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Shrinkage methods have traditionally been applied in prediction problems. In this article we develop
a shrinkage method (mean subset) that forms an average of regression coef� cients from individual
subsets of the explanatory variables. A Bayesian approach is taken to derive an expression of how the
coef� cient vectors from each subset should be weighted. It is not computationally feasible to calculate
the mean subset coef� cient vector for larger problems, and thus we suggest an algorithm to � nd an
approximation to the mean subset coef� cient vector. In a comprehensive Monte Carlo simulation study,
it is found that the proposed mean subset method has superior prediction performance than prediction
based on the best subset method, and in some settings also better than the ridge regression and lasso
methods. The conclusions drawn from the Monte Carlo study is corroborated in an example in which
prediction is made using spectroscopic data.

KEY WORDS: Bayesian variable selection; Best subset; Calibration; Garrote; Lasso; Model averag-
ing; Shrinkage.

1. INTRODUCTION

In this article we focus on the problem of prediction, that
is, the problem of � nding a function of the predictor vari-
ables xi that is in some sense a good predictor of the response
variable y. Given a regression model, there is of course a
super� cial similarity between this problem of � nding a pre-
dictor and the familiar problem of estimation, in the sense
that for both problems a vector of regression coef� cients is
estimated. However, as Copas (1983) noted, the loss functions
for the two problems are different.

Traditionally, prediction problems have been dealt with
using shrinkage methods. In the Bayesian framework, shrink-
age is an inherent property resulting from the choice of prior.
The Stein estimator (James and Stein 1961) was the shrinkage
method for which it was � rst proven that the mean squared
prediction errors will decrease when a bias is introduced.
Later, several other shrinkage schemes were proposed, the
most well known being ridge regression (Hoerl and Kennard
1970).

The common procedure of selecting a subset of the
available predictor variables and to estimate the regression
coef� cients on the subset by least squares can also be viewed
as a shrinkage method. This somewhat extreme form of
shrinkage involves the complete pull-back to 0 of a subset
of coef� cients. Variable selection and other more continuous
shrinkage forms were derived and compared by Dempster
(1973). That article’s motivation was to compare more
Bayesian versions of variable selection with continuous-
shrinkage forms like ridge regression. In so doing, Dempster
recognized that Bayesian versions of selection will typically

take averages over different candidate subsets. This has the
bene� cial effect of both reducing over� tting (Copas 1983)
and instability (Breiman 1996). A heuristic de� nition of an
unstable shrinkage method is a method in which a small
change in the data can lead to large changes in the sequence
8 O‚‹9, where ‹ is a real parameter that indexes the amount of
shrinkage Breiman (1996). Hence estimation of the shrinkage
factor ‹ using cross-validation will be dif� cult when the
method is unstable.

Two recently proposed methods, the garrote (Breiman 1995)
and the lasso (Tibshirani 1996), try to combine variable selec-
tion and shrinkage. The motivation for the development of the
garrote was the instability observed when a variable selection
method is combined with cross-validation. It has been found
(Vach, Sauerbrei, and Schumacher 2001) that the combination
of selection and shrinkage makes the garrote and lasso meth-
ods more stable than regression with a subset of the variables,
and better prediction models are obtained in general.

In fact, ridge regression itself offers a stable form of shrink-
age and can be viewed as a weighted average of all least
squares � tted subsets (see Leamer and Chamberlain 1976).
Bayesian model averaging in regression has become widely
advocated (see, e.g., Raftery, Madigan, and Hoeting 1997).
In the context of the multivariate general linear model, it has
been used for Bayesian variable selection and shown to be
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370 �OJELUND, BROWN, MADSEN, AND THYREGOD

effective with spectroscopic data involving a large number of
predictors (see Brown, Vannucci, and Fearn 1998).

In this article we develop a partially Bayes estimator that
serves to form a weighted average of all subsets of a particular
size. This has been developed independently but is similar in
derivation to the REGF method of Dempster (1973). We apply
cross-validation for choice of subset and develop fast search
algorithms. Using Monte Carlo simulation, we compare the
proposed mean subset method to the ridge regression, lasso,
garrote, and best subset selection methods. We also apply it
to a challenging spectroscopic example where the number of
explanatory variables is much larger than the number of obser-
vations. In this application, the explanatory variables are dis-
crete points recorded from a continuous curve, which makes
them almost collinear. To limit the variance of the parameter
estimates in this situation, it is very important to use some
sort of shrinkage estimator.

1.1 Introducing Mean Subset as a Shrinkage Method

Let y D 8y11 : : : 1 yn90 be the 4n� 15 vector of observed val-
ues of the response variable and let X D 8x11 : : : 1 xn90 be the
4n � p5 matrix including all potential explanatory variables
where xi

D 8xi11 : : : 1 xip90. The linear model has the form

y D X‚C ˜1 (1)

where ˜ is a noise 4n � 15 vector and ‚ is a 4p � 15 vector
of coef� cients. A subset may be characterized by the p-
dimensional selection vector, ƒ D 4i11 i21 : : : 1 ip50, where
ij

2 80119 and 1 µ j µ p. De� ne the cardinal function,
qƒ

D Pp
jD1 ij . When a selection vector is used as a subscript to

a matrix, this shall be understood to mean the matrix with qƒ

columns corresponding to the nonzero elements of the selec-
tion vector and in that order. When a selection vector is used
as a bracketed superscript for a vector, this shall be understood
to mean the p-dimensional vector with 0s in all positions
corresponding to the zero elements of the selection vector. The
elements of the vector corresponding to the nonzero elements
of the selection vector are equal to the elements of the vector
with the same selection vector used as a subscript, and in
that order. For example, if p D 51ƒ D 41101 1111050, and the
coef� cient vector O‚ƒ

D 451 61 750, then O‚4ƒ5 D 45101 61 71050.
One commonly used approach for parameter shrinkage is

best subset selection, in which the number of nonzero coef-
� cients is controlled. The best subset method is described as
follows. Let ³q be a set of 4p� 15 selection vectors de� ned as

³q
D 8ƒ—ƒ D 4i11 i21 : : : 1 ip51 ij

2 8011911 µ j µ p1qƒ
D q91

where q is the number of selected variables. The best subset
coef� cient vector O‚4q5

BS of size q D 11 21 : : : 1 p, is de� ned as the
estimate O‚4ƒ5 for which the selection vector ƒ 2 ³q minimizes
the residual sum of squares,

SSƒ
D y0y ƒ y0Xƒ X 0

ƒXƒ

¢ƒ1
X 0

ƒy1 (2)

and where O‚ƒ
D 4X 0

ƒXƒ5ƒ1X 0
ƒy. It is assumed that all matrices

X 0
ƒXƒ for which ƒ 2 ³q have full rank, so that necessarily

q µ n.

The mean subset coef� cient vector O‚4q5

MS is calculated as

O‚4q5

MS
D

X

ƒ2³q

wƒ
O‚4ƒ51 (3)

where the q nonzero coef� cient values of O‚4ƒ5 are given
by 4X 0

ƒXƒ5ƒ1X 0
ƒy. The elements in the normalized weight

sequence 8wƒ
—ƒ 2 ³q9 are

wƒ
/ SSƒn=2

ƒ 0 (4)

This weighting is motivated in the subsequent section. In cal-
culating the mean subset coef� cient vector no selection is
involved, because the estimated coef� cient vector O‚4q5

MS is a
weighted mean of all subsets. Furthermore, O‚4q5

MS is an analyti-
cal function in X and y, in contrast to O‚4q5

BS , and thus we expect
the mean subset to be less sensitive to small variations in data.
The mean subset may be seen as a shrinkage method in which
q controls the amount of shrinkage.

1.2 Bayesian Motivation

It is possible to motivate (3) and (4) using Bayesian argu-
ments. The following model largely follows the conjugate
hierarchical mixture model suggested by George and McCul-
loch (1997). We start by assuming the standard linear model

f4y—‚1‘ 5 D Nn4X‚1‘ 2I51 (5)

where ‘ is a positive scalar with the noninformative prior
density proportional to 1=‘ 2 and the other variables satisfy the
previously stated assumptions. The subsets of variables to be
included are speci� ed through the prior � q4ƒ5. The prior is
selected such that all index vectors with q 1s are assigned the
same prior probability and all other index vectors are given
zero prior probability. In practice, a priori q is unknown, and
a cross-validation procedure is used to estimate q.

This particular prior distribution corresponds to the problem
of � nding a subset of q variables, as in best subset regression.
Other prior probability assignments have been suggested by
George and McCulloch (1997) and others since them. How-
ever, the prior probability assigned to models of different size
has been rather arbitrary. The prior distribution suggested here
allows one to look directly at pieces of the posterior that are
individually quite sensible. Moreover, in the situation when
there is an excess of explanatory variables in comparison to
observations, it is not possible to work with the default or
noninformative prior distribution, because the posterior will be
improper when q is large.

Assume the following conditional prior for ‚:

� 4‚ƒ 1‚ Nƒ D 0—‘ 1 ƒ5 D Nq401‘ 2v1Cƒ5 (6)

and

� 4‚ƒ 1‚ Nƒ 6D 0—‘ 1 ƒ5 D 00 (7)

Here v1 denotes an a prior-de� ned positive scalar and Cƒ

denotes a suitably chosen positive de� nite 4q � q5 matrix.
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PREDICTION BASED ON MEAN SUBSET 371

An obvious prior setting for the correlation matrix Cƒ is
to replicate the correlation structure of the least squares esti-
mates, that is,

Cƒ
D X 0

ƒXƒ

¢ƒ1
0

This particular prior was used by Dempster (1973) and is
sometimes called a g prior (see Zellner 1980). Integrating out
both ‚ and ‘ and letting v1 ! ˆ yields

� 4ƒ—y5 / SSƒn=2
ƒ � q4ƒ51 (8)

where SSƒ follows from (2). Hence � 4ƒ—y5 D wƒ for ƒ 2 ³q

and motivates using (4) to calculate the weights.

2. COMPUTATIONAL ASPECTS
AND FEASIBLE APPROXIMATIONS

We propose two methods based on a standard least squares
exhaustive search to estimate the mean subset. The � rst
method calculates the exact mean subset coef� cient vector,
and the second method approximates the mean subset coef� -
cient vector using a weighted average of a subcollection of all
possible models of size q. An ef� cient algorithm for � nding
the best subsets of all model sizes is called “regression by
leaps and bounds” (Furnival and Wilson 1974). This algorithm
avoids testing all variable combinations; nevertheless, it is
able to guarantee that the k best subsets are found, where
k is a prespeci� ed positive integer. The algorithm is very
ef� cient when k is small, but the performance degenerates
quickly when k is increased. Today, it is possible to calculate
the exact mean subset for all model sizes when the number
of variables is less than, say, 30. If Moore’s law, which states
how the computer speed evolves over time, continues to hold,
then this upper limit will be increased by one every 1 1

2
years.

r+1

The SubsetSS

variables

New sorted list of k
unique subsets.

k

r

The SubsetSS

variables

Sorted list of k unique subsets.

k

For each subset

Add one variable by Forward selection.

Improve by the Variable exchange algorithm.

Each evaluated subset
of size r+1 in forward
selection and in the
exchange algorithm
is considered to be
included in the new list.

Figure 1. Algorithm for Finding the k Best Subsets of Size r C 1.

However, often it is interesting to � nd models with only a few
variables, which makes an exhaustive search feasible for much
larger problems. For example, it is possible to perform an
exhaustive search for all models with three or fewer variables
when the number of explanatory variables is 1,000.

An approximative exhaustive search is described as follows.
Assume that we have obtained the k best subsets of size r

with an exhaustive search. Each of these subsets is used as
a starting point for forward selection, and one more variable
is included in each subset. Next, these new subsets of size
r C 1 are used as initial subsets for variable exchange (Miller
1990). Variable exchange works by sequentially exchanging
the variables in the subset. For example, assume a problem
with 26 variables and denote the variables by the letters of the
alphabet. If the initial subset is ABCD, then the following sub-
sets are tested with variable exchange: ABCD, EBCD, FBCD,
GBCD, …, ZBCD, AECD, AFCD, AGCD, …, AZCD, …,
ABCZ. If the best of all the evaluated subsets is the initial sub-
set, then the algorithm is stopped; otherwise, the procedure is
repeated, with the best of the evaluated subsets as the new ini-
tial subset. The mean subset is approximated using the subsets
evaluated during the forward selection and variable exchange
procedures. Obviously, when k is increased, the approximation
becomes better. Figure 1 describes the algorithm visually. The
procedure is repeated when larger subsets are required.

The number of variables q is estimated using cross-
validation. Breiman and Spector (1992) recommended using
5-fold or 10-fold cross-validation. An advantage of 5- or
10-fold cross-validation over leave-one-out cross-validation is
that the former methods are less computationally demanding.
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372 �OJELUND, BROWN, MADSEN, AND THYREGOD

For 5-fold cross-validation, the observations are � rst divided
into � ve equal-sized groups. Denoting these groups by
L11 : : : 1 L5 and using an obvious notation, de� ne

L4v5 D Lƒ Lv1 v D 11 : : : 151

where L is the entire dataset. Now use the data L4v5 to estimate
the parameters and Lv to validate. While repeating this for
v D 11 : : : 1 5, the mean squared error of prediction (MSEP)
becomes

MSEP D 1
n

5X

vD1

X

4yi 1 xi52Lv

4yi
ƒ xi

0 O‚v521

where O‚v is the estimate found using the data L4v5. The number
of variables q is estimated by minimizing the MSEP value. In
the following section, leave-one-out cross-validation is used
to determine the shrinkage factor of ridge regression. Leave-
one-out cross-validation is the same as n-fold cross-validation,
where n is the number of observations.

3. MONTE CARLO SIMULATION STUDY

In this section prediction with the mean subset is compared
to the best subset, ridge regression, garrote, and lasso meth-
ods through Monte Carlo simulations. The simulation study is
constructed not to show the mean subset in a favorable light,
but rather to demonstrate when the different shrinkage meth-
ods may be suitable. The competing shrinkage methods are
de� ned as follows. The ridge regression estimate is obtained
from

O‚R
D 4X 0X C kRI5ƒ1X 0y01 (9)

where kR is the shrinkage factor.
The garrote starts with the ordinary least squares (OLS)

estimates and shrinks them by nonnegative factors whose sum
is constrained. For a given shrinkage factor t ¶ 0, the garrote
minimizes

nX

iD1

³
yi

ƒ
pX

jD1

cj‚
OLS
j xij

2́

subject to
pX

jD1

cj µ t1 cj > 00 (10)

The lasso estimate, O‚L , is de� ned by

O‚L D argmin
4‚5

nX

iD1

4yi
ƒ x0

i‚52 subject to
pX

jD1

—‚j
— µ t1 (11)

where t ¶ 0 is the shrinkage factor. In all of these shrink-
age methods, the shrinkage factors are estimated by cross-
validation.

The setup of the example is largely adopted from Breiman
(1996), and the design makes it possible to investigate the
in� uence of cross-validation to the prediction performance.
The explanatory variables are sampled from a 0-mean,
20-variable multivariate normal with covariance matrix
ìij

D �—iƒj—. Three different values of � are tested—0, .45,
and .9—which spans uncorrelated to highly correlated vari-
ables. For each correlation structure, � ve different coef� cient
vectors are used to generate the dependent data. The nonzero
coef� cients are in two clusters of adjacent variables with
clusters centered at variables 5 and 15. The initial coef� cient

values for variables clustered around the variable 5 are given
by

‚5Cj
D 4h ƒ —j—521 —j— µ h1

where h is a � xed integer controlling the cluster width. The
cluster at variable 15 is generated in the same way. The in� u-
ence of noise is studied by testing three levels of signal-to-
noise (SN) ratio, SN 2 8115199. To obtain the desired SN ratio,
the coef� cients are scaled so that ‚0X 0X‚=n D SN. The vector
of dependent variables y is calculated from X 0‚ C …, where
the number of observations is n D 40 and … is sampled from
®40401 I5. In this study, the explanatory variables and response
variable were centered before estimation.

The performance of the shrinkage methods is measured by
calculating the mean model error (ME), de� ned as

ME D 4‚ ƒ O‚50ì4‚ƒ O‚5 C 4 Ny ƒ Nx0 O‚521 (12)

where Ny and Nx are the sample mean in each simulated dataset
of the response variable and the explanatory variables.

Figures 2–4, show the average MEs for the methods. In
the left-side graphs in each � gure, the shrinkage factors are
estimated using cross-validation. The Monte Carlo simulation
has been repeated 2,000 times for each combination of h and
�, and the estimated standard errors of the points in the graphs
are less than .02. Fivefold cross-validation was used for the
mean subset, lasso, garrote, and best subset, and leave-one-out
cross-validation was used for ridge regression. This method
of estimating the shrinkage factors was suggested by Breiman
(1996). Whereas the leave-one-out estimate has lower bias,
it is degraded by its higher variance. Hence, leave-one-out
cross-validation may be used for stable methods like ridge
regression, whereas 5-fold or 10-fold cross-validation with
higher bias is suggested for unstable methods like best subset
selection. In the right-side graphs in � gures 2–4, the true data-
generating model is assumed known (referred to as the crystal
ball), and the value of the shrinkage factor is selected such
that ME in (12) is minimized.

The graphs show that mean subset and ridge regression
are complementary to one another. In cases with only a few
nonzero coef� cients, mean subset and best subset give good
prediction, but in cases with many nonzero coef� cients, ridge
regression works best. When the shrinkage factor is estimated
using cross-validation, mean subset consistently gives better
prediction than best subset. The difference increases with an
increasing number of nonzero coef� cients and decreasing SN
ratio. The graphs also reveal that the main reason for this
difference in prediction performance is the instability of the
best subset method. This is demonstrated by the degradation
in prediction performance when q is estimated using cross-
validation instead of the crystal ball. The graphs also show
that the lasso is preferred over the garrote and that the dif-
ference between these two methods increases with increasing
collinearity between the explanatory variables. Furthermore,
the lasso is better or as good as mean subset, except when the
underlying model is small and the SN ratio high.

4. PREDICTION OF MOISTURE AND PROTEIN
CONTENT IN WHEAT

In this real data example, the objective is to predict the
amount of moisture and protein in wheat using near-infrared
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Figure 2. ME as a Function of Cluster Size h for SN Ratio SN D 1. Mean subset (full line); best subset (stars); garrote (circles); lasso (crosses);
ridge regression (dashed and dotted line).
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Figure 3. ME as a Function of Cluster Size h for SN Ratio SN D 5. Mean subset (full line); best subset (stars); garrote (circles); lasso (crosses);
ridge regression (dashed and dotted line).
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Figure 4. ME as a Function of Cluster Size h for SN Ratio SN D9. Mean subset (full line); best subset (stars); garrote (circles); lasso (crosses);
ridge regression (dashed and dotted line).

(NIR) spectra (Kalivas 1997). Determining the amount of
moisture and protein in wheat normally involves costly
and time-consuming laboratory experiments. Hence it is
interesting to investigate the predictability of these factors
using cheap and quickly obtainable NIR spectra. This example
is also interesting because of the high number of regressors
p D 700 (recorded from 1,100–2,500 nm in 2-nm intervals),
compared to the relatively low number of observations,
n D 100. Consequently, the problem is severely indeterminate,
and it is necessary to use a shrinkage method to obtain a
unique solution to the least squares problem. Hence shrinkage
methods that depend on a unique least squares estimate under
the full model, such as the garrote, will not work.

The spectra have baseline variation caused by the light-
scattering effects of particles of different sizes and shapes. To
depress this noninformative variation, the difference spectra
are calculated, that is,

X D

2
64

s11 2 ¢ ¢ ¢ s11 701
000

0 0 0
000

s1001 2 ¢ ¢ ¢ s1001 701

3
75ƒ

2
64

s11 1 ¢ ¢ ¢ s11 700
000

0 0 0
000

s1001 1 ¢ ¢ ¢ s1001 700

3
75 1

where si1 j is the measured re� ectance at wavelength number j

of spectrum i. Figure 5 shows three typical difference spectra

of wheat. As in the previous example, the data are centered
before calibration.

To allow comparison of the methods, the data are split
into a validation set (34 observations) and a calibration set
(66 observations). The calibration set is used to estimate the
shrinkage factors by cross-validation. To make the calcula-
tion computationally feasible, the best subset and mean subset
for q > 3 are based on the approximation described in Sec-
tion 2. Furthermore, the number of subsets used for approxi-
mating the mean subset is k D 11000 for all values of q > 3.
Tables 1 and 2 give the R2 values for prediction of protein and
moisture using the validation data.

The tables show that the mean subset method is best for
predicting protein but that the results are more alike for mois-
ture, with the ridge regression method slightly better. In an
attempt to explain why ridge regression is better in predicting
the amount of moisture, the difference spectra were smoothed
before variable selection. It was then found that when the spec-
tra were smoothed using a local polynomial of order two and a
bandwidth of about 70 nm, a prediction performance of R2 D
0972 was obtainable with a single-variable best subset model.
This indicates that the information for moisture is spread over
several highly correlated variables and explains why the ridge
regression method performs better than the subset selection
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Figure 5. Three of the Difference Spectra. The number of regressors is 700.

methods. Figure 6 shows the estimated coef� cient vectors for
the four methods.

Comparing the amount of shrinkage in Table 1 and 2 reveals
that all methods shrink the coef� cient vectors less for the
protein data than for the moisture data. Furthermore, for the
protein data, the mean subset method has better prediction
performance than the other methods. Figure 7 shows the coef-
� cient vectors for predicting protein. An important difference
between the ridge regression and variable selection methods,
is that the later give a more clear-cut interpretation of the
data. For instance, studying the coef� cient for mean subset
shows that spectral data above 1,800 nm shows no useful rela-
tion to protein. By removing this noninformative data, a more
robust calibration model can be obtained. In general, chemical
substances absorb radiation only in limited spectral regions.
Hence, mean subset may be used to identify these important
spectral regions.

Table 1. Prediction of Protein Content

Method R2 Shrinkage factor

Mean subset 0834 q D 5
Best subset 0777 q D 5
Ridge regression 0793 kR D 1080e ƒ 7
Lasso 0790 t D 161926

Figure 8 plots the R2 value of the validation data as a func-
tion of the number of variables. The � gure clearly shows that
the mean subset is much more stable than the best subset.
Notice that the best subset model of size three has been found
by exhaustive search and not by the approximative exchange
algorithm. This corroborates the result of the Monte Carlo
simulation study and explains why the difference in prediction
performance between the best subset and mean subset methods
is greater when cross-validation is used instead of the crystal
ball.

5. SUMMARY

In this article we have addressed the problem of using sub-
set selection as a shrinkage method. It is known that using
best subset selection as a shrinkage method is an unstable
approach, because a small change in the data may lead to large
changes in the selected explanatory variables. To avoid this

Table 2. Prediction of Moisture Content

Method R2 Shrinkage factor

Mean subset 0960 q D 4
Best subset 0955 q D 2
Ridge regression 0976 kR D 2097e ƒ 6
Lasso 0960 t D 51967
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Figure 6. Coef’ cient Vector for Prediction of Moisture. (a) Ridge; (b) mean subset; (c) best subset; (d) lasso.
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Figure 7. Coef’ cient Vector for Prediction of Protein. (a) Ridge; (b) mean subset; (c) best subset; (d) lasso.
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Figure 8. The Amount of Explained Variation of the Validation Data as a Function of the Number of Selected Variables. The results plotted with
stars and diamonds are the mean subset and best subset.

problem, we suggest instead using the mean subset for pre-
diction. This method is motivated using Bayesian arguments.
We described a numerical method for � nding the mean subset
based on an approximating exhaustive search.

The results from the Monte Carlo simulation study, sum-
marized in Table 3, show that mean subset works well when
the underlying model is small and the SN ratio is high. The
study also showed that the garrote is dominated by the lasso
and best subset is dominated by mean subset.

Finally, in an example that used NIR spectra of wheat to
predict the amount of moisture and protein, the mean subset
method was found to produce both simple and competitive
prediction models. The promising result of using mean subset
instead of best subset (i.e., integration instead of maximiza-
tion) suggests that the lasso method also could be enhanced by
interpreting the penalty function as an a priori distribution and

Table 3. Classi’ cation of When the Different Shrinkage Methods
Work Well

Model
sizenSN Low Medium High

Small Lasso Lasso Mean subset
Medium Ridge regression Ridge regression Lasso
Large Ridge regression Ridge regression Ridge regression

thereby calculate the expectation. This is a subject for future
work.
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