive to autocorrelation, or lag dependence, in {Xt} in general. For SCCF this
problem is (approximately) solved by prewhitening (Brockwell and Davis, 1987,
p. 402). However, prewhitening is very dependent on the assumption of linearity,
in that it relies on the impulse response function from the noise being indepen-
dent of the level. For this reason, in the non-linear case, it is not possible to use
prewhitening and the appropriateness of the generalization of SCCF depends on {Xt}
being i.i.d.
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10. Final remarks

The generalizations of the sample correlation functions reduce to their linear coun-
terpart when the smoothers are replaced by linear models. Hence, if a local linear
smoother is applied an almost continuous transition from linear to non-linear mea-
sures of dependence is obtainable via the bandwidth of the smoother. It is noted that
the partial lag dependence function, and its linear counterpart, in lag k compares the
residual sum of squares of a model containing lags 1; : : : ; k relatively to the case
where lag k is omitted. When building models aimed at prediction it might be more
informative to use a quantity depending on diNerences in residual sum of squares.
Since R̃

2
0(1::: k) − R̃

2
0(1::: k−1) is the normalized reduction in the (in-sample) one-step pre-

diction error variance when including lag k as a predictor this quantity could be used
instead of R̃

2
(0k)|(1::: k−1) in (8).

Optimal bandwidth selection is not addressed in this paper. However, the methods
can still be applied in this case, but the power against speci/c alternatives cannot be
adjusted. Furthermore, the methods are not restricted to the use of non-parametric
methods. Any procedure of generating /tted values uniquely identi/ed by the lag(s)
included, as e.g. the EXPAR model (Tong, 1990, p. 108), may be applied. However,
such procedures may require special considerations regarding con/dence intervals.

If the conditional mean of the series can be modelled the methods described in this
paper can be applied to the series of squared residuals and the conditional variance
can, possibly, be addressed in this way. This approach is similar to the approach by
TjHstheim and Auestad (1994, Section 5).

Most of the methodology presented in this paper is implemented in an S-PLUS
library called LDF which can be downloaded from http:==www.imm.dtu.dk=∼han=
software.html.
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