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Abstract

A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented.
The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and
provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed
framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena
to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework
is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled
biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional
relations involving unmeasured variables can also be uncovered.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic process models are used in many areas of chem-
ical engineering and for many different purposes. Dynamic
model development is therefore inherently purpose-driven
in the sense that the required accuracy of a model, in terms
of prediction capabilities, depends on its intended appli-
cation. More specifically, models intended for open-loop
applications such as process simulation and optimisation,
where long-term prediction capabilities are important, must
be more accurate than models intended for closed-loop ap-
plications such as standard feedback control, where only
short-term prediction capabilities are needed. However, to
be more accurate, a model must be more complex, which
means that it will be more difficult and time-consuming to
develop. Finding a suitable model for a given purpose thus
involves a trade-off between required model accuracy and
affordable model complexity(Raisch, 2000).

For open-loop applications, ordinary differential equation
(ODE) models orwhite-boxmodels developed from first en-
gineering principles and physical insights are typically used.
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Such models are often very detailed, because they must be
able to capture nonlinear effects in order to be valid over
wide ranges of state space, and, as a consequence, devel-
oping such models may be difficult and time-consuming.
Indeed, the corresponding model development procedure is
by no means guaranteed to converge, and few tools for
making inferences about the structure of such models are
available.

For closed-loop applications, much simpler input–output
models orblack-boxmodels developed from experimental
data with methods for time series analysis and system iden-
tification can often be used(Box & Jenkins, 1976; Ljung,
1987; Söderström & Stoica, 1989). Such models only have
to be valid for a small range of state space, typically close
to a constant operating point, which means that nonlinear
effects can be neglected, making model development much
faster. Furthermore, well-developed tools for structural iden-
tification of such linear models are available and the cor-
responding model development procedure is guaranteed to
converge if certain conditions of identifiability of parame-
ters and persistency of excitation of inputs are fulfilled.

Model-based optimizing control of batch and fed-batch
processes, e.g. by means of nonlinear model predictive con-
trol (MPC) (Allgöwer & Zheng, 2000), presents a border-
line case between open-loop and closed-loop applications,
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where neither of the above modelling approaches is ideal.
On one hand, a model is needed, which is sufficiently accu-
rate to be used for long-term prediction over wide ranges of
state space, but on the other hand, the affordable model com-
plexity is low due to the importance of time-to-market is-
sues in the biochemical, pharmaceutical and specialty chem-
icals industries, where batch and fed-batch processes are
common.

A methodology that provides an appealing trade-off be-
tween the white-box and black-box approaches isgrey-box
modelling, where mechanistic and empirical model compo-
nents are combined, which may be done in a deterministic
as well as a stochastic setting. Not disregarding the impor-
tance of deterministic grey-box modelling, the remainder of
the present paper will be concerned with stochastic grey-box
modelling (Madsen & Melgaard, 1991; Melgaard &
Madsen, 1993; Bohlin & Graebe, 1995; Bohlin, 2001), the
key idea of which is to find the simplest model for a given
purpose, which is consistent with prior physical knowledge
and not falsified by available experimental data. In the ap-
proach byBohlin and Graebe (1995)andBohlin (2001)this
is done by formulating a sequence of hypothetical model
structures of increasing complexity and systematically
expanding the model by falsifying incorrect hypotheses
through statistical tests based on the experimental data. This
way models can be developed, which have almost the same
validity range as white-box models, but it can be done in a
less time-consuming manner and the models are guaranteed
not to be overly complex.

Stochastic grey-box models are stochastic state space
models consisting of a set of stochastic differential equa-
tions (SDEs)(Øksendal, 1998)describing the dynamics of
the system in continuous time and a set of discrete time
measurement equations. A considerable advantage of such
models as opposed to white-box models is that they are de-
signed to accommodate random effects. In particular, they
allow for a decomposition of the noise affecting the system
into a process noise term and a measurement noise term.
As a consequence of thisprediction error decomposition
(PED), unknown parameters of stochastic grey-box models
can be estimated from experimental data in aprediction
error (PE) setting(Young, 1981), whereas for white-box
models it can only be done in anoutput error(OE) setting
(Young, 1981), which tends to give biased and less repro-
ducible results, because random effects are absorbed into
the parameter estimates, particularly if the model structure
is incorrect. Furthermore, PE estimation allows a number
of powerful statistical tools to be applied to give indications
for possible improvements to the model structure.

Stochastic grey-box modelling as presented byBohlin and
Graebe (1995)andBohlin (2001)is an iterative and inher-
ently interactive procedure, because it relies on the model
maker to formulate the specific hypothetical model struc-
tures to be tested to improve the model. As pointed out
by Bohlin (2001) this poses the problem that the model
maker may run out of ideas for improvement before a suf-

ficiently accurate model is obtained, which means that he
or she may have to resort to using black-box models for
filling the gaps. In the present paper a stochastic grey-box
modelling framework is proposed, which relies less on the
model maker. Within this framework specific model defi-
ciencies can be pinpointed and their structural origin can
be uncovered, which provides the model maker with valu-
able information about how to formulate new hypotheses
to improve the model. This clearly speeds up the iterative
model development procedure, and, as an additional bene-
fit, also prevents the model maker from having to resort to
using black-box models for filling the gaps, when all prior
physical knowledge is exhausted. The key to obtaining in-
formation about how to improve the model is the ability of
the proposed framework to provide estimates of unknown
functional relations, allowing unknown or inappropriately
modelled phenomena to be uncovered. These estimates are
obtained by making use of the PED and other properties
of stochastic state space models along with nonparametric
modelling. The integration of nonparametric modelling with
conventional stochastic grey-box modelling into a system-
atic framework for model improvement is the key result of
the paper. The remainder of the paper is organized as fol-
lows: InSection 2the details of the proposed framework are
outlined and inSection 3a case study illustrating its perfor-
mance is presented. InSection 4a discussion of important
results is given and inSection 5the conclusions of the paper
are presented.

2. Methodology

In this section the details of the proposed stochastic
grey-box modelling framework are outlined. The frame-
work is shown inFig. 1 in the form of a modelling cycle
comprising the individual steps of the model development
procedure. A key idea of stochastic grey-box modelling
is to use all relevant prior physical knowledge, for which
reason the first step within the modelling cycle ismodel
(re)formulationbased on first engineering principles, where
the idea is to formulate an initial model structure (first mod-
elling cycle iteration) or make modifications to this structure
(subsequent iterations). The second step within the mod-
elling cycle isparameter estimation, where the idea is to
estimate unknown parameters of the model from available
experimental data, and the third step isresidual analysis,
where the idea is to evaluate the quality of the resulting
model by means of cross-validation. The fourth step within
the modelling cycle is the important step ofmodel falsifi-
cation or unfalsification, which deals with whether or not,
based on the available information, the model is sufficiently
accurate to serve its intended purpose. If the model is unfal-
sified, the model development procedure can be terminated,
but if the model is falsified, the modelling cycle must be
repeated by re-formulating the model. A key feature of the
proposed framework is that, in the latter case, the PED and
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Fig. 1. The proposed modelling cycle. The boxes in grey illustrate tasks and the boxes in white illustrate inputs to and outputs from the modelling cycle.

other properties of stochastic state space models can be ex-
ploited to facilitate the task at hand. More specifically, the
statistical testsof the fifth step within the modelling cycle
can be applied to provide indications of which parts of the
model that are deficient, and thenonparametric modelling
techniques of the sixth step can be applied to provide es-
timates of the functional relations needed to repair these
deficiencies in order to improve the model. In the remainder
of this section the individual steps are described in more
detail and an algorithm for systematic model improvement
based on the proposed modelling cycle is presented.

2.1. Model (re)formulation

In the first step of the proposed modelling cycle, the idea
is to formulate an initial model structure. This is a two-step
procedure, because it involves derivation of a standard ODE
model from first engineering principles and translation of
the ODE model into a stochastic state space model consist-
ing of a set of SDEs and a set of discrete time measurement
equations. Deriving an ODE model from first engineering
principles is a standard discipline for most chemical engi-
neers and yields a model of the following type:

dxt

dt
= f (xt ,ut , t, θ) (1)

wheret ∈ R is time,xt ∈ R
n is a vector of balanced quanti-

ties or state variables,ut ∈ R
m is a vector of input variables

and θ ∈ R
p is a vector of possibly unknown parameters,

and wheref (·) ∈ R
n is a nonlinear function. Translating

the ODE model into a stochastic state space model is also
straightforward, as it can simply be done by replacing the
ODEs with SDEs and adding a set of algebraic equations
describing how measurements are obtained at discrete time
instants. This yields a model of the following type:

dxt = f (xt ,ut , t, θ)dt + σ(ut , t, θ)dωt (2)

yk = h(xk,uk, tk, θ)+ ek (3)

where t ∈ R is time (tk, k = 0, . . . , N are sampling in-
stants),xt ∈ R

n is a vector of state variables,ut ∈ R
m is a

vector of input variables,yk ∈ R
l is a vector of measured

output variables,θ ∈ R
p is a vector of possibly unknown

parameters,f (·) ∈ R
n, σ(·) ∈ R

n×n andh(·) ∈ R
l are non-

linear functions,{ωt} is ann-dimensional standard Wiener
process and{ek} is an l-dimensional white noise process
with ek ∈ N(0,S(uk, tk, θ)). The first term on the right-hand
side of (2) is called thedrift term and is a deterministic term
equivalent to the term on the right-hand side of (1), whereas
the second term on the right-hand side of (2) is called the
diffusion term and is a stochastic term included to accom-
modate random effects due to, e.g. approximation errors or
unmodelled phenomena. A detailed account of the theory
behind SDEs is given byØksendal (1998).

The diffusion term is the key to the proposed procedure
for systematic model improvement, because estimation of
the parameters of this term from experimental data provides
a measure of model uncertainty.

The translation of the ODE model into a stochastic state
space model does not affect the parameters of the drift term,
which means that their physical interpretability is preserved.

Remark 1. The standard Wiener process{ωt} driving the
SDEs in (2) is a continuous stochastic process with station-
ary and independent Gaussian time increments, which have
zero mean and a covariance that is equal to the size of the
time increment(Jazwinski, 1970).

Remark 2. The notation used in (2) is shorthand for the
corresponding integral interpretation and is therefore am-
biguous unless a specific integral interpretation is given.
SDEs may be interpreted both in the sense of Stratonovich
and in the sense of Itô (Jazwinski, 1970), but since the
Stratonovich interpretation is unsuitable for parameter esti-
mation(Åström, 1970), the It̂o interpretation is adapted in
the following.

2.2. Parameter estimation

In the second step of the proposed modelling cycle the
idea is to estimate the unknown parameters of the stochastic



1434 N.R. Kristensen et al. / Computers and Chemical Engineering 28 (2004) 1431–1449

state space model (2) and (3) from experimental data. The
solution to (2) is a Markov process, and hence an estimation
scheme based on probabilistic methods can be applied. A
brief outline of the scheme used within the proposed frame-
work is given in the following. A more detailed account is
given byKristensen, Madsen, and Jørgensen (2003).

2.2.1. Maximum likelihood (ML) estimation
Given a sequence of measurementsy0, y1, . . . , yk, . . . ,

yN , ML estimates of the unknown parameters in (2) and (3)
can be determined by finding the parametersθ that maximize
the likelihood function, i.e. the joint probability density:

L(θ;YN) = p(YN |θ) = p(yN, yN−1, . . . , y1, y0|θ) (4)

or equivalently:

L(θ;YN) =
(

N∏
k=1

p(yk|Yk−1, θ)

)
p(y0|θ) (5)

where the ruleP(A ∩ B) = P(A|B)P(B) has been applied
to form a product of conditional probability densities.

In order to obtain an exact evaluation of the likelihood
function, a general nonlinear filtering problem must be
solved (Jazwinski, 1970), but this is computationally in-
feasible in practice. However, since the increments of the
standard Wiener process{ωt} driving the SDEs in (2) are
Gaussian, it is reasonable to assume that the conditional
probability densities in (5) can be well approximated by
Gaussian densities. Thus a method based on the much
simpler extended Kalman filter (EKF) can be applied.

Remark 3. The validity of the Gaussianity assumption can
be checked subsequent to the estimation, and a number of
different methods are available for this purpose (Holst, Holst,
Madsen, & Melgaard, 1992; Bak, Madsen, & Nielsen, 1999).
However, the assumption is only likely to hold if the structure
of the model is appropriate, and it may therefore not be
strictly correct in the initial iterations of the modelling cycle.
Nevertheless, the corresponding estimation results can be
used to provide indications for model improvement as shown
in the next sections.

The Gaussian density is completely characterized by its
mean and covariance, so by introducing the notation:

ŷk|k−1 = E{yk|Yk−1, θ} (6)

Rk|k−1 = V {yk|Yk−1, θ} (7)

εk = yk − ŷk|k−1 (8)

the likelihood function can be rewritten:

L(θ;YN) =
(

N∏
k=1

exp(−(1/2)εT
kR

−1
k|k−1εk)√

det(Rk|k−1)(
√

2π)l

)
p(y0|θ) (9)

and the parameter estimates can be determined by condition-
ing ony0 and solving the nonlinear optimisation problem:

θ̂ = arg min
θ∈�

{− ln(L(θ;YN |y0))} (10)

where, for each set of parametersθ in the optimisation,εk
andRk|k−1 are computed recursively by means of the EKF.

2.2.2. Maximum a posteriori (MAP) estimation
If prior information about the parameters is available and

given in the form of a prior probability densityp(θ) for the
parameters, Bayes’ rule can be applied to give an improved
estimate by forming the posterior probability density:

p(θ|YN) = p(YN |θ)p(θ)
p(YN)

∝ p(YN |θ)p(θ) (11)

and subsequently finding the parameters that maximize this
function, i.e. by performing MAP estimation. By assuming
that the prior probability density of the parameters is Gaus-
sian, and by introducing the notation:

µθ = E{θ} (12)

Σθ = V {θ} (13)

εθ = θ − µθ (14)

the posterior probability density can be rewritten:

p(θ|YN)∝
(

N∏
k=1

exp(−(1/2)εT
kR

−1
k|k−1εk)√

det(Rk|k−1)(
√

2π)l

)
p(y0|θ)

×exp(−(1/2)εT
θ Σ−1

θ εθ)√
det(Σθ)(

√
2π)p

(15)

and the parameter estimates can now be determined by con-
ditioning ony0 and solving the nonlinear optimisation prob-
lem:

θ̂ = arg min
θ∈�

{− ln(p(θ|YN, y0))} (16)

Remark 4. If no prior information is available (p(θ) uni-
form), this formulation reduces to the ML formulation in
(10). Thus, it can be seen as a generalization of the ML for-
mulation. In fact, this formulation also allows for MAP esti-
mation on a subset of the parameters (p(θ) partly uniform).

2.2.3. Using multiple independent data sets
If multiple consecutive, but stochastically independent,

sequences of measurementsY1
N1
,Y2

N2
, . . . ,YiNi

, . . . ,YSNS
,

are available, a similar estimation method can be applied by
expanding the posterior probability density to:

p(θ|Y) = p(θ|Y1
N1
,Y2

N2
, . . . ,YiNi

, . . . ,YSNS
])

∝

 S∏
i=1


Ni∏
k=1

exp(−(1/2)(εik)T(Ri
k|k−1)

−1εik)√
det(Ri

k|k−1)(
√

2π)l


p(yi0|θ)




×exp(−(1/2)εT
θ Σ−1

θ εθ)√
det(Σθ)(

√
2π)p

(17)
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and the parameter estimates can now be determined by con-
ditioning ony0 = [y1

0, y
2
0, . . . , y

i
0, . . . , y

S
0] and solving the

nonlinear optimisation problem:

θ̂ = arg min
θ∈�

{− ln(p(θ|Y , y0))} (18)

Remark 5. If only one sequence of measurements is avail-
able (S = 1), this formulation reduces to the MAP formula-
tion in (16). Thus, it can be seen as a generalization of the
MAP formulation for multiple independent data sets.

In the estimation scheme used within the proposed frame-
work the nonlinear optimisation problem (18) is solved by
means of a quasi-Newton method incorporating the BFGS
updating formula and a soft line search algorithm. More de-
tails about this method and about how robustness towards
outliers and missing observations has been incorporated into
the estimation scheme are given byKristensen et al. (2003),
who also demonstrate the general efficiency and consistency
of the scheme, especially with respect to the parameters of
the diffusion term, which is of key importance within the
proposed framework.

2.3. Residual analysis

In the third step of the proposed modelling cycle, the idea
is to evaluate the quality of the model once the unknown
parameters have been estimated.

An important aspect in assessing the quality of the model
is to investigate its predictive capabilities by performing
cross-validation and examining the corresponding residuals.
Depending on the intended application of the model this
should be done in either a one-step-ahead prediction setting
(closed-loop applications) or in a pure simulation setting
(open-loop applications). In either case a number of differ-
ent methods can be applied(Holst et al., 1992).

One of the most powerful of these methods is to com-
pute and inspect thesample autocorrelation function(SACF)
and thesample partial autocorrelation function(SPACF)
(Brockwell & Davis, 1991)of the residuals to detect if they
can be regarded as white noise or if there are significant lag
dependencies, i.e. correlations between current and lagged
values of the residuals, as this indicates that the predictive
capabilities of the model are not perfect.

Nielsen and Madsen (2001)recently presented exten-
sions of these linear tools to nonlinear systems in the
form of the lag-dependence function(LDF) and thepar-
tial lag-dependence function(PLDF), which are based on
a close relation between correlation coefficients and the
coefficients of determination for regression models. This
relation allows for an extension to nonlinear systems by
incorporating various nonparametric regression models.

Remark 6. Being an extension of the SACF, the LDF can
be interpreted as being, for each lagk, the part of the overall
variation in the observations ofXt from a stochastic process

{Xt}, which can be explained by the observations ofXt−k.
Likewise, being an extension of the SPACF, the PLDF can
be interpreted as being, for each lagk, the relative decrease
in one-step-ahead prediction variation when includingXt−k
as an extra predictor.

Unlike the SACF and the SPACF, the LDF and the PLDF
can also detect certain nonlinear lag dependencies and are
therefore extremely useful for residual analysis within the
proposed framework. More details about these and other
similar tools are given byNielsen and Madsen (2001).

Remark 7. If the Gaussianity assumption mentioned in
Section 2.2holds, which is only likely to be the case in the
final iterations of the modelling cycle, i.e. when an appro-
priate model structure has been obtained, the statistical tests
described inSection 2.5can also be applied in the evalu-
ation of the quality of the model. More specifically, it can
be determined if some of the parameters of the model are
insignificant, indicating that the model is overparameterized
and that these parameters may be eliminated.

2.4. Model falsification or unfalsification

In the fourth step of the proposed modelling cycle, the
idea is to determine whether or not, based on the information
obtained in the previous step, the model is sufficiently accu-
rate to serve its intended purpose. This essentially involves
a completely subjective decision by the model maker, ad-
dressing the trade-off between required model accuracy and
affordable model complexity for the particular application.
Nevertheless, a few guidelines can be given.

For models intended for closed-loop applications such as
standard feedback control, where only short-term prediction
capabilities are important, whiteness of cross-validation
residuals obtained in a one-step-ahead prediction setting
is a good indication of sufficient model accuracy. On the
other hand, for models intended for open-loop applica-
tions such as process simulation and optimisation, where
long-term prediction capabilities are important, whiteness
of cross-validation residuals obtained in a pure simulation
setting is a very good such indication. However, sufficient
information may not be available to achieve this, and the
model maker may have to settle for less.

If, with respect to the available information, the model
is unfalsified for its intended purpose, the model develop-
ment procedure can be terminated. If, on the other hand, the
model is falsified, the modelling cycle must be repeated by
re-formulating the model. In the latter case, the properties of
the model in (2) and (3) facilitate the task at hand as shown
in the following.

2.5. Statistical tests

In the fifth step of the proposed modelling cycle, which
is only needed if the model has been falsified and needs to
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be improved, the idea is to apply statistical tests to provide
indications of which parts of the model that are deficient.
The key statistical tests needed for this purpose are tests for
significance of the individual parameters, particularly the
parameters of the diffusion term.

Remark 8. The residual analysis tools mentioned in
Section 2.3can also be applied in the analysis of possi-
bilities for model improvement, at least if it holds that the
residuals can be regarded as a realization from a stationary
stochastic process. More specifically, like the SACF and the
SPACF, the LDF and the PLDF can be applied for structural
identification(Nielsen & Madsen, 2001), e.g. to determine
if more state variables are needed.

An estimate of the uncertainty of the individual parame-
ter estimates can be obtained by using the fact that by the
central limit theorem the estimator in (18) is asymptotically
Gaussian with meanθ and covariance:

Σ
θ̂

= H−1 (19)

where the matrixH is given by:

{hij } = −E
{

∂2

∂θi∂θj
ln(p(θ|Y , y0))

}
,

i, j = 1, . . . , p (20)

and where an estimate ofH can be obtained from:

{hij } ≈ −
(

∂2

∂θi∂θj
ln(p(θ|Y , y0))

)∣∣∣∣
θ=θ̂

,

i, j = 1, . . . , p (21)

which is simply the Hessian evaluated at the minimum of the
objective function in (18). To obtain a measure of the uncer-
tainty of the individual parameter estimates, the covariance
matrix can be decomposed:

Σ
θ̂

= σ
θ̂
Rσ

θ̂
(22)

into σ
θ̂
, which is a diagonal matrix of the standard devia-

tions of the parameter estimates, andR, which is the cor-
responding correlation matrix. The asymptotic Gaussianity
of the estimator in (18) also allows marginalt-tests to be
performed to test the hypothesis:

H0 : θj = 0 (23)

against the corresponding alternative:

H1 : θj �= 0 (24)

i.e. to test whether a given parameterθj is insignificant or
not. The test quantity is the value of the parameter estimate
θ̂j divided by the standard deviation of the estimateσ

θ̂j
and

underH0 this quantity is asymptoticallyt-distributed with
a number of degrees of freedom that equals the number of
data points minus the number of estimated parameters, i.e.:

z(θ̂j) = θ̂j

σ
θ̂j

∈ t

(
S∑
i=1

Ni − p

)
(25)

Due to correlations between the individual parameter es-
timates, a series of such marginal tests cannot be used to
test the hypothesis that a subset of the parameters,θ∗ ⊂ θ,
are simultaneously insignificant:

H0 : θ∗ = 0 (26)

against the alternative that they are not:

H1 : θ∗ �= 0 (27)

Hence a test that takes correlations into account must be used
instead, e.g. a likelihood ratio test, a Lagrange multiplier test
or a test based on Wald’sW-statistic (Holst et al., 1992).
UnderH0 the test quantities for these tests all have the same
asymptoticχ2-distribution with a number of degrees of free-
dom that equals the number of parameters subjected to the
test(Holst et al., 1992). However, in the context of the pro-
posed framework the test based on Wald’sW-statistic has
an advantage in that no re-estimation is required, because it
can simply be computed as follows:

W(θ̂∗) = θ̂
T
∗Σ−1

θ̂∗
θ̂∗ ∈ χ2(dim(θ̂∗)) (28)

whereθ̂∗ ⊂ θ̂ is the subset of the parameter estimates sub-
jected to the test andΣ

θ̂∗ is the corresponding covariance
matrix, which can be computed as follows:

Σ
θ̂∗ = EΣ

θ̂
ET (29)

whereE is a permutation matrix, which can be constructed
from a unit matrix by eliminating the rows corresponding to
parameter estimates not subjected to the test.

Remark 9. Strictly speaking, these tests can only be ap-
plied if the Gaussianity assumption mentioned inSection 2.2
holds, which is only likely to be the case if the structure
of the model is appropriate, i.e. in the final iterations of the
modelling cycle. Nevertheless, the corresponding test results
can be used to provide indications for model improvement
as shown in the following.

The above tests for insignificance provide the necessary
framework for obtaining indications of which parts of the
model that are deficient. In principle,insignificantparam-
eters are parameters that may be eliminated, and the pres-
ence of such parameters is therefore an indication that the
model is overparameterized. On the other hand, because of
the particular nature of the model in (2) and (3), where the
diffusion term is included to account for random effects due
to, e.g. approximation errors or unmodelled phenomena, the
presence ofsignificantparameters in the diffusion term is
an indication that the corresponding drift term may be in-
correct, which in turn provides an uncertainty measure that
allows model deficiencies to be detected. If, instead of the
general parameterization of the diffusion term indicated in
(2), a diagonal parameterization is used, this also allows the
deficiencies to be pinpointed in the sense that deficiencies
in specific elements of the drift term can be detected.
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2.5.1. Pinpointing model deficiencies
If a diagonal parameterization of the diffusion term in (2)

is used, the presence of significant parameters in a given
diagonal element is an indication that the corresponding el-
ement of the drift term may be incorrect. This is valuable
information for the model maker, as it indicates that some of
the inherent phenomena of this term may be inappropriately
modelled. If, by using physical insights, the model maker
is able to subsequently select a specific phenomena model
for further analysis, the proposed framework also provides
means to confirm the suspicion that this model is inappro-
priate, if it is in fact true.

Typical suspect phenomena models include models of re-
action rates, heat and mass transfer rates and similar complex
dynamic phenomena, all of which can usually be described
using functions of the state and input variables, i.e.:

rt = ϕ(xt ,ut , θ) (30)

wherert is a phenomenon of interest andϕ(·) ∈ R is the non-
linear function used by the model maker to describe it. To
confirm the suspicion thatϕ(·) is inappropriate, the param-
eter estimation step must be repeated with a re-formulated
version of the model in (2) and (3) to give new informa-
tion.

More specifically, ifrt is isolated by including it in the
re-formulated model as an additional state variable, i.e.:

dx∗
t = f ∗(x∗

t ,ut , t, θ)dt + σ∗(ut , t, θ)dω∗
t (31)

yk = h(x∗
k,uk, tk, θ)+ ek (32)

wherex∗
t = [xT

t rt ]T, σ∗(·) ∈ R
(n+1)×(n+1) and{ω∗

t } is an
(n+ 1)-dimensional standard Wiener process and where:

f ∗(x∗
t ,ut , t, θ)=


 f (xt ,ut , t, θ)
∂ϕ(xt ,ut , θ)

∂xt

dxt

dt
+ ∂ϕ(xt ,ut , θ)

∂ut

dut

dt




(33)

the presence of significant parameters in the corresponding
diagonal element of the expanded diffusion term is a strong
indication thatϕ(·) is inappropriate.

Remark 10. A particularly simple and very important spe-
cial case of the above formulation is obtained ifϕ(·) is as-
sumed to be constant, in which case the partial derivatives in
(33) are both zero and any variation inrt must be explained
by the corresponding diagonal element of the expanded dif-
fusion term, which in turn means that if the parameters of
this element are significant, this is an indication thatϕ(·) is
not constant.

2.6. Nonparametric modelling

In the sixth step of the proposed modelling cycle, which
can only be used if specific model deficiencies have been
pinpointed as described above, the idea is to uncover the

structural origin of these deficiencies. The procedure for ac-
complishing this is based on a combination of the applicabil-
ity of stochastic state space models for state estimation and
the ability of nonparametric regression methods to provide
visualizable estimates of unknown functional relations.

2.6.1. Estimating unknown functional relations
Using the re-formulated model in (31) and (32) and the

corresponding parameter estimates, state estimatesx̂
∗
k|k,

k = 0, . . . , N, can be obtained for a given set of experi-
mental data by applying the EKF. In particular, since the
inappropriately modelled phenomenonrt is included as
an additional state variable in this model, estimatesr̂k|k,
k = 0, . . . , N, can be obtained, which in turn facilitates ap-
plication of nonparametric regression to provide estimates
of possible functional relations betweenrt and the state and
input variables.

Several nonparametric regression techniques are avail-
able (Hastie, Tibshirani, & Friedman, 2001), but in the con-
text of the proposed framework,additive models(Hastie &
Tibshirani, 1990)are preferred, because fitting such mod-
els circumvents the curse of dimensionality, which tends to
render nonparametric regression infeasible in higher dimen-
sions, and because results obtained with such models are
particularly easy to visualize, which is important.

Remark 11. Additive models are nonparametric extensions
of linear regression models and are fitted by using a train-
ing data set of observations of several predictor variables
X1, . . . , Xn and a single response variableY to compute a
smoothed estimate of the response variable for a given set of
values of the predictor variables. This is done by assuming
that the contributions from each of the predictor variables
are additive and can be fitted nonparametrically using the
backfitting algorithm(Hastie & Tibshirani, 1990).

Using additive models, the variation inrt can be decom-
posed into the variation that can be attributed to each of the
state and input variables in turn, and the result can be visu-
alized by means of partial dependence plots with associated
bootstrap confidence intervals(Hastie et al., 2001). In this
manner, it may be possible to reveal the true structure of the
function describingrt , i.e.:

rt = ϕtrue(xt ,ut , θ) (34)

which in turn provides the model maker with valuable in-
formation about how to re-formulate the model for the next
modelling cycle iteration. Needless to say, this should be
done in accordance with physical insights.

Remark 12. The assumption of additive contributions does
not necessarily limit the ability of additive models to reveal
non-additive functional relations involving more than one
predictor variable. By proper processing of the training data
set, functions of more than one predictor variable, e.g.X1X2,
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can be included as predictor variables as well(Hastie &
Tibshirani, 1990).

2.7. An overall algorithm for systematic model
improvement

In the following the methodologies from the various steps
of the proposed modelling cycle are summarized in the form
of an algorithm for systematic model improvement given a
pre-specified purpose of the model:

(1) Use first engineering principles and physical insights to
derive an initial model structure in the form of an ODE
model (seeSection 2.1).

(2) Translate the ODE model into a stochastic state space
model using a diagonal parameterization of the diffusion
term (seeSection 2.1).

(3) Estimate the parameters of the model from available
experimental data using ML or MAP estimation (see
Section 2.2).

(4) Evaluate the quality of the model by performing residual
analysis on cross-validation data (seeSection 2.3).

(5) Determine if the model is sufficiently accurate to serve
its intended purpose. If unfalsified, terminate model de-
velopment. If falsified, proceed with model development
(seeSection 2.4).

(6) Try to pinpoint specific model deficiencies by applying
statistical tests and by re-formulating the model with
additional state variables and repeating the estimation
and test procedures (seeSection 2.5).

(7) If specific model deficiencies can be pinpointed, use
state estimation and nonparametric modelling to un-
cover their structural origin by obtaining appropriate es-
timates of functional relations (seeSection 2.6).

(8) Reformulate the model according to the estimated func-
tional relations and physical insights and repeat from
(3) (seeSection 2.6).

This algorithm can be applied to develop new as well as
to improve existing models of dynamic systems for a vari-
ety of purposes. More specifically, models can be developed
with emphasis on short-term as well as long-term prediction
capabilities, i.e. models intended for closed-loop as well as
open-loop applications. However, as discussed inSection 4,
the algorithm is not guaranteed to converge, especially not
if insufficient prior information is available or if the quality
and amount of available experimental data is limited. In par-
ticular, a situation may occur, where the model is falsified,
but where none of the parameters of the diffusion term ap-
pear to be significant and pinpointing a specific model defi-
ciency is impossible. A situation may also occur, where the
model is falsified and the significance of certain parameters
of the diffusion term have allowed a specific deficiency to be
pinpointed, but where the structural origin of the deficiency
cannot be uncovered. In the context of the proposed frame-
work, both situations imply that a point has been reached,

where the model cannot be further improved with the avail-
able information.

Remark 13. The estimation methods described in
Section 2.2(estimation in a PE setting) tend to emphasize
the one-step-ahead prediction capabilities of the model and
are therefore not ideal for models intended for open-loop
applications. Nevertheless, these methods should be used in
the development of such models as well, because of the pos-
sibility of using the tools described above for improving the
structure of the model, if necessary, which would otherwise
not be possible. Once an appropriate model structure has
been obtained (ultimately corresponding to an insignificant
diffusion term), the parameters can then be re-calibrated
with an estimation method that emphasizes the pure sim-
ulation capabilities of the model (estimation in an OE
setting).

3. Case study: modelling a fed-batch bioreactor

To illustrate the performance of the proposed framework
in terms of improving the quality of an existing model,
a simple simulation example is considered in the follow-
ing. The process considered is a fed-batch bioreactor, where
the true model used to simulate the process is given as
follows:

dX

dt
= µ(S)X− FX

V
(35)

dS

dt
= −µ(S)X

Y
+ F(SF − S)

V
(36)

dV

dt
= F (37)

whereX is the biomass concentration,S the substrate con-
centration,V the volume,F the feed flow rate,Y = 0.5 the
yield coefficient of biomass,SF = 10 the feed concentration
of substrate, andµ(S) is the biomass growth rate, which
is described by Monod kinetics with substrate inhibition,
i.e.:

µ(S) = µmax
S

K2S2 + S +K1
(38)

where µmax = 1, K1 = 0.03 andK2 = 0.5. Using
(X0, S0, V0) = (1,0.2449,1) as initial states, simulated
data sets from two batch runs (101 samples each) are gener-
ated by perturbing the feed flow rate along a pre-determined
trajectory and subsequently adding Gaussian measurement
noise to the appropriate variables using the noise levels
mentioned beneathFig. 2. In the following it is assumed that
the model to be developed is to be used for an open-loop
application, where long-term prediction capabilities are im-
portant, and that the model maker has been able to set up
an initial model structure corresponding to (35)–(37) but is
unaware of the true structure ofµ(S) given in (38). In terms
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(a) Batch no. 1. (b) Batch no. 2.

Fig. 2. The two batch data sets available for case 1. Solid staircase: feed flow rateF ; dashed lines: biomass measurementsy1 (with N(0,0.01) noise);
dotted lines: substrate measurementsy2 (with N(0,0.001) noise); dash-dotted lines: volume measurementsy3 (with N(0,0.01) noise)).

of available measurements, two different cases are consid-
ered: A full state information case, where it is assumed
that all state variables can be measured, and a partial state
information case, where it is assumed that only the biomass
and the volume can be measured.

3.1. Case 1: full state information

The available sets of experimental data for the full state
information case are shown inFig. 2. Using these data sets
it will now be illustrated how the proposed modelling cy-
cle can be used to improve the initial model set up by the
model maker. In this particular case only two iterations of
the modelling cycle are needed. In the general case more
iterations may be needed.

3.1.1. First modelling cycle iteration

Model formulation. The first iteration of the modelling cycle
starts with the model formulation step, where it is assumed
that the model maker has been able to set up an initial model
structure corresponding to (35)–(37), which is then trans-
lated into a stochastic state space model with the following
system equation:

d



X

S

V


=




µX− FX

V

−µX

Y
+ F(SF − S)

V
F


dt

+



σ11 0 0

0 σ22 0

0 0 σ33


dωt (39)

and the following measurement equation:

y1

y2

y3



k

=



X

S

V



k

+ ek, ek ∈ N(0,S),

S =



S11 0 0

0 S22 0

0 0 S33


 (40)

where, because the true structure ofµ(S) given in (38) is
unknown, a constant growth rateµ has been assumed. As
recommended above, a diagonal parameterization of the dif-
fusion term in the system equation has been used to al-
low model deficiencies to be pinpointed if the model is
falsified.

Parameter estimation. As the next step, the unknown pa-
rameters of the model in (39) and (40) are estimated with
the ML method using the data from batch no. 1 (Fig. 2a),
which gives the results shown inTable 1.

Residual analysis. Evaluating the quality of the resulting
model is the next step. Pure simulation residual analysis is
therefore performed as shown inFig. 3, and the results of
this show that the model does a poor job, particularly fory1
andy2.

Model falsification or unfalsification. Moving to the model
falsification or unfalsification step, the poor pure simula-
tion capabilities falsify the model for its intended purpose,
which means that the modelling cycle must be repeated by
re-formulating the model.
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Fig. 3. Pure simulation residual analysis for the model in (39) and (40) with parameters inTable 1using data from batch no. 2 (Fig. 2b). Top: comparison
(solid lines are simulated values); bottom: residuals, LDF and PLDF fory1, y2 and y3.
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Table 1
Estimation results. Model in (39)–(40). Data from batch no. 1

Parameter Estimate S.D. t-Score Significant?

X0 9.6973E−01 3.4150E−02 28.3962 Yes
S0 2.5155E−01 3.1938E−02 7.8761 Yes
V0 1.0384E+00 1.8238E−02 56.9359 Yes
µ 6.8548E−01 2.2932E−02 29.8921 Yes
σ11 1.8411E−01 2.5570E−02 7.2000 Yes
σ22 2.2206E−01 3.4209E−02 6.4912 Yes
σ33 2.7979E−02 1.7943E−02 1.5594 No
S11 6.7468E−03 1.3888E−03 4.8580 Yes
S22 3.9131E−04 2.4722E−04 1.5828 No
S33 1.0884E−02 1.5409E−03 7.0633 Yes

Statistical tests. To obtain information about how to
re-formulate the model in an intelligent way, model de-
ficiencies should be pinpointed, if possible.Table 1 also
includest-scores for performing marginal tests for signifi-
cance of the individual parameters, which show that, on a
5% level, only one of the parameters of the diffusion term
is insignificant, viz.σ33, whereasσ11 andσ22 are both sig-
nificant, which indicates that the first two elements of the
drift term may be incorrect. These elements both depend
on µ and a skilled model maker, who knows how difficult
it is to model complex dynamic phenomena such as growth
rates, would immediately suspectµ to be deficient. To avoid
jumping to conclusions, the suspicion should be confirmed,
which is done by first re-formulating the model withµ as an
additional state variable, which yields the system equation:

d



X

S

V

µ


=




µX− FX

V

−µX

Y
+ F(SF − S)

V
F

0




dt

+



σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44


dωt (41)

where, becauseµ has been assumed to be constant, the last
element of the drift term is zero. The measurement equation
is the same as in (40).

Estimating the parameters of this model, using the same
data set as before, gives the results shown inTable 2, and
inspection of thet-scores for marginal tests for insignificance
now show that, of the parameters of the diffusion term, only
σ44 is significant on a 5% level. This in turn indicates that
there is substantial variation inµ and thus confirms the
suspicion thatµ is deficient.

Nonparametric modelling. Having pinpointedµ as being
deficient, nonparametric modelling can be applied as the
next step to uncover the structural origin of the deficiency.

Table 2
Estimation results. Model in (41) and (40). Data from batch no. 1

Parameter Estimate S.D. t-Score Significant?

X0 1.0239E+00 4.9566E−03 206.5723 Yes
S0 2.3282E−01 1.1735E−02 19.8405 Yes
V0 1.0099E+00 3.8148E−03 264.7290 Yes
µ0 7.8658E−01 2.4653E−02 31.9061 Yes
σ11 2.0791E−18 1.4367E−17 0.1447 No
σ22 1.1811E−30 1.6162E−29 0.0731 No
σ33 3.1429E−04 2.0546E−04 1.5297 No
σ44 1.2276E−01 2.5751E−02 4.7674 Yes
S11 7.5085E−03 9.9625E−04 7.5368 Yes
S22 1.1743E−03 1.6803E−04 6.9887 Yes
S33 1.1317E−02 1.3637E−03 8.2990 Yes

Using the re-formulated model in (40) and (41) and the
parameter estimates inTable 2, state estimateŝXk|k, Ŝk|k,
V̂k|k, µ̂k|k, k = 0, . . . , N, are obtained by means of the EKF
and an additive model is fitted to reveal the true structure
of the function describingµ by means of estimates of func-
tional relations betweenµ and the state and input variables.

It is reasonable to assume thatµ does not depend on
V and F , so only functional relations between̂µk|k and
X̂k|k and Ŝk|k are estimated, giving the results shown in
Fig. 4in the form of partial dependence plots with associated
bootstrap confidence intervals. These plots indicate thatµ̂k|k
does not depend on̂Xk|k, but is highly dependent on̂Sk|k,
which in turn suggests to replace the assumption of constant
µ with an assumption ofµ being a function ofS when the
model is re-formulated for the next iteration of the modelling
cycle. More specifically, this function should comply with
the functional relation revealed in the partial dependence
plot betweenµ̂k|k andŜk|k.

3.1.2. Second modelling cycle iteration

Model re-formulation. To a skilled model maker with ex-
perience in bioreactor modelling, the functional relation re-
vealed in the partial dependence plot betweenµ̂k|k andŜk|k
in Fig. 4 is a clear indication that the growth of biomass
is governed by Monod kinetics and inhibited by substrate,
which in the first step of the second iteration of the mod-
elling cycle makes it possible to re-formulate the model in
(39) and (40) accordingly to yield the system equation:

d



X

S

V


=




µ(S)X− FX

V

−µ(S)X

Y
+ F(SF − S)

V
F


dt

+



σ11 0 0

0 σ22 0

0 0 σ33


dωt (42)

whereµ(S) is given by the true structure in (38). The mea-
surement equation remains the same as in (40).
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Fig. 4. Partial dependence plots ofµ̂k|k vs. X̂k|k and Ŝk|k . Solid lines: estimates; dotted lines: 95% bootstrap confidence intervals (1000 replicates).

Parameter estimation. As the next step, estimation of the
unknown parameters of the re-formulated model using the
same data set as before gives the results shown inTable 3.

Residual analysis. Evaluating the quality of the resulting
model as the next step, pure simulation residual analysis is
performed as shown inFig. 5, and the results of this show
that the re-formulated model does a very good job.

Model falsification or unfalsification. Moving to the model
falsification or unfalsification step, the re-formulated model
is thus unfalsified for its intended purpose with respect to
the available information, and the model development pro-
cedure can now be terminated. As the intended purpose of
the model is to use it for an open-loop application, the pa-
rameters should ideally be re-calibrated at this point1 with
an estimation method that emphasizes the pure simulation
capabilities of the model, but this is outside the scope of the
present paper. This therefore concludes the full state infor-
mation case.

3.2. Case 2: partial state information

To illustrate that the proposed modelling cycle can also be
used when only a subset of the state variables can be mea-
sured, the previous example is repeated with the assumption
that only the biomass and the volume can be measured. The
available sets of experimental data for this partial state in-
formation case are shown inFig. 6, and, otherwise, the same

1 Inspection of the t-scores for marginal tests for insignificance
(Table 3) suggest that, on a 5% level, there are no significant parame-
ters in the diffusion term, which is confirmed by a test for simultaneous
insignificance based on Wald’sW-statistic.

Table 3
Estimation results. Model in (42) and (40). Data from batch no. 1

Parameter Estimate S.D. t-Score Significant?

X0 1.0148E+00 1.0813E−02 93.8515 Yes
S0 2.4127E−01 9.4924E−03 25.4177 Yes
V0 1.0072E+00 8.7723E−03 114.8168 Yes
µmax 1.0305E+00 1.7254E−02 59.7225 Yes
K1 3.7929E−02 4.1638E−03 9.1092 Yes
K2 5.4211E−01 2.4949E−02 21.7286 Yes
σ11 2.3250E−10 2.1044E−07 0.0011 No
σ22 1.4486E−07 7.9348E−05 0.0018 No
σ33 3.2842E−12 3.6604E−09 0.0009 No
S11 7.4828E−03 1.0114E−03 7.3982 Yes
S22 1.0433E−03 1.4331E−04 7.2804 Yes
S33 1.1359E−02 1.6028E−03 7.0867 Yes

assumptions apply with respect to the intended purpose of
the model and the availability of an initial model structure,
where the growth rate is unknown.

3.2.1. First modelling cycle iteration

Model formulation. The first iteration of the modelling cycle
again starts with the model formulation step, where it is
assumed that the model maker has been able to set up an
initial model structure corresponding to (35)–(37), which
is translated into a stochastic state space model with the
following system equation:

d



X

S

V


=




µX− FX

V

−µX

Y
+ F(SF − S)

V
F


dt

+



σ11 0 0

0 σ22 0

0 0 σ33


dωt (43)
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Fig. 5. Pure simulation residual analysis for the model in (40) and (42) with parameters inTable 3using data from batch no. 2 (Fig. 2b). Top: comparison
(solid lines are simulated values); bottom: residuals, LDF and PLDF fory1, y2 and y3.
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(a) Batch no. 1. (b) Batch no. 2.

Fig. 6. The two batch data sets available for case 2. Solid staircase: feed flow rateF ; dashed lines: biomass measurementsy1 (with N(0,0.01) noise);
dash-dotted lines: volume measurementsy2 (with N(0,0.01) noise)).

and the following modified measurement equation:(
y1

y2

)
k

=
(
X

V

)
k

+ ek, ek ∈ N(0,S),

S =
[
S11 0

0 S22

]
(44)

where, because the true structure ofµ(S) given in (38) is
unknown, a constant growth rateµ has again been assumed.

Parameter estimation. Estimating the unknown parameters
of the model in (43) and (44) using the data from batch no.
1 (Fig. 6a) gives the results shown inTable 4.

Residual analysis. Evaluating the quality of the resulting
model, the pure simulation residual analysis results inFig. 7
shows that the model does a poor job.

Model falsification or unfalsification. Again the model is
thus falsified for its intended purpose, and the modelling

Table 4
Estimation results. Model in (43)–(44). Data from batch no. 1

Parameter Estimate S.D. t-Score Significant?

X0 9.6230E−01 1.2996E−02 74.0451 Yes
V0 1.0272E+00 2.1417E−02 47.9641 Yes
µ 6.8730E−01 2.1875E−02 31.4198 Yes
σ11 1.8846E−01 3.9179E−02 4.8104 Yes
σ22 8.7290E−03 1.8577E−03 4.6989 Yes
σ33 1.7391E−02 1.5107E−02 1.1512 No
S11 6.7225E−03 1.0795E−03 6.2273 Yes
S22 1.1078E−02 1.5137E−03 7.3184 Yes

cycle must be repeated by re-formulating the model once its
deficiencies have been pinpointed, if possible.

Statistical tests. Table 4also includest-scores for perform-
ing marginal tests for significance of the individual param-
eters, and, as in the full state information case, these show
that, on a 5% level, onlyσ33 is insignificant, whereas the
other parameters of the diffusion term are both significant.
This indicates that the first two elements of the drift term
may be incorrect, and hence thatµ is a possible suspect
for being deficient. To confirm this suspicion the model is
re-formulated withµ as an additional state variable to yield
the system equation:

d



X

S

V

µ


=




µX− FX

V

−µX

Y
+ F(SF − S)

V
F

0




dt

+



σ11 0 0 0

0 σ22 0 0

0 0 σ33 0

0 0 0 σ44


dωt (45)

and the measurement equation in (44). The parameters of
this model are estimated using the same data set as before
to give the results shown inTable 5, and inspection of the
t-scores again show that onlyσ44 is now significant on a
5% level, which in turn indicates that there is substantial
variation in µ and thus confirms the suspicion thatµ is
deficient.
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Fig. 7. Pure simulation residual analysis for the model in (43) and (44) with parameters inTable 4using data from batch no. 2 (Fig. 6b). Top: comparison
(solid lines are simulated values); bottom: residuals, LDF and PLDF fory1 and y2.

Nonparametric modelling. The structural origin of the defi-
ciency can again be uncovered by using the re-formulated
model in (44) and (45) and the parameter estimates inTable 5
to obtain state estimateŝXk|k, Ŝk|k, V̂k|k, µ̂k|k, k = 0, . . . , N,
and by fitting an additive model to reveal the true structure
of the function describingµ.

Assuming again thatµ does not depend onV andF , the
partial dependence plots shown inFig. 8 are obtained. In
this case there seems to be a dependence betweenµ̂k|k and
both X̂k|k and Ŝk|k. However, since the dependence onŜk|k
is much stronger than the dependence onX̂k|k, this again
suggests to replace the assumption of constantµ with an



1446 N.R. Kristensen et al. / Computers and Chemical Engineering 28 (2004) 1431–1449

Table 5
Estimation results. Model in (45) and (44). Data from batch no. 1

Parameter Estimate S.D. t-Score Significant?

X0 1.0069E+00 2.1105E−02 47.7095 Yes
V0 1.0250E+00 2.7800E−02 36.8687 Yes
µ0 8.1305E−01 1.2223E−01 6.6516 Yes
σ11 8.5637E−05 5.5485E−05 1.5434 No
σ22 8.2654E−03 8.5005E−03 0.9723 No
σ33 1.5241E−02 2.4948E−02 0.6109 No
σ44 1.4751E−01 4.5181E−02 3.2648 Yes
S11 7.7509E−03 1.1338E−03 6.8362 Yes
S22 1.1118E−02 1.5652E−03 7.1033 Yes

assumption ofµ being a function ofS when the model is
re-formulated for the next iteration.

3.2.2. Second modelling cycle iteration

Model re-formulation. Although less obvious, the functional
relation revealed in the partial dependence plot between
µ̂k|k and Ŝk|k in Fig. 8, is again an indication to a skilled
model maker that the growth rate of biomass can be appro-
priately described with Monod kinetics and substrate inhi-
bition, which allows the model to be re-formulated to yield
the system equation:

d



X

S

V


=




µ(S)X− FX

V

−µ(S)X

Y
+ F(SF − S)

V
F


dt

+



σ11 0 0

0 σ22 0

0 0 σ33


dωt (46)

Fig. 8. Partial dependence plots ofµ̂k|k vs. X̂k|k and Ŝk|k . Solid lines: estimates; dotted lines: 95% bootstrap confidence intervals (1000 replicates).

Table 6
Estimation results. Model in (46) and (44). Data from batch no. 1

Parameter Estimate S.D. t-Score Significant?

X0 1.0137E+00 1.6790E−02 60.3759 Yes
V0 1.0118E+00 1.1571E−02 87.4443 Yes
µmax 1.0679E+00 1.4353E−01 7.4405 Yes
K1 4.1664E−02 3.2800E−02 1.2702 No
K2 6.3372E−01 1.8116E−01 3.4980 Yes
σ11 6.8577E−11 2.2270E−08 0.0031 No
σ22 7.9677E−06 1.1223E−03 0.0071 No
σ33 1.4241E−07 2.6577E−05 0.0054 No
S11 7.4094E−03 1.0986E−03 6.7447 Yes
S22 1.1364E−02 1.6193E−03 7.0174 Yes

whereµ(S) is given by the true structure in (38), while the
measurement equation remains the same as in (44).

Parameter estimation. Estimating the unknown parameters
of the re-formulated model using the same data set as before
gives the results shown inTable 6.

Residual analysis. Examining the pure simulation residual
analysis results shown inFig. 9, there still seems to be
some non-random variation left in the cross-validation data
set that is not explained by the model. This may be at-
tributed to the fact that the data set used for parameter esti-
mation and the cross-validation data set cover different re-
gions of state space, which, because only partial state infor-
mation is available, the model is more sensitive to in this
case.

Model falsification or unfalsification. In principle, although
the results obtained with the re-formulated model are
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Fig. 9. Pure simulation residual analysis for the model in (44) and (46) with parameters inTable 6using data from batch no. 2 (Fig. 6b). Top: comparison
(solid lines are simulated values); bottom: residuals, LDF and PLDF fory1 and y2.

much better than those obtained with the initial model,
the re-formulated model is thus falsified for its intended
purpose, and the modelling cycle should be repeated by
re-formulating the model again. However, in the context of
the proposed framework, all information available in the
data set used for estimation has been exhausted, because
a model has been developed where the diffusion term is

insignificant.2 In other words it is not possible to pinpoint
any model deficiencies directly, because these deficiencies

2 Inspection of the t-scores for marginal tests for insignificance
(Table 6) suggest that, on a 5% level, there are no significant parame-
ters in the diffusion term, which is confirmed by a test for simultaneous
insignificance based on Wald’sW-statistic.
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are only revealed by the cross-validation data set and not by
the data set used for estimation. Ideally, the parameters of the
model should thus be re-estimated using the cross-validation
data set as well before re-formulating the model, but this
takes away the possibility of easily evaluating the quality of
the resulting model through cross-validation, unless more
data is obtained. A discussion of possible ways to resolve
this issue is outside the scope of the present paper, and this
thus concludes the partial state information case.

4. Discussion

The case study presented in the previous section illus-
trates the strength of the proposed stochastic grey-box mod-
elling framework in terms of facilitating systematic model
improvement. A key feature in this regard is the ability to
pinpoint and subsequently uncover the structural origin of
model deficiencies by means of estimates of unknown func-
tional relations, and another key result is that this is also
possible in situations where all process variables cannot be
measured. More specifically, the full state information case
demonstrates that a high quality estimate of the functional
relation between the biomass growth rate, which cannot be
measured, and the substrate concentration, which is mea-
sured, can easily be obtained, and the partial state informa-
tion case demonstrates that a similar estimate, of lower qual-
ity, can be obtained without measuring the substrate con-
centration.

The lower quality of the estimate obtained in the partial
state information case is due to the fact that the performance
of the proposed framework is limited by the quality and
amount of available experimental data, in the sense that, if
the available data is insufficiently informative, e.g. due to
large measurement noise, or if the available measurements
render certain subsets of the state variables of the system
unobservable, parameter identifiability and hence the relia-
bility of the proposed methods for pinpointing and uncov-
ering the structural origin of model deficiencies is affected.
Experimental design and selection of appropriate measure-
ments are thus key issues that must also be addressed in
model development, but these are outside the scope of the
present paper. The performance of the proposed stochastic
grey-box modelling framework is also limited by the quality
and amount of available prior information, and if there is in-
sufficient information to establish an initial model structure,
it may not be worthwhile to use this approach as opposed
to a black-box modelling approach. Furthermore, the model
maker must be able to determine the specific phenomenon
causing a pinpointed model deficiency in order to uncover its
structural origin, and this may not always be possible either.
If, however, sufficient prior information and experimental
data is available, the proposed framework is very powerful
as a tool for systematic model improvement. In particular,
it relies less on the model maker than other approaches
to stochastic grey-box modelling(Bohlin & Graebe, 1995;

Bohlin, 2001)and also prevents him or her from having
to resort to using black-box models for filling gaps in the
model. This is due to the fact that estimates of unknown
functional relations can be obtained and visualized directly.

The proposed framework may be seen as a stochas-
tic grey-box model generalization of the well-developed
methodologies for identification of linear black-box models
(Box & Jenkins, 1976; Ljung, 1987; Söderström & Stoica,
1989). However, unlike in the linear case, where conver-
gence is guaranteed if certain conditions of identifiability
of parameters and persistency of excitation of inputs are
fulfilled, no rigorous proof of convergence is available for
the framework proposed here. Nevertheless, the case study
presented in the previous section has demonstrated that the
proposed framework can indeed be used to obtain valuable
information to facilitate faster model development.

5. Conclusion

A systematic framework for improving the quality of con-
tinuous time models of dynamic systems based on exper-
imental data has been presented. The proposed stochastic
grey-box modelling framework is based on an interplay be-
tween stochastic differential equation modelling, statistical
tests and nonparametric modelling and provides features that
allow model deficiencies to be pinpointed and their struc-
tural origin to be uncovered to improve the model. A key
result in this regard is that the proposed framework can be
used to obtain nonparametric estimates of unknown func-
tional relations, which allows unknown or inappropriately
modelled phenomena to be uncovered and proper paramet-
ric expressions to be inferred from the estimated functional
relations. The performance of the proposed framework has
been illustrated through a case study involving a dynamic
model of a fed-batch bioreactor, where it has been shown
how an inappropriately modelled biomass growth rate can
be uncovered and a proper parametric expression inferred. A
key point illustrated through this case study is that estimates
of functional relations involving only unmeasured variables
can also be obtained.
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