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Abstract 
A methodology is presented that combines modelling based on first principles and data 
based modelling into a modelling cycle that facilitates fast decision-making based on 
statistical methods. A strong feature of this methodology is that given a first principles 
model along with process data, the corresponding modelling cycle can be used to easily, 
rapidly and in a statistically sound way produce a more reliable model of the given 
system for a given purpose. A computer-aided tool, which integrates the elements of the 
modelling cycle, is also presented, and an example is given of modelling a fed-batch 
bioreactor. 

1. Introduction 
The increasing use of computer simulations in analysis and design of process systems 
and recent advances in model based process control and process optimisation have made 
the development of rigorous dynamic process models increasingly important over the 
past couple of decades. Particularly in view of the increasing focus on batch and fed-
batch operation in many areas of the process industry, the ability of such process models 
to describe nonlinear and time-varying behaviour has also become more important. 
Altogether, these developments have necessitated faster development of new and 
improvement of existing first principles models, i.e. models based on physical insights 
and conservation balances. The purpose of this paper is to show how continuous time 
stochastic modelling and time series analysis tools based on nonparametric statistics 
can be used to facilitate this. Continuous time stochastic modelling is a grey-box 
approach to process modelling that combines deterministic and stochastic modelling 
through the use of stochastic differential equations (SDE*s) and has previously been 
described in Kristensen et al. (2001a). Other previous contributions in the area of grey-
box modelling include the work of Madsen and Melgaard (1991) and Bohlin and 
Graebe (1995) and references therein. 
The outline of the paper is as follows: In Section 2 the overall methodology is described 
in terms of a modelling cycle, some details of the individual elements of this cycle are 
given, and a computer aided tool that facilitates the use of the overall methodology is 
briefly described. In Section 3 a case study is presented that shows how the 
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methodology can be used to improve the quality of a first principles model of a simple 
fed-batch bioreactor. Conclusions are given in Section 4. 

2. Methodology 

The overall methodology can be described in terms of Figure 1, which shows the 
proposed continuous time stochastic modelling cycle described in the following. 

2.1 Model construction 
The first step in the modelling cycle deals with construction of the basic model, which 
is a continuous-discrete stochastic state space model consisting of a set of SDE's 
describing the dynamics of the system in continuous time and a set of algebraic 
equations describing measurements at discrete time instants, i.e. 
dx^ =f(x^,u^,/,e)/r + <T(u^,r,ey(o^ (1) 

y^ =h(x^,u^,r^,e)+e^ (2) 

where t is time, x, is a vector of state variables, û  is a vector of input variables, ŷ t is a 
vector of measured output variables, 9 is a vector of unknown parameters, f(-), flf(') and 
h() are nonlinear functions, to, is a Wiener process and ê  is a N(0,S(U;t̂ ît»Q)) process. A 
detailed account of the advantages of using SDE's is given in Kristensen et al. (2001a). 

2.2 Parameter estimation 
The second step in the modelling cycle deals with estimation of the unknown 
parameters 0 in (1) and (2) using data sets from one or more experiments. The 
properties of the basic model allow statistical methods to be applied for this purpose, 
e.g. maximum likelihood (ML) estimation, or maximum a posteriori (MAP) estimation 
if prior information about the parameters is available. More specifically, the unknown 
parameters can be determined by solving a variant of the optimisation problem 
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by further conditioning on the initial conditions yo' in the individual experiments. z\ and 
R\\k.i are the mean and covariance of the innovations from an extended Kalman filter at 
the k'ih sample in the /'th experiment, and £e and Le are the deviation from, and the 
covariance of a prior estimate of the parameters. A more detailed account of this 
formulation is given in Kristensen et al. (2001a), and details about the algorithms 
behind the corresponding estimation methods can be found in Kristensen et al. (2001b). 

Figure 1. The continuous time stochastic modelling cycle. 
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2.3 Statistical tests and residual analysis 
The third step in the modelling cycle deals with assessing the quality of the model once 
the unknown parameters have been estimated. The estimators described above are all 
approximately Gaussian, meaning that t-tests can be performed to test the hypothesis 
that a parameter is marginally insignificant. The test quantity is the value of the estimate 
of the parameter divided by the standard deviation of the estimate and is approximately 
t-distributed with a number of degrees of freedom that equals the number of data points 
minus the number of estimated parameters. To test the hypothesis that some parameters 
are simultaneously insignificant, several tests can be applied, e.g. a likelihood ratio test, 
a Lagrange multiplier test or a test based on Wald's W-statistic. These test quantities all 
have the same asymptotic x^-distribution with a number of degrees of freedom that 
equals the number of parameters to be tested for insignificance, but in the context of the 
proposed modelling cycle Wald's test has the advantage that no re-estimation is 
required. Details about the derivation of this statistic are given in Hoist et al. (1992). 
Another important aspect in assessing the quality of the model is to investigate its 
predictive capabilities by performing cross-validation and examining the corresponding 
residuals. Depending on the intended application of the model this can be done in a one-
step-ahead prediction setting or in a pure simulation setting, and one of the most 
powerful methods is to compute and inspect the sample autocorrelation function 
(SACF) and the sample partial autocorrelation function (SPACF) of the residuals to 
detect if there are any significant lag dependencies, as this indicates that the model is 
incorrect. Nielsen and Madsen (2001) recently presented extensions of these linear tools 
to nonlinear systems, the lag-dependence function (LDF) and the partial lag-dependence 
function (PLDF), which are based on the close relation between correlation coefficients 
and values of the coefficients of determination for regression models and which extend 
to nonlinear systems by incorporating nonparametric regression in the form of additive 
models. In the context of the proposed modelling cycle the ability of the LDF and the 
PLDF to detect nonlinear lag-dependencies is particularly important. 

2.4 Model validation 
The last step in the modelling cycle deals with model validation or invalidation, or, 
more specifically, with whether, based on the information gathered in the previous step, 
the model is invalidated with respect to its intended application or not. If the model is 
invalidated, the modelling cycle is repeated by first changing the structure of the model 
in accordance with the information gathered in all steps of the previous cycle. 

2.5 A computer aided tool for continuous time stochastic modelling 
To facilitate the use of the proposed modelling cycle, a GUI-based computer-aided tool, 
called CTSM, has been developed, cf Kristensen et al. (2001b). Within CTSM models 
of the kind (l)-(2) can be set up, unknown parameters can be estimated using a variant 
of (3), and statistical tests and residual analysis can be performed. CTSM is very 
flexible with respect to the data sets that can be used for estimation, as features for 
dealing with occasional outliers, irregular sample intervals and missing observations 
have been implemented. CTSM runs on Win32, Solaris and Linux platforms, and on 
Solaris platforms the program supports shared memory parallellization using OpenMP 
for improved performance. 
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3. Case study: Modelling a fed-batch bioreactor 
To illustrate how the proposed modelling cycle can be used to improve the quality of a 
first principles model, a simple example is given. The process considered is a fed-batch 
bioreactor described by a simple unstructured model of biomass growth, i.e. 
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where X is the biomass concentration, S is the substrate concentration, V is the volume 
of the fermenter, F is the feed flow rate, Sr (=10) is the feed concentration of substrate, 
Y (=0.5) is the yield coefficient of biomass and iMS) is the growth rate. On, (J22, 033, Sn, 
S22 and S33 are stochastic parameters. Two different cases are considered for /ifij, 
corresponding to Monod kinetics with and without substrate inhibition, i.e. 
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In the following the model consisting of equations (4), (5) and (6), with A 2̂=0.5, is 
regarded as the true process to be modelled, and using the true parameter values in 
Table 2 two sets of data are generated by stochastic simulation. One data set is used for 
estimation and the other is used for validation. The model consisting of equations (4), 
(5) and (7) is regarded as an original first principles model, which in the context of the 
modelling cycle is the basic model. Using the estimation data set, the unknown 
parameters of the model are estimated with CTSM, giving the results in Table 1. 

Table 1. Estimation results using the incorrect model structure. 
Parameter 
True value 
Estimate 
Std. Dev. 
t-score 
Significant 

Xo 
1 

1.042 
0.014 
72.93 
Yes 

So 
0.245 
0.250 
0.010 
24.94 
Yes 

Vo 
1 

0.993 
0.001 
689.3 
Yes 

^ max 

-
0.737 
0.008 
96.02 
Yes 

Ki 

-
0.003 
0.001 
2.396 
Yes 

Oil 

0 
0.104 
0.018 
5.867 
Yes 

022 

0 
0.182 
0.010 
18.26 
Yes 

0-.?.? 

0 
0.000 
0.000 
1.632 
No 

Sii 

0.01 
0.008 
0.001 
6.453 
Yes 

S22 

0.001 
0.000 
0.000 
3.467 
Yes 

S33 

0.01 
0.011 
0.003 
3.801 
Yes 

Results of marginal t-tests show that the only insignificant stochastic parameter is G33, 
whereas a^ and G22 are significant. This in turn indicates that the deterministic parts of 
the equations for X and 5 in (4) are incorrect in terms of describing the variations in the 
estimation data set. To investigate this further, residual analysis is performed. One-step-
ahead prediction results on the validation data set are shown in Figure 2 and Figure 3 
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shows the SACF, SPACF, LDF and PLDF for the corresponding residuals. There are no 
significant lag dependencies in the residuals for yi and ys, whereas in the residuals for y2 
there is a significant lag dependence at lag 1. This is an additional indication that the 
equation for 5 in (4) is incorrect. A final piece of evidence that something is wrong is 
gathered from the pure simulation results in Figure 2. The information now available 
clearly invalidates the model, particularly if its intended purpose is simulation, and the 
modelling cycle is repeated by modifying the structure of the model. 

Figure 2. Cross-validation results. From left to right: One-step-ahead prediction and 
pure simulation using the incorrect model structure and one-step-ahead prediction and 
pure simulation using the correct model structure. (Solid: Predicted values, dashed: 
true yi, dotted: true yi, dash-dotted: true y^). 

Figure 3. One-step-ahead prediction cross-validation residuals and corresponding 
SACF, SPACF, LDF and PLDF using the incorrect model structure. (Top: yi, middle: 
yi, bottom: y^). 

Table 2. Estimation results using the correct model structure. 
Parameter 
True value 
Estimate 
Std. Dev. 
t-score 
Significant 

Xo 
1 

1.004 
0.010 
101.0 
Yes 

So 
0.245 
0.262 
0.008 
32.75 
Yes 

Vo 
1 

1.003 
0.007 
143.3 
Yes 

f^max 

1 
0.999 
0.009 
109.4 
Yes 

Kj 

0.03 
0.030 
0.007 
4.240 
Yes 

(711 

0 
0.000 
0.000 
0.003 

No 

^22 

0 
0.000 
0.000 
0.005 

No 

033 

0 
0.000 
0.000 
0.003 

No 

Sii 

0.01 
0.009 
0.001 
7.142 
Yes 

S22 

0.001 
0.001 
0.000 
7.391 
Yes 

S33 

0.01 
0.011 
0.001 
7.193 
Yes 

The information available suggests that the deterministic parts of the equations for X 
and S in (4) are incorrect, i.e. those parts of the model that depend on IJ(S). Replacing 
(7) with the correct structure in (6) and re-estimating the unknown parameters with 
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CTSM, the results shown in Table 2 are obtained. Marginal t-tests indicate that all three 
stochastic parameters, Oj], 022 and o^j, are now insignificant, and the hypothesis of 
simultaneous insignificance cannot be rejected when performing a test based on Wald's 
W-statistic. Additional evidence that the modified model is correct is gathered by 
performing residual analysis. One-step-ahead prediction results on the validation data 
set are shown in Figure 2, and the SACF, SPACE, LDP and PLDF (not shown) for the 
corresponding residuals show no significant lag dependencies. A final piece of evidence 
of the validity of the modified model is gathered from the pure simulation results in 
Figure 2. In summary, if the intended purpose of the original model was simulation or 
infinite-horizon prediction, e.g. for use in an MFC controller, it has been now been 
invalidated and a more reliable model has been developed. However, if the intended 
purpose of the original model was one-step-ahead prediction, it might still be suitable. 

4. Conclusion 
A methodology has been presented that combines modelling based on first principles 
and data based modelling through the use of stochastic differential equations and 
statistical methods for parameter estimation and model validation. The methodology 
features a modelling cycle that can be used to easily, rapidly and in a statistically sound 
way develop a reliable model of a given system. A computer-aided tool, called CTSM, 
which integrates the elements of the modelling cycle, has also been presented. 
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