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Abstract

A transformation is introduced to e!ectively remove level e!ects, i.e. the state dependency of the di!usion function, in a restricted
class of multivariate stochastic di!erential equations such that the general continuous}discrete-time nonlinear "ltering problem may
be solved using new or existing implementations of the extended kalman "lter (EKF). An implementation of a quasi-maximum
likelihood (QML) method for direct estimation of embedded parameters in nonlinear, multivariate stochastic di!erential equations
using discrete-time input}output data encumbered with additive measurement noise is discussed, and its properties are compared
with those provided by another software package. ( 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Bohlin and Graebe (1995) describes a methodology for
identi"cation of nonlinear systems using a combination
of statistical methods and a priori knowledge. In particu-
lar, they argue in favour of expressing the model struc-
ture in terms of a discretely, partially observed stochastic
di!erential equation (SDE), where the measurements are
encumbered with noise. A software package, IdKit, based
on this methodology is described in Graebe (1990b) (see
Bohlin & Graebe, 1995) for additional references and
applications. A similar package, CTLSM, for linear sys-
tems, is described in Madsen (1985), and, for nonlinear
systems, in Madsen and Melgaard (1991), Melgaard and
Madsen (1993) and Nielsen et al. (2000a). The former is
based on the Kalman Filter (KF) and the latter on the
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iterated extended Kalman "lter (IEKF). Neither of these
packages may be applied if the di!usion function de-
pends on the state vector.

There is an increasing evidence of both theoretical and
empirical nature that the level of the (process) noise
depends on the state vector in a variety of applications
(see Kloeden & Platen (1995)) for a survey. This will be
referred to as level ewects. In general, SDEs with level
e!ects necessitate higher-order "lters (Jazwinski, 1970;
Maybeck, 1982) that o!ers only approximate and
most likely computer intensive solutions to the "ltering
problem. However, for a restricted class of models,
a transformation proposed here may be used to remove
the level e!ects such that "rst-order "lters, say, IEKF
can be applied. This e!ectively extends the model
structure for which the afore-mentioned packages are
applicable.

The remainder of this paper is organized as follows:
Section 2 introduces the nonlinear, multivariate and
quasi-stationary stochastic state-space model and the
discrete-time, multivariate measurement equation to be
considered. Section 3 introduces the transformation. Sec-
tion 4 provides some comments regarding currently
available software packages. Section 5 describes an ap-
plication, where level e!ects are clearly present. Finally,
Section 6 concludes.
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2. Nonlinear stochastic di4erential equations

Consider the nonlinear, multivariate, quasi-stationary
stochastic di!erential equation (SDE) given by
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3Rn is a stochastic state vector; X
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a standard Wiener process. It is assumed that the drift
term f : [t
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,¹]]Rn]RdCRn and the di!usion term

g: [t
0
,¹]]RnCRnCm satisfy su$cient regularity condi-

tions to ensure the existence of strong solutions to (1) (see
"ksendal, 1995).

Remark 1. In the presence of level e!ects in (1), it is
necessary to be precise about the interpretation of
stochastic integration. In this paper the Ito( interpretation
is used. A discussion of the Ito( and Stratonovitch inter-
pretations may be found in, e.g. Bohlin and Graebe
(1995), Kloeden and Platen (1995) and "ksendal (1995).
In particular, Kloeden and Platen (1995) argue strongly
that the Ito( interpretation should be used for state and
parameter estimation.
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where h is a nonlinear function, which is assumed to be
continuously di!erentiable with respect to X

t
, and e

tk
is

a zero mean Gaussian white noise process with
covariance R

tk
. The stochastic entities X
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, W
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tk
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assumed to be mutually independent for all t and t
k
.

3. A multivariate transformation

In this section, a generalization of the transformation
proposed by Baadsgaard et al. (1997) to a special class of
multivariate SDEs is introduced. The transformation has
been proposed, for univariate SDEs, by Kloeden and
Platen (1995) in order to obtain closed-form solutions to
some SDEs and applied by AmK t-Sahalia (1999) as a means
of obtaining a transition probability density function
(pdf) that is closer to the normal pdf, but it also has an
interesting application in nonlinear "ltering theory, be-
cause it alleviates the need for higher-order "lters in some
applications; in particular, when the "lters are utilized for
parameter estimation.

Consider a bijective transformation of X
t
given by
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is C1,2, i.e. it is

continuously di!erentiable with respect to t and twice
continuously di!erentiable with respect to X

t
such that,

by Ito( 's multivariate formula, the SDE for Z
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is given by
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where the di!usion term is independent of the state Z
t
.

Thus it is assumed that the dimension of the Wiener
process W

t
is preserved by transformation (3). The sub-

stitution X
t
"W~1(Z

t
) should be applied to the measure-

ment equation (2).

Remark 2. Note that (4) contains the same parameters
as (1) and describes a relation between the same input}
output variables as the originating continuous-discrete
state-space model (1)}(2).

Assumption 3. Assume that the di!usion terms are strict-
ly nonzero, i.e.
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Assumption 4. Assume that for each i there exists only
one gij as a function of one and only one state variable
Xl(i)

t
, where l(i) should be di!erent for each i, i.e.
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Assume further that gij
t
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t
; h) is bijective and that the

function [gij
t
(x;h)]~1 is integrable with respect to x.

Given these assumptions, the main result is given in
the following theorem:

Theorem 5. Let X
t

be a solution to (1). Then Assumptions
3 and 4 provide necessary and suzcient conditions for the
existence of a transformation (3) given by
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such that (4) is fulxlled.

Proof. Applying Ito( 's multivariate formula to (3) yields
a new Ito( SDE with the kth component Zk

t
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1Other packages include Cypros and Matrix
x
.

To obtain a constant di!usion term (unity for reasons of
parameter identi"ability), it immediately follows that the
following should hold:

Ltk(X
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for k, i"1,2, n; j"1,2,m; l(i)Oi. Assumption 4 en-
sures that there exists only one Xl(i)

t
for each tk. Under

Assumption 3, Eq. (7) follows immediately from (9).

The drift term fI
t
(Z

t
, u

t
; h) in the transformed system (4)

follows immediately from (8). Thus the transformation (3)
may introduce additional nonlinearities in the drift fI . The
implications with respect to parameter identi"ability
must be analysed in each particular case.

The transformation does not alter the interpretation of
the model parameters, and the substitution X

t
"W~1(Z

t
)

may be used to obtain estimates of the states of the
original SDE (1), but it is, in general, di$cult to obtain
the associated variance of the state estimates. However,
using a Taylor expansion of the inverse transformation
approximate variances may be obtained.

Given the fact that the Gaussian pdf is completely
characterized by the "rst two (conditional) moments,
"lters are most often based on the conditional mean and
conditional variance (Jazwinski, 1970; Maybeck, 1982).
This implies that the transformation need not be applied
if model (1) takes on a particular form such that explicit
expressions for the conditional mean and conditional
variance are available. For instance, this holds for the
square-root process proposed by Feller (1951), i.e.

dX
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t
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where a, b and p are positive, real constants. It is, of
course, still an explicit assumption that the "rst two
conditional moments provide su$cient information
about the SDE (10) and the associated non-Gaussian
transition pdf.

Remark 6. Explicit expressions for the conditional mean
and variance are only available for very few models.

Clearly, by writing (4) in stochastic integral form, see
Remark 1, the expectation of the stochastic integral is
zero under some technical conditions ensuring that the
expectation exists. This implies that existing software
packages based on "rst-order "lters, such as the IEKF
and simplications thereof, may be applied to the trans-
formed system.

4. Software implementations

It is outside the scope of the present paper to discuss all
available software packages, but some comments will be

put forth in this section. Emphasis will be placed on the
two software packages, IdKit and CTLSM, mentioned in
the Introduction.1 Both packages may be applied to the
transformed model proposed in Section 3. However, they
are not developed with models like (10) for which explicit
expressions for the conditional mean and variance are
available in mind.

IdKit and CTLSM are both based on a prediction error
decomposition (PED) that provides the residuals for
which a likelihood function is speci"ed assuming that
the residuals are Gaussian. The residuals are obtained
using the KF and the IEKF, respectively, in the follow-
ing way: IdKit computes a deterministic reference
trajectory by numerical integration of (8) under the as-
sumption that the di!usion is zero and applies the KF to
a linear perturbation model (linearised about the refer-
ence trajectory) to obtain also the covariances, whereas
CTLSM solves a linearized version of (1) by means of the
exponential matrix using the IEKF. The perturbation
approach used in IdKit is only feasible provided that the
level of the process noise is su$ciently `smalla (cf.
Graebe, 1990a). This assumption that may be too re-
strictive for SDEs with level e!ects is not made in CTLSM
which is based entirely on a stochastic model speci"ca-
tion and implementation of the "lter as argued in Mor-
tensen (1969). To decrease the sensitivity of outliers
CTLSM uses a transformation of the residuals in the
optimization.

Both packages allows for imposing constraints on the
parameters. In CTLSM the mean and covariance of
a Gaussian a priori pdf of the parameters may be speci-
"ed. In the optimization IdKit uses a "nite di!erence
approximation to the derivative of the residuals w.r.t. the
parameters and uses that to compute the gradient and
the Hessian, and "nds the optimum by Gauss}Newton
iterations. CTLSM computes "nite di!erence approxima-
tions to the gradient and the Hessian, and a quasi-
Newton method based on the Broyden}Fletcher}
Goldfarb}Shanno (BFGS) updating formula for a secant
approximation of the Hessian and soft-line search to "nd
the optimum. For model validation IdKit uses the
weighted square of scores, while CTLSM computes the
portmanteau-lack-of-"t test statistic, the autocorrelation
function of the residuals, crosscorrelation functions be-
tween the residuals and the input variables and a cumu-
lative residual periodogram.

Both packages rely on a large amount of provided
application-independent code and a small amount of
application-dependent code. However, IdKit and the as-
sociated user's shell, IKUS, constitutes a more modern
environment for system identi"cation.
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Table 1
Results for 50 sample sequences from the short rate model (11) with
large variations

Parameter True values Mean t-value F-value

Extended Kalman xlter with transformation
a 0.0250 0.0261 1.4409 0.9862
h 10.0000 10.1700 2.5767 0.7881
p2 0.0100 0.0099 !0.1314 0.9922
c 0.7500 0.7515 0.1945 0.8150
p2
e

0.0500 0.0562 4.9328 1.1299

Truncated second-order xlter
a 0.0250 0.0263 1.7078 0.9467
h 10.0000 10.1680 2.5468 1.2039
p2 0.0100 0.0111 1.3518 0.6872
c 0.7500 0.7508 0.0633 0.8984
p2
e

0.0500 0.0482 !1.3724 0.9624

Table 2
Results for 50 sample sequences from the short rate model (11) with
small variations

Parameter True values Mean t-value F-value

Extended Kalman xlter with transformation
a 0.0250 0.0272 3.0053 0.8707
h 10.0000 9.9778 !0.6862 1.4721
p2 0.0500 0.0712 2.1411 0.8816
c 0.5000 0.5332 0.9866 0.8210
p2
e

0.0500 0.0518 4.4624 1.0029

Truncated second-order xlter
a 0.0250 0.0272 2.9910 1.1234
h 10.0000 9.9763 !0.7212 0.6715
p2 0.0500 0.0296 2.3626 0.6217
c 0.5000 0.5230 0.4348 0.7644
p2
e

0.0500 0.0497 !0.5570 1.0642

5. Empirical work

In this section a "nancial application of the proposed
transformation and estimation method is given using
simulated data. Some comparisons are made with a trun-
cated second-order "lter (Maybeck, 1982). Finally, a lim-
itation of the transformation method is illustrated.

5.1. Short-term interest rates

To compare the transformation approach using the
EKF with a truncated second-order "lter, a model of
short-term interest rates is considered. A univariate SDE
is considered for clarity. In "nancial econometrics, the
following model is often considered, (see e.g. Chan et al.,
1992):

dX
t
"a(h!X

t
) dt#pXc

t
d=

t
, (11)

where X
t
is the continuous-time short-term interest rate.

Many of the term structure models found in the literature
may be nested within this model class by imposing ap-
propriate parameter constraints (see Chan et al., 1992) for
a survey. For h,0, a(0, Eq. (11) may be used to model
biological growth in a single-species population with
unlimited ressources. A biological application is con-
sidered in Wang (1994).

By inserting the di!usion term from (11) in transforma-
tion (7) and applying Ito( 's Lemma the following trans-
formed process is obtained:
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Applying the inverse transformation to the measurement
equation

>
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yields the transformed measurement equation

>
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tk
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5.1.1. A Monte Carlo study
Model (11) is solved numerically using the Euler dis-

cretization scheme (Kloeden & Platen, 1995). Each samp-
ling interval [t

k~1
, t

k
) is divided into S"200 small time

steps of length *"1/S and independent N(0,*) distrib-
uted random variables *=

tk~1`s* , s"1,2,S!1, are
simulated. A discrete time approximation to (11) is then
generated by the Euler scheme, i.e.

XI
tk~1`s*"XI

tk~1`(s~1)*#a(h!XI
tk~1`(s~1)*)*

#pXI c
tk~1`(s~1)**=

tk~1`s* . (14)

Using this scheme 50 stochastic independent time
series consisting each of N"2000 observations are
generated.

In Tables 1 and 2 the estimation results for two di!er-
ent parameter sets in (11) for the EKF and the truncated
second-order "lter are shown. Table 1 shows the results
for a model with large variations, whereas the parameters
in Table 2 represents a model with less variation. In each
table the results are listed in three columns. In the "rst
column the mean of the estimated values are given. In the

second column the t-statistics given by Jn(x6 !x
4*.

)/p
x

are stated, where n is the number of simulated series,
x
4*.

is the true value and p
x

is the empirical standard
deviation of the estimated parameters. In the third col-
umn the F-statistics given by z"s2

x
/s6 2 are stated, where

s6 2 is the mean of the estimated variance of the para-
meters. The t-values in Table 1 show that unbiased
estimates of the four parameters in (11) except for the
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long-term mean h, which is overestimated for both
methods. With respect to p2

e
the transformation

approach gives a biased estimate in this case, contrary to
the second-order "lter. This is most likely due to the
highly nonlinear measurement equation caused by the
transformation.

For the estimates in Table 2, the parameter a becomes
slightly biased for both methods. Similar simulation
studies in Baadsgaard (1996) show that this bias fre-
quently occur when the data do not excite the model
su$ciently well. However, due to the fact the variations
in the data are small, the two di!usion parameters p2 and
c become almost perfectly correlated, which obviously
gives rise to some estimation problems. Again it is seen
that the measurement noise becomes biased when the
EKF is applied.

5.2. Stochastic volatility models

Another recent application of the nonlinear "ltering
approach is univariate stochastic volatility models,

dX
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"aX

t
dt#p

t
X

t
d=1

t
, X

t0
"X

0
, (15)

where X
t
denote the price of a stock at time t, a'0 is

the rate-of-return, p
t
is the stochastic volatility and =1

t
is a Wiener process. The famous Black}Scholes model
(Black & Scholes, 1973) is obtained for p

t
"p, i.e. con-

stant volatility. Empirical studies show that a SDE
should be speci"ed for p

t
in order to model the dynamics

of stock prices,

dt(p
t
)"a(p

t
) dt#b(p

t
) d=2

t
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where the functions t(p
t
), a( ) ) and b2(p

t
) should be iden-

ti"ed from the data, and (=1
t
,=2

t
) are correlated Wiener

processes with correlation coe$cient o. This generaliz-
ation is considered in Nielsen et al. (2000b), see also the
references therein. However the transformation proposed
in Section 3 is not applicable if p

t
is described by the SDE

(16) according to Assumption 4.

6. Conclusion

For a limited class of SDEs with level e!ects a trans-
formation is proposed such that "rst-order "lters, like the
IEKF, may be used to obtain an approximate solution to
the continuous}discrete "ltering problem. Hence, the nu-
merical problems that are most often associated with
higher-order "lters are avoided, but at the cost of a more
complicated drift term and measurement equation. For
the transformation to exist, some restrictions must be
imposed on the di!usion term in the model speci"cation.
In addition to these restrictions, it is also recommendable
to parameterize the di!usion term such that a likelihood
ratio test may be carried out as a means of testing for

a statistically signi"cant level e!ect. The method is evalu-
ated in a Monte Carlo study using statistical tests.
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