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A unified framework for improving the quality of continuous time models of dynamic 
systems based on experimental data is presented. The framework is based on an interplay 
between stochastic differential equation (SDE) modelling, statistical tests and multivariate 
nonparametric regression. This combination provides systematic methods for pinpointing 
and repairing model deficiencies by uncovering their structural origin. The potential of the 
proposed framework in terms of modelling complex dynamic phenomena such as reaction 
kinetics is illustrated with a case study involving a model of a fed-batch bioreactor, where 
it is illustrated how an incorrectly modelled biomass growth rate can be pinpointed and 
an estimate provided of the functional relation needed to properly describe it. 

1. I N T R O D U C T I O N  

Dynamic process models are used in many areas of chemical engineering and for many 
different purposes. Dynamic model development is therefore an inherently purpose-driven 
act in the sense that the required accuracy of a model depends on its intended application, 
and finding a suitable model for a given purpose involves a trade-off between required 
model accuracy and affordable model complexity. Methodologies for model development 
that address this trade-off in an optimal manner are thus needed to enable fast business 
decision-making, especially in the biochemical, pharmaceutical and specialty chemicals 
industries, where time-to-market issues are of critical importance. 

One such methodology is grey-box modelling [1], where the key idea is to find the sim- 
plest model for a given purpose, which is consistent with prior physical knowledge and 
not falsified by available experimental data. In the present paper a grey-box modelling 
framework is proposed, within which specific model deficiencies can be pinpointed and 
their structural origin uncovered in order to speed up the model development procedure. 
The key to uncovering the structural origin of model deficiencies is a possibility of ob- 
taining estimates of unknown functional relations. An important tool for this purpose is 
nonparametric modelling, and the integration of nonparametric modelling with conven- 
tional grey-box modelling into a systematic framework for model improvement is the key 
contribution of the paper, the remainder of which is organized as follows: In Section 2 
the details of the proposed framework are outlined; in Section 3 a case study illustrating 
its performance is presented and in Section 4 the conclusions of the paper are given. 
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Figure 1. The proposed grey-box modelling cycle. The boxes in grey illustrate tasks and 
the boxes in white illustrate inputs to and outputs from the modelling cycle. 

2. M E T H O D O L O G Y  

The proposed grey-box modelling framework is shown in Figure 1 in the form of a 
modelling cycle, which shows the individual steps of the corresponding model development 
procedure. In the remainder of this section the individual steps are briefly described. A 
more elaborate discussion is given by Kristensen et al. [2]. 

2.1. Mode l  ( r e ) fo rmula t ion  
A key idea of grey-box modelling is to use all relevant prior physical knowledge, for 

which reason the first step within the modelling cycle is model (re)formulation based on 
first engineering principles, where the idea is to formulate an initial model structure in 
the form of a standard ODE model and subsequently translate this model into a grey-box 
model. Grey-box models are stochastic state space models consisting of a set of SDE's 
describing the dynamics of the system and a set of algebraic measurement equations, i.e.: 

dxt -- f ( x t ,  ut, t, O)dt -F o'(ut, t, O)dcot (1) 

Yk = h(xk,  uk, tk, O) + ek (2) 

where t E R is time, xt E R n is a state vector, ut E R m is an input vector, Yk E R t is 
an output vector, 0 E R p is a parameter vector, f( . )  E R n, or(.) E R n• and h(.) E ]t( t 
are nonlinear functions, {tat) is an n-dimensional standard Wiener process and {ek} is 
an/-dimensional white noise process with ek E N (0, S(uk,  tk, 0)). The first term on the 
right-hand side of (1) is called the dr/ft term and is equivalent to the term on the right- 
hand side of the standard ODE model. The second term is called the diffusion term and 
is included to accommodate random effects due to e.g. approximation errors. 

2.2. P a r a m e t e r  e s t i m a t i o n  
The second step within the modelling cycle is parameter estimation, where the idea is to 

estimate the unknown parameters of the model in (1)-(2) from available experimental data, 
including the parameters of the diffusion term. The solution to (1) is a Markov process, 
and an estimation scheme based on probabilistic methods, e.g. maximum likelihood (ML) 
or maximum a posteriori (MAP), can therefore be applied. A detailed account of the 
estimation scheme used within the proposed framework is given by Kristensen et al. [3]. 
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2.3. Res idual  analysis  
The third step within the modelling cycle is residual analysis, where the idea is to eval- 

uate the quality of the model by means of cross-validation, once the unknown parameters 
have been estimated. Depending on the intended application of the model this can be 
done in a one-step-ahead prediction setting as well as in a pure simulation setting. In 
either case a number of different methods can be applied [4]. 

2.4. Mode l  falsification or unfalsif ication 
The fourth step within the modelling cycle is the important step of model falsification 

or unfalsification, which deals with whether or not, based on the information obtained 
in the previous step, the model is sufficiently accurate to serve its intended purpose. If 
the model is unfalsified, the model development procedure can be terminated, but if the 
model is falsified, the modelling cycle must be repeated by re-formulating the model. 

A key feature of the proposed framework is that, in the latter case, the properties of 
the model in (1)-(2) can be exploited to facilitate the task at hand. 

2.5. P inpo in t ing  of mode l  deficiencies 
The fifth step within the modelling cycle therefore deals with pinpointing of model defi- 

ciencies, and relies on the asymptotic Gaussianity of the ML estimator mentioned above 
[3], which allows t-tests to be performed to test whether the individual parameters are 
significant or not. Such tests are important because of the nature of the model in (1)-(2), 
where the diffusion term is included to account for random effects due to e.g. approxi- 
mation errors, which means that the presence of significant parameters in this term is 
an indication that the corresponding drift term is incorrect. This in turn provides an 
uncertainty measure that allows model deficiencies to be detected. If a diagonal parame- 
terization of the diffusion term is used, this even allows the deficiencies to be pinpointed in 
the sense that deficiencies in specific elements of the drift term can be detected, indicating 
that some of the inherent phenomena of this term may be incorrectly modelled. 

If, by applying physical insights, a specific phenomenon can subsequently be selected 
for further investigation, the proposed framework also provides means to confirm if the 
suspicion that this phenomenon is incorrectly modelled is true or not. Typical such phe- 
nomena include reaction rates and similar complex dynamic phenomena, all of which are 
usually modelled using functions of the state and input variables, i.e. r t - - ~ ( x t ,  ut, 0), 
where rt is a phenomenon of interest and ~(.) E R is the nonlinear function used to model 
it. To confirm if the suspicion that ~(.) is incorrect is true, the parameter estimation step 
must be repeated with a re-formulated version of the model in (1)-(2) to give new statis- 
tical information. More specifically, if rt is isolated by including it in the re-formulated 
model as an additional state variable, i.e.: 

dx; = f* (x ; ,  ut, t, O)dt + a*(ut,  t, O)dw; (3) 

Yk = h(x*k, Uk, tk, O) + ek (4) 

where x[ = Ix T rt] T, a*(.) G I~ (n+l)• and {w[} is an (n + 1)-dimensional standard 
Wiener process and where 

t, o )  = ( ' (5) 
Oxt dt Jr Out - ~  

then the presence of significant parameters in the corresponding diagonal element of the 
expanded diffusion term is a strong indication that qp(.) is in fact incorrect. 



1295 

2.6. Estimation of unknown functional relations 
The sixth step within the modelling cycle, which can only be used if specific model 

deficiencies have been pinpointed as described above, deals with estimation of unknown 
functional relations. The idea is to uncover the structural origin of these model deft- 
ciencies, and the procedure for doing this is based on a combination of the applicability 
of stochastic state space models for state estimation and the ability of nonparametric 
regression methods to provide visualizable estimates of unknown functional relations. 

Using the re-formulated model in (3)-(4) and the corresponding parameter estimates, 
state estimates 5~lk, k = 0 , . . . ,  N, can be obtained for a given set of experimental data 
by applying the extended Kalman filter. In particular, since the incorrectly modelled 
phenomenon rt is included as an additional state variable in this model, estimates rklk, 
k = 0 , . . . ,  N, can be obtained, which in turn facilitates application of nonparametric 
regression to provide estimates of possible functional relations between rt and the state and 
input variables. Several such techniques are available, but in the context of the proposed 
framework, additive models [5] are preferred. With additive models, the variation in rt 
can be decomposed into the variation that can be attributed to each of the state and 
input variables in turn and the result can be visualized by means of partial dependence 
plots with associated bootstrap confidence intervals. In this manner, it may be possible 
to reveal the true structure of the function describing rt, which in turn provides valuable 
information about how to re-formulate the model for the next modelling cycle iteration. 

3. CASE STUDY:  M O D E L L I N G  A F E D - B A T C H  B I O R E A C T O R  

To illustrate the performance of the proposed framework in terms of improving the 
quality of an existing model, a simple simulation example is considered in the following. 

The process considered is a fed-batch bioreactor, where the true model used to simulate 
the process is given as follows: 

__ = _~(s)x  4_ F(SF-S). l 
dt Y ' F  v j 

(6) 

where X is the biomass concentration, S is the substrate concentration, V is the volume, 
F is the feed flow rate, Y is the yield coefficient of biomass, SF is the feed concentration 
of substrate, and #(S) is the biomass growth rate, i.e.: 

S 
#(S)  = #max K2S2 _~ ~ 71_ K1 (7) 

where #max, K1 and/(2 are kinetic parameters. Simulated data sets from two batch runs 
are generated by perturbing the feed flow rate along a pre-determined trajectory and 
subsequently adding Gaussian measurement noise to the appropriate variables. Using 
these data sets it is now illustrated how the proposed modelling cycle can be used to 
improve an initial model, assuming that the intended purpose of the model is simulation. 

3.1. Fi rs t  model l ing  cycle iteration 
The first iteration through the modelling cycle starts with the model formulation step, 

where it is assumed that an initial model corresponding to (6) is available with the true 
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structure of #(S) in (7) unknown. This model is then translated into a grey-box model: 

_ ~ x  4- F(s~-sl O0 d~,t (8) 
d = v 'F  v dt + a22 

0 0"33 

Y2 - + e k ,  e k e N ( O , S ) ,  S =  $22 (9) 

Y3 k k 0 $33 

where, because the true structure of #(S) given in (7) is assumed to be unknown, a 
constant growth rate # has been used instead. A diagonal parameterization of the diffusion 
term has been used to allow model deficiencies to be pinpointed. 

As the next step, the unknown parameters of the model in (8)-(9) are estimated with 
the ML method using the data from batch no. 1. Evaluating the quality of the resulting 
model by means of simple pure simulation comparison on cross-validation data from batch 
no. 2 gives the results shown in Figure 2a, which show that the model does a very poor 
job, particularly for Yl and Y2. Moving to the model falsification or unfalsification step, 
the poor pure simulation capabilities falsify the model for its intended purpose, which 
means that the modelling cycle must be repeated by re-formulating the model. 

To obtain information about how to do this in an intelligent way, model deficiencies 
should be pinpointed, if possible, t-tests for significance of the individual parameters show 
that, on a 5% level, the first two parameters of the diffusion term are both significant, 
which indicates that the the first two elements of the drift term may be incorrect. These 
elements both depend on p, which is therefore an obvious suspect for being deficient. To 
confirm this suspicion, the model is re-formulated with # as an additional state variable, 
and estimating the parameters of this model, using the same data set as before, gives t-test 
results that show that, of the parameters of the diffusion term, only the one corresponding 
to the equation for # is now significant on a 5% level. This in turn indicates that there is 
substantial variation in p and thus confirms the suspicion that p is deficient. 

Nonparametric modelling can now be applied to uncover the structural origin of the 
deficiency. Using the re-formulated model and the corresponding parameter estimates, 
state es t ima tes  Xk[k, Sk[k, ~/rk[k, ftk[k, k--0, . . . ,  N, are obtained and an additive model 
is fitted to reveal the true structure of the function describing # by means of estimates 
of functional relations between # and the state and input variables. It is reasonable to 
assume that # does not depend on V and F, so only functional relations between f~klk and 
-f(klk and Sklk are estimated, giving the results shown in Figure 2b-c. These plots indicate 
that f~klk does not depend on Xklk, but is highly dependent on Sklk, which in turn suggests 
to replace the assumption of constant # with an assumption of # being a function of S 
that complies with the revealed functional relation. 

3.2. Second mode l l ing  cycle i t e ra t ion  
The functional relation revealed in the partial dependence plot between fLklk and Sklk 

in Figure 2b-c clearly indicates that the growth of biomass is governed by Monod kinetics 
and inhibited by substrate, which in the first step of the second iteration through the 
modelling cycle makes it possible to re-formulate the model in (8)-(9) accordingly by 
replacing # with the true function #(S) in (7). Estimation of the unknown parameters 
of the re-formulated model using the same data set as before gives much better results, 
which is evident from the cross-validation results shown in Figure 2d, which show that 
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(a) Initial comp. (b) f~klk vs. )fklk (c) /~klk vs. Sklk (d) Final comp. 

Figure 2. Pure simulation comparison results using cross-validation data from batch no. 2 
(sim. values in solid), and partial dependence plots of ~klk vs. )(kJk and Sklk (solid lines: 
Estimates; dotted lines: 95% bootstrap confidence intervals). 

the pure simulation capabilities of the re-formulated model are very good. Moving to the 
model falsification or unfalsification step, the re-formulated model is thus unfalsified for 
its intended purpose, and the model development procedure can now be terminated. 

4. C O N C L U S I O N  

A systematic framework for improving the quality of continuous time models of dy- 
namic systems based on experimental data has been presented. The proposed grey-box 
modelling framework is based on an interplay between stochastic differential equation 
(SDE) modelling, statistical tests and nonparametric modelling and provides features 
that allow model deficiencies to be pinpointed and their structural origin to be uncov- 
ered to improve the model. A key result in this regard is that the proposed framework 
can be used to obtain nonparametric estimates of unknown functional relations, which 
allows unknown or incorrectly modelled dynamic phenomena to be uncovered and proper 
parametric expressions to be inferred from the estimated functional relations. 

REFERENCES 

[1] Bohlin, T. and Graebe, S. F. (1995). Issues in Nonlinear Stochastic Grey-Box Identifi- 
cation. International Journal of Adaptive Control and Signal Processing, 9, 465-490. 

[2] Kristensen, N. R.; Madsen, H. and Jcrgensen, S. B. (2002b). A Method for Systematic 
Improvement of Stochastic Grey-Box Models. Submitted for publication. 

[3] Kristensen, N. R.; Madsen, n. and Jcrgensen, S. B. (2002a). Parameter Estimation 
in Stochastic Grey-Box Models. Submitted for publication. 

[4] Holst, J.; Holst, U.; Madsen, H. and Melgaard, H. (1992). Validation of Grey Box 
Models. In L. Dugard; M. M'Smud and I. D. Landau, editors, Selected Papers from the 
~th IFAC Symposium on Adaptive Systems in Control and Signal Processing, pages 
407-414. Pergamon Press. 

[5] Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman & 
Hall, London, England. 




