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Calibration with Empirically Weighted Mean Subset
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In this article a new calibration method called empirically weighted
mean subset (EMS) is presented. The method is illustrated using
spectral data. Using several near-infrared (NIR) benchmark data
sets, EMS is compared to partial least-squares regression (PLS) and
interval partial least-squares regression (iPLS). It is found that
EMS improves on the prediction performance over PLS in terms
of the mean squared errors and is more robust than iPLS. Fur-
thermore, by investigating the estimated coef� cient vector of EMS,
knowledge about the important spectral regions can be gained. The
EMS solution is obtained by calculating the weighted mean of all
coef� cient vectors for subsets of the same size. The weighting is
proportional to SS , where SSg is the residual sum of squares from2v

g

a linear regression with subset g and v is a weighting parameter
estimated using cross-validation. This construction of the weighting
implies that even if some coef� cients will become numerically small,
none will become exactly zero. An ef� cient algorithm has been im-
plemented in MATLAB to calculate the EMS solution and the
source code has been made available on the Internet.

Index Headings: NIR; Calibration; Best subset; Mean subset;
Shrinkage; Regularization; Model averaging.

INTRODUCTION

In this paper we focus on prediction based on spectral
measurements. The classical calibration methods for this
type of data are partial least-squares regression (PLS) and
principal component regression (PCR).1 It has been dem-
onstrated that these two methods, together with ridge re-
gression (RR), create similar calibration models and have
comparable prediction performance.2,3 Moreover, all three
methods use the whole spectrum for calibration. A dif-
ferent approach to obtain a calibration model is by vari-
able selection. Most variable selection algorithms use the
same criterion, i.e., the least squares criterion with con-
straint on the number of explanatory variables. The ge-
netic algorithm used as a variable selection method has
been compared to simulated annealing (SA) and stepwise
variable selection methods.4 However, in a later compar-
ative study,5 the authors of that study were unable to re-
produce the result and, to overcome this, a different ap-
proach, to use SA, was suggested.

Another variable selection algorithm is the sequential
replacement algorithm. This algorithm is described by
Miller6 and the algorithm can be described as the deter-
ministic counterpart to the stochastic simulated annealing.
The solution obtained from variable selection algorithms
often yield predictions that are comparable to, and some-
times even better than, the prediction obtained by using
the full-spectrum calibration methods.7

In the NIR range, speci� c chemical components often
absorb light only in narrow spectral bands. Hence, meth-
ods that can discard noninformative spectral regions may
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show improved prediction performance. However, vari-
able selection methods are sensitive to spectral noise be-
cause only a few wavelengths are used for prediction.
Furthermore, there is a need for methods that can identify
spectral regions and not just single wavelengths. Such
methods may be used to develop new sensors based on
optical bandpass � lters or may be used to limit the re-
quired spectral scanning range. The direct way to develop
an algorithm for this is to combine variable selection with
PLS or PCR.8–10 Nørgaard et al.11 proposed a method
where data from limited spectral intervals are selected
and used for calibration with PLS. The method is called
interval partial least squares (iPLS) and has primarily
been presented as a graphical method to identify impor-
tant spectral regions. For some data sets, iPLS has been
found to improve on the prediction performance. Another
approach is to calculate the mean subset under a Bayesian
model assumption.12 In this method the regression coef-
� cient vectors of all subsets of the same size are weighted
proportional to SS , where v 5 n /2. Here SSg denotes2v

g

the residual sum of squares from a linear regression using
the subset of variables indexed by g, and n is the number
of observations.

Using simulated data, it was shown that the mean sub-
set has better prediction performance than the best subset.
However, when the number of observations increases, the
mean subset will in practice be identical to the best sub-
set. In the present paper we instead estimate the weight-
ing parameter v from the calibration data using cross-
validation, and therefore we call the method empirically
weighted mean subset, or EMS for short. In this paper
EMS is applied to spectral data only, but the method is
applicable to all sorts of data (process data, chemical
data, etc.) as opposed to, e.g., iPLS. In the Theory section
the theory and the optimization criterion behind EMS are
presented. An algorithm to ef� ciently calculate the EMS
solution is developed in the Algorithm section. In the
Experimental section, the method is compared to PLS
and iPLS using benchmark data. The three benchmark
data sets consist of NIR spectra of gasoline with corre-
sponding octane number, NIR spectra of wheat with mea-
sured moisture and protein contents, and NIR spectra of
beer with the corresponding concentration of the original
extract. The paper is concluded with a discussion and
some remarks.

THEORY

Let y be the (n 3 1) vector of observed values of the
response variable (e.g., concentration) and X the (n 3 p)
matrix including all potential explanatory variables (e.g.,
spectra). Here, n denotes the number of observations and
p the number of explanatory variables. The linear model
has the form:
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y 5 Xb 1 « (1)

where « is a noise (n 3 1) vector and b is a ( p 3 1)
vector of coef� cients. A subset may be characterized by
the p-dimensional selection vector g 5 (i1, i2, . . . , ip) 9,
where i j Î {0, 1} and 1 # j # p. De� ne the cardinal
function qg 5 S i j. When a selection vector is used asp

i51

a subscript to a matrix, this shall be understood to mean
the matrix with qg columns corresponding to the nonzero
elements of the selection vector and in that order. When
a selection vector is used as a bracketed superscript for
a vector, this shall be understood to mean the p-dimen-
sional vector with zeros in all positions corresponding to
the zero elements of the selection vector. The elements
of the vector corresponding to the nonzero elements of
the selection vector are equal to the elements of the vec-
tor with the same selection vector used as a subscript,
and in that order. For example, if p 5 5 and g 5 (1, 0,
1, 1, 0) 9 and the coef� cient vector g 5 (5, 6, 7) 9, thenb̂

(g) 5 (5, 0, 6, 7, 0) 9. Furthermore, let Sq be a set of ( pb̂
3 1) selection vectors de� ned as

S 5 {gzg 5 (i , i , . . ., i ), i Î {0, 1}, 1 # j # p,q 1 2 p j

q 5 q}g

where q is the number of selected variables. Hence, Sq

will be the set of all subsets where the number of vari-
ables is q.

We now introduce the empirically weighted mean sub-
set method. The coef� cient vector is calculated as(q)b̂EMS

(q) (g)b̂ 5 w b̂ (2)O gEMS
gÎS q

where the q nonzero coef� cient values of (g) are givenb̂
by (X Xg)21 X y. The elements in the normalized weight9 9g g

sequence {wgzg Î Sq} are

wg } SS2v
g (3)

where SSg 5 (y 2 Xg g) 9(y 2 Xg g) and the two param-b̂ b̂
eters controlling the complexity of the model are v $ 0,
which controls how the subsets are weighted, and q,
which controls the size of the subsets. These parameters
will be estimated using cross-validation. It is assumed
that all matrices X Xg for which g Î Sq have full rank,9g
so that necessarily q # n.

Depending of the value of v, EMS will take the shape
of other methods. For v 5 1, the subsets are weighted
according to the sample variance. Conceptually this can
be compared to weighted least-squares regression where
the observations, instead of the parameter estimates, are
weighted with the reciprocal variance of the observations
instead of the estimated variance of the residuals. For v
5 n /2, it can be shown that under a particular Bayesian
model, will be equal to the posterior mean.12 And(q)b̂EMS

for v 5 `, the method is identical to best subset regres-
sion. Hence, EMS changes smoothly from a full spectrum
method to a variable selection method. Another appealing
aspect of EMS is that the method is de� ned from a well-
de� ned criterion and not just as an algorithm. This makes
it easier to understand the properties of the method.
Moreover, the weighting of the subsets does not depend
on the scaling of the variables. Hence, prior standardi-
zation of the variables has no effect on the prediction
performance. When the coef� cient vector of EMS is cal-

culated, it is necessary to calculate the regression coef-
� cients of all subsets of size q. This is, of course, a com-
putational challenge, and presently it is possible only to
determine the exact solution for small values of q. In the
next section, an ef� cient algorithm will be developed.

ALGORITHM

The EMS method is computationally expensive be-
cause the regression coef� cients for all subsets of size q
have to be calculated. For example, when the number of
explanatory variables is p 5 1000 and q 5 5, the number
of coef� cient vectors to be calculated is 8.2503e 1 12.
Hence, the implemented algorithm is limited to the cases
when q # 4. The algorithm has been written in C and
interfaced to MATLAB using the MEX library. The
source code can be down-loaded from www.imm.dtu.

dk/;hoe.
A central part of the algorithm is the sweep operator.13

The following description of the sweep operator has been
adopted from Schatzoff et al.14 A square matrix A 5 (a ij)
is said to have been swept on the r th row and column
(or r th pivotal element) when it has been transformed
into a matrix B 5 (b ij) such that

b 5 1 /arr rr

b 5 a /a i ± rir ir rr

b 5 a /a j ± rrj rj rr

b 5 a 2 a a /a i, j ± r (4)ij ij ir rj rr

If the square cross product matrix

X9X X9y
C 5 (5)1 2y9X y9y

is swept on the r th pivotal element, where 0 , r # p,
and transformed to C* 5 (c ), the elements c will be* *ij rp11

the least-squares estimate of a linear model with only the
r th variable. Furthermore, c will be the residual sum*p11p11

of squares, given the least-squares estimate, for the afore-
mentioned model. If C* is swept on the sth pivotal ele-
ment, where 0 , s # p and s ± r, and transformed to
C** 5 (c ), the elements c and c will be the least-** ** **ij rp11 sp11

squares estimates of the corresponding two-variable lin-
ear model and c will be the residual sum of squares.**p11p11

Because the sweep operator is reversible and commuta-
tive, sweeping on the same pivotal element twice is
equivalent to not having swept the matrix at all, and
sweeping on the r th pivotal element and then the sth
pivotal element is equivalent to sweeping the matrix in
the opposite order. It has been shown14 that it is possible
to make the sweep operation more ef� cient by only work-
ing on the upper triangular part and introducing a parity
vector which indicates whether a matrix has been swept
an even or odd number of times on each pivotal position.

Algorithm. The following pseudo code illustrates how
the algorithm works when q # 3.

for r:51 to p-2

begin

C1:5sweepA(C, r)

A
A Include the regression coefficient
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A in the weighted summation for q 5 1

A
for s:5r11 to p-1

begin

C2:5sweepB(C1, r, s)

A
A Include the regression coefficients

A in the weighted summation for q 5 2

A
for t:5s11 to p

begin

C3:5sweepC(C2, r, s, t)

A
A Include the regression coefficients

A in the weighted summation for q 5 3

A
end

end

end

The variable C denotes the cross product matrix de� ned
in Eq. 5, while C1, C2, and C3 denote this matrix swept
once, twice, and three times, respectively. The three dif-
ferent sweep functions sweepA(.) , sweepB(.) , and
sweepC(.) , sweep the matrix on position r, s, and t,
respectively. The implemented sweep functions differ in
the part of the matrix that is calculated. The function
sweepA(.) calcu lates only rows $ r, function
sweepB(.) calculates rows $ s and the rth row, and
� nally function sweepC(.) calculates only the regres-
sion coef� cients at row r, s, and t and the residual sum
of squares. In the sweep functions, the variables are tested
not to be linear dependent. If this is the case, the coef-
� cient vector of such a subset will not be included. When
the number of variables is p 5 500 and q 5 3, the al-
gorithm will take approximately 15 s on an HP 9000/785
server.

The algorithm described above can easily be extended
to handle larger values of q. Today it is computationally
feasible to calculate the coef� cient vector of EMS when
p , 200 and q # 4, or when p , 1000 and q # 3, say.
An algorithm to handle q # 4 has been implemented and
applied in the following sections.

EXPERIMENTAL SETUP

Three data sets have been used to compare PLS and
iPLS with the proposed EMS method. PLS and iPLS
have been chosen for comparison as the former of these
methods is implemented in several software packages and
is routinely used for calibration and the latter addresses
the same problem of identifying important spectral inter-
vals. The data sets have been split into validation and
calibration sets in the following manner: the observations
are sorted with respect to the component for which a
calibration model should be obtained, e.g., the octane
number or the amount of protein. From the sorted data,
observations {2, 5, . . . , 3 [(n 1 1)/3] 2 1} are reserved
for validation and the remaining observations for calibra-
tion, which means that one-third of the data is used for
validation. This validation data will only be used to eval-
uate the calibrated models and not to estimate the hyper
parameters.

All the hyper parameters, i.e., the number of latent var-

iables (LV) in the PLS and iPLS methods, the size and
placement of the interval in the iPLS method, and the
size of the subsets (value of q) and the weighting of the
subsets (value of v), are estimated using 5-fold cross-
validation on the calibration data. By using 5-fold cross-
validation, the computation as well as the risk of over
� tting15 is reduced compared to leave-one-out cross-val-
idation. The cross-validation has been performed by di-
viding the sorted calibration data into � ve groups of equal
size (or as close as possible) and sequentially using the
data in four of the groups to predict in the � fth. Hence,
one of the groups will include all the observations of the
calibration data with the highest concentrations and one
group all observations of the calibration data with the
lowest concentrations. The validation data has been cen-
tered using the sample mean of the calibration data. To
compare the methods, the following performance mea-
sures have been calculated: the root mean square error of
prediction (RMSEP), the root mean square error of cross-
validation (RMSECV), the root mean square error of cal-
ibration (RMSEC), and the percentage of explained var-
iation of the prediction data (R 2). The values of the hyper
parameters associated with the smallest RMSECV values
have been selected.

The Methods. Setup for PLS. Two different criteria
have been used to select the number of latent variables
(LV) for the full spectrum PLS. In the � rst criterion, de-
noted A, the number of LV for which the lowest
RMSECV value is obtained is selected. In the second
criterion, denoted B, the number of LV is selected for
which the RMSECV sequence has its � rst local mini-
mum. In both criteria the limits on the number of LV
have been set to minimum 3 and maximum 20.

Setup for iPLS. For interval partial least-squares re-
gression,11 the spectra are divided into a number of equal-
ly sized intervals. Initially, the spectra are not divided
(only one interval) and iPLS is identical to PLS. In the
next step, the spectra are divided in two intervals and
PLS is applied separately in each interval. This has been
repeated until the spectra are divided into 20 separate
intervals. The total number of intervals for which PLS is
applied then becomes 1 1 2 1 ··· 1 19 1 20 5 210.
Two criteria have been used to select the interval and the
number of LV. In the � rst criterion, denoted A, the in-
terval and the associated number of PLS LV with the
lowest RMSECV value is selected. In the second crite-
rion, denoted B, the � rst local minimum principal, as de-
scribed in the setup for PLS, has been applied to each of
the 210 intervals. From these 210 local minima, the in-
terval and the associated number of LV with the lowest
RMSECV value are selected. In both criteria the limits
have been set to minimum 3 LV and maximum 20 LV
(or the number of variables in the interval when the num-
ber of variables is less than 20).

In Nørgaard et al.,11 a more advanced iPLS method is
described where spectral data from more than one inter-
val is used in each PLS calibration. In this comparison,
however, we will apply the simplest version of iPLS
where spectral data from only one interval is used in each
calibration.

Setup for EMS. The number of variables q, and the
weighting parameter v, are estimated by calculating the
4 3 31 RMSECV values in the grid de� ned by q 5 1,
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FIG. 1. Spectra of gasoline and the estimated coef� cient vectors for predicting the octane number. For the EMS model, v 5 3.16 and q 5 4.
PLS(A) and PLS(B) obtain identical models in this example.

FIG. 2. NIR spectra of wheat and the estimated coef� cient vectors for predicting the content of moisture. For the EMS model, v 5 5.01 and q 5
2. PLS(A), PLS(B), and iPLS(B) obtain identical models in this example.

2, 3, 4 and v 5 1021.0, 1020.9, . . . , 10 2.0. The grid point
with the lowest RMSECV value estimates q and v.

The Data. Gasoline Data. This data set was submitted
by Kalivas16 and proposed as a standard reference data
set. It contains 60 gasoline samples with speci� ed octane
numbers. Samples were measured using diffuse re� ec-
tance as (1/R) from 900 to 1700 nm in 2 nm intervals.
To limit the computation, we consider only every third
data point, p 5 134. All the spectra are shown in the
upper graph in Fig. 1.

Wheat Data. This data set was also submitted by Ka-
livas.16 It consists of 100 wheat samples with speci� ed
protein and moisture content. Samples were measured us-
ing diffuse re� ectance as (1/R) from 1100 to 2500 nm in

2 nm intervals, but in this paper, only every � fth data
point is considered, p 5 141. All the spectra are shown
in the upper graphs in Figs. 2 and 3. Calculating the
difference of the spectra is a data pretreatment method
often used on NIR data to depress noninformative vari-
ation. However, all pretreatment methods will also de-
press the informative variation to some extent. Depending
on the type of calibration method used, different pretreat-
ment methods will work well. To avoid this extra source
of uncertainty in the calibration, we have chosen not to
include any data pretreatment except for mean centering.

Beer Data. This data set has previously been used to
demonstrate iPLS.11 In that paper, it was found that by
using only a small interval of the spectrum, the calibra-
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F IG . 3. NIR spectra of wheat and the estimated coef� cient vectors for predicting the content of protein. For the EMS model, v 5 63.1 and
q 5 4.

FIG. 4. NIR spectra of beer and the estimated coef� cient vectors for predicting the concentration of original extract. For the EMS model, v 5
25.1 and q 5 4.

tion model could be enhanced in terms of squared pre-
diction errors. The transmission spectra of beer were re-
corded at 2 nm intervals in the range from 400 to 2250
nm and were converted to absorbance spectra. In this
paper the spectra have been subsampled and only every
seventh data point is considered, p 5 133. A total of 60
beer samples have been analyzed and the spectra are
shown in the upper graph in Fig. 4.

Kalivas16 suggested partitions for validation and cali-
bration of the wheat and gasoline data sets. We have cho-
sen to split the data sets differently because, � rstly, we
are only interested in one validation set for each data set,
and secondly, we would like to use the same partition

strategy for all data sets. In Brenchley et al.,17 a heuristic
method to select spectral bands was proposed. In that
article no improvement in prediction performance was
found for the octane number and amount of moisture.
However, some improvment was reported for the protein
data. These results were also communicated in Kalivas.16

RESULTS AND DISCUSSION

In Table I, the results using PLS, iPLS, and EMS are
shown. It is found that EMS works as good as or better
than PLS for all data sets and for all LV selection meth-
ods. With the exception of the protein data where



892 Volume 56, Number 7, 2002

TABLE I. Comparison between PLS, iPLS, and EMS.

Method RMSECV RMSEC RMSEP (R2) LV/q Interval v

Octane number of gasoline
PLS(A)
PLS(B)
iPLS(A)
iPLS(B)
EMS

0.26
0.26
0.21
0.21
0.27

0.21
0.21
0.18
0.19
0.18

0.25 (0.971)
0.25 (0.971)
0.20 (0.981)
0.19 (0.983)
0.19 (0.984)

4
4
5
4
4

3 of 5
1 of 2

3.16

Moisture in wheat
PLS(A)
PLS(B)
iPLS(A)
iPLS(B)
EMS

0.24
0.24
0.23
0.24
0.28

0.23
0.23
0.18
0.23
0.22

0.21 (0.976)
0.21 (0.976)
0.19 (0.980)
0.21 (0.976)
0.20 (0.979)

3
3

11
3
2

3 of 4
1 of 1

5.01

Protein in wheat
PLS(A)
PLS(B)
iPLS(A)
iPLS(B)
EMS

0.41
0.65
0.30
0.30
0.60

0.16
0.41
0.24
0.42
0.32

0.63 (0.661)
0.78 (0.479)
0.41 (0.853)
0.41 (0.853)
0.52 (0.766)

19
4
9
5
4

1 of 8
1 of 8

63.1

Org. extract in beer
PLS(A)
PLS(B)
iPLS(A)
iPLS(B)
EMS

1.27
1.28
0.13
0.42
0.18

0.003
0.18
0.14
0.51
0.10

0.70 (0.917)
0.50 (0.959)
0.22 (0.992)
1.34 (0.697)
0.18 (0.995)

20
7
6
4
4

4 of 9
2 of 2

25.1

TABLE II. Length of estimated coef� cient vectors.

PLS(A) PLS(B) iPLS(A) iPLS(B) EMS

Octane number of gasoline
2-norm
1-norm

42.2
288

42.2
288

258
930

64.1
318

60.9
354

Moisture in wheat
2-norm
1-norm

34.9
319

34.9
319

1990
9140

34.9
319

51.0
269

Protein in wheat
2-norm
1-norm

1620
14 800

14.3
141

5220
12 000

1750
5870

3630
7020

Org. extract in beer
2-norm
1-norm

52.3
420

46.0
343

360
1200

81.9
456

257
680

iPLS(A) and iPLS(B) work slightly better than EMS,
iPLS(A) and EMS seem to have similar prediction per-
formance. For the gasoline and wheat examples, iPLS(A)
and iPLS(B) derive to different models but with approx-
imately the same prediction performance. For the beer
data, however, iPLS(B) fails to � nd a suitable model. It
is also seen that EMS can be used to classify the type of
data. A small value of v means that the individual subsets
of variables should be weighted more equally and a large
value means that the best subsets are more important.
Hence, a large value of v indicates that a narrow spectral
interval is important and a small value indicates that the
whole spectrum, or large parts, contain information about
the component of interest. It is seen that when v is small,
PLS works well and only few LV are used and when v
is large, PLS does not work as well and more LV are
included. The low RMSEC values in relation to the
RMSECV values for PLS(A) method using the protein
and beer data indicate over� tting. For the beer data, this
can be seen in the poor prediction performance of the

PLS(A) model. For the protein data, however, the ‘‘ov-
er� tted’’ PLS(A) model has better prediction perfor-
mance than the PLS(B) model. This illustrates the dif� -
culty in estimating the number of LV in PLS using cross-
validation.

In Figs. 1–4, the estimated coef� cient vectors for all
methods are shown. It is seen that when v is small (oc-
tane and moisture), several of the coef� cients of the EMS
estimate are important, and when v is large (protein and
beer) few coef� cients are important for the prediction. A
feature of EMS is that the important regions of the spec-
trum can be identi� ed. This is remarkable because, in
contrast to iPLS, no relations between neighboring vari-
ables are explicitly modeled, i.e., EMS obtains the same
model if the data has been permuted. In Table II, the 2-
norm of the estimated coef� cient vectors for the evalu-
ated methods are given. The 2-norm is calculated from

p
2\ b \ 5 b (6)O j! j51

In order to better re� ect the visual impression in Figs. 1–
4, the 1-norm is also given in Table II. In Fig. 5, the
RMSECV values calculated to estimate v and q are
shown. For the gasoline and moisture data, it seems to
be suf� cient to only consider models with q 5 2, i.e.,
weighting of simple linear models with only two param-
eters. But for the protein and beer data, models with q 5
4 are the best and the graphs indicate that even models
where q . 4 should be considered.

In Fig. 6, the gasoline data has been used to demon-
strate the in� uence of v. The coef� cient vectors of EMS
for q 5 2 and increasing values of v are shown. It can
be seen that the important regions of the spectrum
smoothly appear when v increases. EMS can therefore
be used as a tool to identify important spectral regions.
It should be noted that even if the numerical value of
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FIG. 5. Results from cross-validation used for estimating v and q.

FIG. 6. Estimated coef� cient vectors for the gasoline data for q 5 2 and v 5 (0.1, 1.26, 2.0, 4.0, 100). In the top graph, v 5 0.1 and in the
bottom graph v 5 100.

some of the coef� cients becomes small for increasing v,
none of them will become exactly zero.

One important property of a calibration method is ro-
bustness to noise in data. To investigate the robustness
of the considered methods, a resampling scheme is de-
veloped. The resampling has been performed by resam-
pling in the calibration data and keeping the validation
data intact. The number of observations resampled is
equal to the original size of the calibration data. After a
set of observations has been obtained by resampling, the
new set of observations is sorted with respect to the quan-
tity of interest, e.g., the octane number or amount of pro-
tein. Notice that in the new resampled calibration set,
several of the original observations will be duplicated and

others will be left out. After the resampled calibration set
has been ordered, it is used as a new set of calibration
data and the cross-validation procedures described above
are commenced. The resampling procedure has been re-
peated 200 times, and for each repetition, one RMSEP
value for each calibration method is obtained. In Figs. 7–
10 histograms of these RMSEP values are shown.

A good calibration method should result in low and
stable RMSEP values. Here, stable means that the
RMSEP values should not vary too much from resam-
pling to resampling. The � rst observation is that the gas-
oline data is easy to model and all calibration methods
work fairly well. Since full spectrum PLS is a submethod
of iPLS, one could be tempted to expect that iPLS will
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FIG. 7. Histograms of the RMSEP values obtained by resampling of the gasoline data. The line marks the RMSEP value obtained when the
original calibration data is used.

FIG. 8. Histograms of the RMSEP values obtained by resampling of the moisture data. The line marks the RMSEP value obtained when the
original calibration data is used.

always perform as good as or better than PLS. However,
this is not the case, as can be seen in Figs. 7 and 8. In
these two sets of data, large parts of the spectrum are
important for the prediction. The selection of interval
procedure in iPLS is therefore unnecessary and adds only
uncertainty to the estimated coef� cient vector. For the
gasoline and moisture data, EMS shows both a stable and
good prediction performance and does not encounter the
increased variability found for iPLS. The situation is dif-
ferent for the protein data, where iPLS is found to work
as stable and slightly better than EMS. This improved
performance is probably due to the selected interval ef-
� ciently capturing the important variation, or/and q # 4
is too limiting for the EMS method. Depending on the

type of method used to select the number of LV, PLS will
either have large variation or poor prediction perfor-
mance for the protein data.

In the � nal example, the beer data, EMS and iPLS(A)
are found to be the best and most robust prediction methods
and none of the PLS methods are found to perform well.

The � gures also show the dif� culty in selecting the
number of LV for PLS (or iPLS). In Fig. 8, iPLS(B) is
found to be more robust than iPLS(A), but in Fig. 10,
the opposite holds.

CONCLUSION
The most important aspect of the empirically weighted

mean subset (EMS) method is the insight to the problem
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FIG. 9. Histograms of the RMSEP values obtained by resampling of the protein data. The line marks the RMSEP value obtained when the original
calibration data is used.

FIG. 10. Histograms of the RMSEP values obtained by resampling of the beer data. The line marks the RMSEP value obtained when the original
calibration data is used.

provided by the method. For some data sets, EMS is able
to identify narrow spectral intervals that explain most of
the variation of the response data. Furthermore, by using
several reference data sets, it is found that EMS has as
good or better prediction performance than PLS in terms
of the mean squared prediction errors. Another interesting
property of EMS is that it changes smoothly from a full
spectrum method to a variable selection method depend-
ing on the value of v. Moreover, the method is scale
independent, which makes the data pretreatment easier.
In comparison to iPLS, where explicit intervals of the
spectrum are tested, EMS does not depend on any prior
assumptions about neighboring wavelengths. It is found
that the selection of intervals makes iPLS less robust to

variation in data compared to EMS. To facilitate other
researchers using EMS, the source code has been made
available on the Internet. In future work, a penalty on the
squared length of the parameters could be included, and
thereby a method that smoothly changes from variable
selection to ridge regression is obtained. The combination
of the ability to identify important spectral regions, as
seen for the EMS method, with a penalty on the squared
length, as in ridge regression, might yield a method with
even better prediction performance.
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