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Abstract

A systematic framework for improving the quality of continuous time models of dynamic systems based on experimental data is presented.
The framework is based on an interplay between stochastic differential equation modelling, statistical tests and nonparametric modelling and
provides features that allow model deficiencies to be pinpointed and their structural origin to be uncovered. More specifically, the proposed
framework can be used to obtain estimates of unknown functional relations, in turn allowing unknown or inappropriately modelled phenomena
to be uncovered. In this manner the framework permits systematic iterative model improvement. The performance of the proposed framework
is illustrated through a case study involving a dynamic model of a fed-batch bioreactor, where it is shown how an inappropriately modelled
biomass growth rate can be uncovered and a proper functional relation inferred. A key point illustrated through this case study is that functional
relations involving unmeasured variables can also be uncovered.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction Such models are often very detailed, because they must be
able to capture nonlinear effects in order to be valid over
Dynamic process models are used in many areas of chemwide ranges of state space, and, as a consequence, devel-
ical engineering and for many different purposes. Dynamic oping such models may be difficult and time-consuming.
model development is therefore inherently purpose-driven Indeed, the corresponding model development procedure is
in the sense that the required accuracy of a model, in termsby no means guaranteed to converge, and few tools for
of prediction capabilities, depends on its intended appli- making inferences about the structure of such models are
cation. More specifically, models intended for open-loop available.
applications such as process simulation and optimisation, For closed-loop applications, much simpler input—output
where long-term prediction capabilities are important, must models orblack-boxmodels developed from experimental
be more accurate than models intended for closed-loop ap-data with methods for time series analysis and system iden-
plications such as standard feedback control, where onlytification can often be use(Box & Jenkins, 1976; Ljung,
short-term prediction capabilities are needed. However, to 1987; Soderstrém & Stoica, 198%uch models only have
be more accurate, a model must be more complex, whichto be valid for a small range of state space, typically close
means that it will be more difficult and time-consuming to to a constant operating point, which means that nonlinear
develop. Finding a suitable model for a given purpose thus effects can be neglected, making model development much
involves a trade-off between required model accuracy and faster. Furthermore, well-developed tools for structural iden-
affordable model complexityRaisch, 200Q) tification of such linear models are available and the cor-
For open-loop applications, ordinary differential equation responding model development procedure is guaranteed to
(ODE) models owhite-boxmodels developed from first en-  converge if certain conditions of identifiability of parame-
gineering principles and physical insights are typically used. ters and persistency of excitation of inputs are fulfilled.
Model-based optimizing control of batch and fed-batch
processes, e.g. by means of nonlinear model predictive con-
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where neither of the above modelling approaches is ideal.ficiently accurate model is obtained, which means that he
On one hand, a model is needed, which is sufficiently accu- or she may have to resort to using black-box models for
rate to be used for long-term prediction over wide ranges of filling the gaps. In the present paper a stochastic grey-box
state space, but on the other hand, the affordable model commodelling framework is proposed, which relies less on the
plexity is low due to the importance of time-to-market is- model maker. Within this framework specific model defi-
sues in the biochemical, pharmaceutical and specialty chem-ciencies can be pinpointed and their structural origin can
icals industries, where batch and fed-batch processes aréde uncovered, which provides the model maker with valu-
common. able information about how to formulate new hypotheses

A methodology that provides an appealing trade-off be- to improve the model. This clearly speeds up the iterative
tween the white-box and black-box approachegréey-box model development procedure, and, as an additional bene-
modelling, where mechanistic and empirical model compo- fit, also prevents the model maker from having to resort to
nents are combined, which may be done in a deterministic using black-box models for filling the gaps, when all prior
as well as a stochastic setting. Not disregarding the impor- physical knowledge is exhausted. The key to obtaining in-
tance of deterministic grey-box modelling, the remainder of formation about how to improve the model is the ability of
the present paper will be concerned with stochastic grey-boxthe proposed framework to provide estimates of unknown
modelling (Madsen & Melgaard, 1991; Melgaard & functional relations, allowing unknown or inappropriately
Madsen, 1993; Bohlin & Graebe, 1995; Bohlin, 200the modelled phenomena to be uncovered. These estimates are
key idea of which is to find the simplest model for a given obtained by making use of the PED and other properties
purpose, which is consistent with prior physical knowledge of stochastic state space models along with nonparametric
and not falsified by available experimental data. In the ap- modelling. The integration of nonparametric modelling with
proach byBohlin and Graebe (199%)ndBohlin (2001)this conventional stochastic grey-box modelling into a system-
is done by formulating a sequence of hypothetical model atic framework for model improvement is the key result of
structures of increasing complexity and systematically the paper. The remainder of the paper is organized as fol-
expanding the model by falsifying incorrect hypotheses lows: InSection 2he details of the proposed framework are
through statistical tests based on the experimental data. Thisoutlined and inSection 3a case study illustrating its perfor-
way models can be developed, which have almost the samemance is presented. Bection 4a discussion of important
validity range as white-box models, but it can be done in a results is given and iBection She conclusions of the paper
less time-consuming manner and the models are guaranteedre presented.
not to be overly complex.

Stochastic grey-box models are stochastic state space
models consisting of a set of stochastic differential equa- 2. Methodology
tions (SDEs)(@ksendal, 1998)escribing the dynamics of
the system in continuous time and a set of discrete time In this section the details of the proposed stochastic
measurement equations. A considerable advantage of suclyrey-box modelling framework are outlined. The frame-
models as opposed to white-box models is that they are de-work is shown inFig. 1in the form of a modelling cycle
signed to accommodate random effects. In particular, they comprising the individual steps of the model development
allow for a decomposition of the noise affecting the system procedure. A key idea of stochastic grey-box modelling
into a process noise term and a measurement noise termis to use all relevant prior physical knowledge, for which
As a consequence of thigrediction error decomposition  reason the first step within the modelling cyclenmdel
(PED), unknown parameters of stochastic grey-box models (re)formulationbased on first engineering principles, where
can be estimated from experimental data ipradiction the idea is to formulate an initial model structure (first mod-
error (PE) setting(Young, 1981) whereas for white-box  elling cycle iteration) or make modifications to this structure
models it can only be done in autput error (OE) setting (subsequent iterations). The second step within the mod-
(Young, 1981) which tends to give biased and less repro- elling cycle isparameter estimatignwhere the idea is to
ducible results, because random effects are absorbed int@stimate unknown parameters of the model from available
the parameter estimates, particularly if the model structure experimental data, and the third steprésidual analysis
is incorrect. Furthermore, PE estimation allows a number where the idea is to evaluate the quality of the resulting
of powerful statistical tools to be applied to give indications model by means of cross-validation. The fourth step within
for possible improvements to the model structure. the modelling cycle is the important step wfodel falsifi-

Stochastic grey-box modelling as presente@blin and cation or unfalsificationwhich deals with whether or not,
Graebe (1995andBohlin (2001)is an iterative and inher-  based on the available information, the model is sufficiently
ently interactive procedure, because it relies on the modelaccurate to serve its intended purpose. If the model is unfal-
maker to formulate the specific hypothetical model struc- sified, the model development procedure can be terminated,
tures to be tested to improve the model. As pointed out but if the model is falsified, the modelling cycle must be
by Bohlin (2001) this poses the problem that the model repeated by re-formulating the model. A key feature of the
maker may run out of ideas for improvement before a suf- proposed framework is that, in the latter case, the PED and
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Fig. 1. The proposed modelling cycle. The boxes in grey illustrate tasks and the boxes in white illustrate inputs to and outputs from the modelling cycl

other properties of stochastic state space models can be exyector of input variablesy, € R' is a vector of measured
ploited to facilitate the task at hand. More specifically, the output variables§ € R” is a vector of possibly unknown
statistical testof the fifth step within the modelling cycle parametersf(-) € R", (-) € R™" andh(-) € R! are non-
can be applied to provide indications of which parts of the |inear functions{w,} is ann-dimensional standard Wiener
model that are deficient, and tmmnparametric modelling process andey} is an/-dimensional white noise process
techniques of the sixth step can be applied to provide es-with ¢, € M0, S(uy, #, #)). The first term on the right-hand
timates of the functional relations needed to repair these side of (2) is called therift term and is a deterministic term
deficiencies in order to improve the model. In the remainder equivalent to the term on the right-hand side of (1), whereas
of this section the individual steps are described in more the second term on the right-hand side of (2) is called the
detail and an algorithm for systematic model improvement diffusionterm and is a stochastic term included to accom-

based on the proposed modelling cycle is presented. modate random effects due to, e.g. approximation errors or
_ unmodelled phenomena. A detailed account of the theory
2.1. Model (re)formulation behind SDEs is given bgksendal (1998)

The diffusion term is the key to the proposed procedure
In the first step of the proposed modelling cycle, the idea for systematic model improvement, because estimation of
is to formulate an initial model structure. This is a two-step the parameters of this term from experimental data provides
procedure, because it involves derivation of a standard ODEa measure of model uncertainty.
model from first engineering principles and translation of  The translation of the ODE model into a stochastic state
the ODE model into a stochastic state space model consist-space model does not affect the parameters of the drift term,
ing of a set of SDEs and a set of discrete time measurementyhich means that their physical interpretability is preserved.
equations. Deriving an ODE model from first engineering

principles is a standard discipline for most chemical engi- Remark 1. The standard Wiener procegs,} driving the

neers and yields a model of the following type: SDEs in (2) is a continuous stochastic process with station-
dx; 1 ary and independent Gaussian time increments, which have
dr S e ur,1,0) 1) zero mean and a covariance that is equal to the size of the

wherer € R is time,x; € R" is a vector of balanced quanti- time incremen{Jazwinski, 1970)

ties or state variables, € R™ is a vector of input variables
and@ € R” is a vector of possibly unknown parameters,
and wheref(-) € R" is a nonlinear function. Translating
the ODE model into a stochastic state space model is also

straightforward, as it can simply be done by replacing the ) S )
g Py y rep g and in the sense of dt(Jazwinski, 197Q) but since the

ODEs with SDEs and adding a set of algebraic equations o A i .
describing how measurements are obtained at discrete timeStra_tonOV'Ch_ Interpretation 1S ynswtable_ for parameter esti-
instants. This yields a model of the following type: mation (Astrém, 1970) the 1© interpretation is adapted in

Remark 2. The notation used in (2) is shorthand for the

corresponding integral interpretation and is therefore am-
biguous unless a specific integral interpretation is given.
SDEs may be interpreted both in the sense of Stratonovich

the following.
dx; = f(x:, us, 1,0) dr + o(uy, 1, 0) de; 2
i = h(xp, ug, 1, 0) + ex 3) 2.2. Parameter estimation
wherer € R is time @, k = 0,..., N are sampling in- In the second step of the proposed modelling cycle the

stants)x, € R” is a vector of state variables, € R™ is a idea is to estimate the unknown parameters of the stochastic
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state space model (2) and (3) from experimental data. Theg — arg min{— In(Z (6; Ynlyo)) (10)
solution to (2) is a Markov process, and hence an estimation b<®

scheme based on probabilistic methods can be applied. Awhere, for each set of parametérin the optimisationg
brief outline of the scheme used within the proposed frame- ;4 Ryc—1 are computed recursively by means of the EKF.
work is given in the following. A more detailed account is

given byKristensen, Madsen, and Jgrgensen (2003) 2.2.2. Maximum a posteriori (MAP) estimation

If prior information about the parameters is available and
given in the form of a prior probability density() for the
parameters, Bayes’ rule can be applied to give an improved
estimate by forming the posterior probability density:

2.2.1. Maximum likelihood (ML) estimation

Given a sequence of measuremepgsys, ..., Yis - -« »
¥, ML estimates of the unknown parameters in (2) and (3)
can be determined by finding the parameggifsat maximize vl p®)
the likelihood function, i.e. the joint probability density: POIYN) = PINITIPY) P(Vn10)p(8) (11)

pn)
L(O; YN) = pINIO) = p(Yn: YN-1,--- - Y1 Y0lO)  (4)
, ] and subsequently finding the parameters that maximize this
or equivalently: function, i.e. by performing MAP estimation. By assuming

N that the prior probability density of the parameters is Gaus-
L@; Yn) = <1_[ PVl Vi—1, 0)) p(yol®) (5) sian, and by introducing the notation:
k=1
e = E{0} (12)

where the ruleP(A N B) = P(A|B)P(B) has been applied

to form a product of conditional probability densities. Xy = V{0} (13)
In order to obtain an exact evaluation of the likelihood

function, a general nonlinear filtering problem must be € =0—ny (14)

solved (Jazwinski, 197Q)but this is computationally in-  the posterior probability density can be rewritten:
feasible in practice. However, since the increments of the

standard Wiener procegs;,} driving the SDEs in (2) are ) (ﬁ EXP(—(1/2)€ZR,:|,%_161¢)) ol6)
Gaussian, it is reasonable to assume that the conditionalp N) X | PWYo
probability densities in (5) can be well approximated by k=1 V4R -1 (V)

Gaussian densities. Thus a method based on the much exp(_(l/z)fgzo—lee)

simpler extended Kalman filter (EKF) can be applied. X ez (o) (15)

Remark 3. The validity of the Gaussianity assumption can and the parameter estimates can now be determined by con-

be checked subsequent to the estimation, and a number otlitioning onyy and solving the nonlinear optimisation prob-

different methods are available for this purpadelét, Holst, lem:

Madsen, & Melgaard, 199Bak, Madsen, & Nielsen, 1999 N .

However, the assumption is only likely to hold if the structure 0= afgg‘;g‘{— IN(p(61 Y. yo))}

of the model is appropriate, and it may therefore not be

strictly correct in the initial iterations of the modelling cycle. Remark 4. If no prior information is available f£(#) uni-

Nevertheless, the corresponding estimation results can beform), this formulation reduces to the ML formulation in

used to provide indications for model improvement as shown (10). Thus, it can be seen as a generalization of the ML for-

in the next sections. mulation. In fact, this formulation also allows for MAP esti-
mation on a subset of the parametepsdj partly uniform).

The Gaussian density is completely characterized by its

(16)

mean and covariance, so by introducing the notation: 2.2.3. Using multiple independent data sets

“ If multiple consecutive, but stochastically independent,
=F _1.0 6 :

Vi1 = Eel V1. 6} © sequences of measuremedty . D4,.... . V. ... Wy,

Riji—1 = V{yi| V-1, 0} (7) are available, a similar estimation method can be applied by

A expanding the posterior probability density to:
€ = Yk — Yrlk—1 (8)

_ 1 i
the likelihood function can be rewritten: pOIY) = p@1 Yy, y’z\’Z’ RERRVIREE ’y’s\’s])

N exp(—(1/2)€] Riji_1€x) S exp(— (/DT (R )T
L®: Vy) = 6 (9 oo ([T{IT . AL
0; IYN) <g \/m( )] p(yol®) (9 i1 izt \/W;dk—l)( /27)!

and the parameter estimates can be determined by condition- exp(—(1/2)¢; X, ep)
ing on yo and solving the nonlinear optimisation problem: /det(Xg) (+/27)P

(17)
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and the parameter estimates can now be determined by con{X;}, which can be explained by the observationsXef.

ditioning onyy = [y3. ¥3. ..., ¥h. ..., yjl and solving the  Likewise, being an extension of the SPACF, the PLDF can
nonlinear optimisation problem: be interpreted as being, for each faghe relative decrease
A . in one-step-ahead prediction variation when includihgy

0= argarzé)n{— In(p@IY. yo))} (18) as an extra predictor.

Remark 5. If only one sequence of measurements is avail-  Unlike the SACF and the SPACF, the LDF and the PLDF
able (§ = 1), this formulation reduces to the MAP formula- can also detect certain nonlinear lag dependencies and are
tion in (16). Thus, it can be seen as a generalization of the therefore extremely useful for residual analysis within the
MAP formulation for multiple independent data sets. proposed framework. More details about these and other
similar tools are given byielsen and Madsen (20Q1)

In the estimation scheme used within the proposed frame-
work the nonlinear optimisation problem (18) is solved by Remark 7. If the Gaussianity assumption mentioned in
means of a quasi-Newton method incorporating the BFGS Section 2.2holds, which is only likely to be the case in the
updating formula and a soft line search algorithm. More de- final iterations of the modelling cycle, i.e. when an appro-
tails about this method and about how robustness towardspriate model structure has been obtained, the statistical tests
outliers and missing observations has been incorporated intodescribed inSection 2.5can also be applied in the evalu-
the estimation scheme are givenKsistensen et al. (2003) ation of the quality of the model. More specifically, it can
who also demonstrate the general efficiency and consistencybe determined if some of the parameters of the model are
of the scheme, especially with respect to the parameters ofinsignificant, indicating that the model is overparameterized
the diffusion term, which is of key importance within the and that these parameters may be eliminated.
proposed framework.

2.4. Model falsification or unfalsification
2.3. Residual analysis
In the fourth step of the proposed modelling cycle, the

In the third step of the proposed modelling cycle, the idea idea is to determine whether or not, based on the information
is to evaluate the quality of the model once the unknown obtained in the previous step, the model is sufficiently accu-
parameters have been estimated. rate to serve its intended purpose. This essentially involves

An important aspect in assessing the quality of the model a completely subjective decision by the model maker, ad-
is to investigate its predictive capabilities by performing dressing the trade-off between required model accuracy and
cross-validation and examining the corresponding residuals.affordable model complexity for the particular application.
Depending on the intended application of the model this Nevertheless, a few guidelines can be given.
should be done in either a one-step-ahead prediction setting For models intended for closed-loop applications such as
(closed-loop applications) or in a pure simulation setting standard feedback control, where only short-term prediction
(open-loop applications). In either case a number of differ- capabilities are important, whiteness of cross-validation

ent methods can be appli¢dolst et al., 1992) residuals obtained in a one-step-ahead prediction setting
One of the most powerful of these methods is to com- is a good indication of sufficient model accuracy. On the
pute and inspect theample autocorrelation functigqgs ACF) other hand, for models intended for open-loop applica-

and thesample partial autocorrelation functioSPACF) tions such as process simulation and optimisation, where
(Brockwell & Davis, 1991)of the residuals to detect if they long-term prediction capabilities are important, whiteness
can be regarded as white noise or if there are significant lagof cross-validation residuals obtained in a pure simulation
dependencies, i.e. correlations between current and laggedsetting is a very good such indication. However, sufficient
values of the residuals, as this indicates that the predictiveinformation may not be available to achieve this, and the

capabilities of the model are not perfect. model maker may have to settle for less.

Nielsen and Madsen (200Xgcently presented exten- If, with respect to the available information, the model
sions of these linear tools to nonlinear systems in the is unfalsified for its intended purpose, the model develop-
form of the lag-dependence functiofLDF) and thepar- ment procedure can be terminated. If, on the other hand, the

tial lag-dependence functiofPLDF), which are based on model is falsified, the modelling cycle must be repeated by
a close relation between correlation coefficients and the re-formulating the model. In the latter case, the properties of
coefficients of determination for regression models. This the model in (2) and (3) facilitate the task at hand as shown
relation allows for an extension to nonlinear systems by in the following.
incorporating various nonparametric regression models.

2.5. Statistical tests
Remark 6. Being an extension of the SACF, the LDF can
be interpreted as being, for each fadhe part of the overall In the fifth step of the proposed modelling cycle, which
variation in the observations &f, from a stochastic process is only needed if the model has been falsified and needs to
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be improved, the idea is to apply statistical tests to provide
indications of which parts of the model that are deficient.
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Due to correlations between the individual parameter es-
timates, a series of such marginal tests cannot be used to

The key statistical tests needed for this purpose are tests foitest the hypothesis that a subset of the parametgrs, 0,

significance of the individual parameters, particularly the
parameters of the diffusion term.

Remark 8. The residual analysis tools mentioned in
Section 2.3can also be applied in the analysis of possi-
bilities for model improvement, at least if it holds that the

are simultaneously insignificant:

Hy:0,=0 (26)
against the alternative that they are not:
Hi:0,#0 (27)

residuals can be regarded as a realization from a stationaryjence a test that takes correlations into account must be used

stochastic process. More specifically, like the SACF and the
SPACF, the LDF and the PLDF can be applied for structural
identification(Nielsen & Madsen, 2001e.g. to determine

if more state variables are needed.

An estimate of the uncertainty of the individual parame-
ter estimates can be obtained by using the fact that by the
central limit theorem the estimator in (18) is asymptotically
Gaussian with mea# and covariance:

instead, e.g. a likelihood ratio test, a Lagrange multiplier test
or a test based on Wald'®-statistic (Holst et al., 1992)
Under Hy the test quantities for these tests all have the same
asymptoticy2-distribution with a number of degrees of free-
dom that equals the number of parameters subjected to the
test(Holst et al., 1992)However, in the context of the pro-
posed framework the test based on Wal@sstatistic has

an advantage in that no re-estimation is required, because it
can simply be computed as follows:

r,=H" 19 N R
o (19) W,) =0, 379, € x*(dim(@,)) (28)
where the matrix is given by: 0
52 where, C @ is the subset of the parameter estimates sub-
{hij} =—E {W In(p(01Y, yo))} , jected to the test and; is the corresponding covariance
o e matrix, which can be computed as follows:
,j=1,...,p (20)
_ _ ¥, = EX;E" (29)
and where an estimate @& can be obtained from: *
2 whereE is a permutation matrix, which can be constructed
{hij} = — <80»89» In(p0)Y, yo))) K from a unit matrix by eliminating the rows corresponding to
i0Yj 0=0 parameter estimates not subjected to the test.
ij=1,...,p (21)

which is simply the Hessian evaluated at the minimum of the
objective function in (18). To obtain a measure of the uncer-
tainty of the individual parameter estimates, the covariance
matrix can be decomposed:

(22)

into o, which is a diagonal matrix of the standard devia-
tions of the parameter estimates, aRdwhich is the cor-
responding correlation matrix. The asymptotic Gaussianity
of the estimator in (18) also allows marginatests to be
performed to test the hypothesis:

E@ = O'aRo'a

Hp:0;=0 (23)
against the corresponding alternative:
Hy:6;#0 (24)

i.e. to test whether a given paramefgris insignificant or
not. The test quantity is the value of the parameter estimate
6; divided by the standard deviation of the estimajeand

under Hyp this quantity is asymptoticalIy—distributeé with

Remark 9. Strictly speaking, these tests can only be ap-
plied if the Gaussianity assumption mentione&atction 2.2
holds, which is only likely to be the case if the structure
of the model is appropriate, i.e. in the final iterations of the
modelling cycle. Nevertheless, the corresponding test results
can be used to provide indications for model improvement
as shown in the following.

The above tests for insignificance provide the necessary
framework for obtaining indications of which parts of the
model that are deficient. In principl@significantparam-
eters are parameters that may be eliminated, and the pres-
ence of such parameters is therefore an indication that the
model is overparameterized. On the other hand, because of
the particular nature of the model in (2) and (3), where the
diffusion term is included to account for random effects due
to, e.g. approximation errors or unmodelled phenomena, the
presence obignificantparameters in the diffusion term is
an indication that the corresponding drift term may be in-
correct, which in turn provides an uncertainty measure that

a number of degrees of freedom that equals the number ofallows model deficiencies to be detected. If, instead of the

data points minus the number of estimated parameters, i.e.g

.
z2(0)) = — €t

0p.

J

S

ZNi—P

i=1

(25)

()

eneral parameterization of the diffusion term indicated in
(2), a diagonal parameterization is used, this also allows the
deficiencies to be pinpointed in the sense that deficiencies
in specific elements of the drift term can be detected.
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2.5.1. Pinpointing model deficiencies structural origin of these deficiencies. The procedure for ac-
If a diagonal parameterization of the diffusion term in (2) complishing this is based on a combination of the applicabil-
is used, the presence of significant parameters in a givenity of stochastic state space models for state estimation and
diagonal element is an indication that the corresponding el- the ability of nonparametric regression methods to provide
ement of the drift term may be incorrect. This is valuable visualizable estimates of unknown functional relations.
information for the model maker, as it indicates that some of
the inherent phenomena of this term may be inappropriately 2.6.1. Estimating unknown functional relations
modelled. If, by using physical insights, the model maker  Using the re-formulated model in (31) and (32) and the
is able to subsequently select a specific phenomena modetorresponding parameter estimates, state estirrﬁj@s
for further analysis, the proposed framework also provides k = 0, ..., N, can be obtained for a given set of experi-
means to confirm the suspicion that this model is inappro- mental data by applying the EKF. In particular, since the
priate, if it is in fact true. inappropriately modelled phenomenen is included as
Typical suspect phenomena models include models of re-an additional state variable in this model, estimatgs,
action rates, heat and mass transfer rates and similar complex = 0, ... , N, can be obtained, which in turn facilitates ap-
dynamic phenomena, all of which can usually be described plication of nonparametric regression to provide estimates
using functions of the state and input variables, i.e.: of possible functional relations betwegrand the state and

_ 0 (30) input variables.
ri = ¢, . 0) Several nonparametric regression techniques are avail-

wherer, is a phenomenon of interest apd) < R is the non- able Hastie, Tibshirani, & Friedmap_, 200 1but in the con-
linear function used by the model maker to describe it. To t€xt of the proposed frameworkdditive modelgHastie &
confirm the suspicion that(-) is inappropriate, the param- T|bsh|ran|, 1990)are preferred., becquse flttlng ;uch mod-
eter estimation step must be repeated with a re-formulated®!s circumvents the curse of dimensionality, which tends to
version of the model in (2) and (3) to give new informa- render nonparametric regression infeasible in higher dimen-
tion. sions, and because results obtained with such models are

More specifically, ifr, is isolated by including it in the ~ Particularly easy to visualize, which is important.
re-formulated model as an additional state variable, i.e.:

. . s . . Remark 11. Additive models are nonparametric extensions
dxf = f7(, ur, 1, 0) dt + 0™ (ur, 1,0) doy (31)  of linear regression models and are fitted by using a train-
ing data set of observations of several predictor variables
X1, ..., X, and a single response varialleo compute a
wherex! =[x r]7, 6*(-) € R"+Dx0+D and{w?} is an smoothed estimate of the response variable for a given set of
(n + 1)-dimensional standard Wiener process and where: Vvalues of the predictor variables. This is done by assuming

that the contributions from each of the predictor variables

Vi = h(x, g, te, 0) + e (32)

S(xe,up, 1, 0) are additive and can be fitted nonparametrically using the
FrGef w1, 0)= | 0p(xi, ui, 0) dx; | Yl w, 0) du, backfitting algorithm(Hastie & Tibshirani, 1990)
ax, dr 8”; dr
(33) Using additive models, the variation i can be decom-

osed into the variation that can be attributed to each of the

tate and input variables in turn, and the result can be visu-
alized by means of partial dependence plots with associated
bootstrap confidence intervalslastie et al., 2001)In this
manner, it may be possible to reveal the true structure of the
function describingy, i.e.:

the presence of significant parameters in the correspondin
diagonal element of the expanded diffusion term is a strong
indication thatyp(-) is inappropriate.

Remark 10. A particularly simple and very important spe-
cial case of the above formulation is obtaine@ff) is as-
sumed to be constant, in which case the partial derivatives inr, = gyye(x;, u;, 6) (34)
(33) are both zero and any variationAinmust be explained

by the corresponding diagonal element of the expanded dif- which in turn provides the model maker with valuable in-
fusion term, which in turn means that if the parameters of formation about how to re-formulate the model for the next

this element are significant, this is an indication tha) is modelling cycle iteration. Needless to say, this should be
not constant. done in accordance with physical insights.
2.6. Nonparametric modelling Remark 12. The assumption of additive contributions does

not necessarily limit the ability of additive models to reveal
In the sixth step of the proposed modelling cycle, which non-additive functional relations involving more than one
can only be used if specific model deficiencies have been predictor variable. By proper processing of the training data
pinpointed as described above, the idea is to uncover theset, functions of more than one predictor variable, s 2,
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can be included as predictor variables as welastie & where the model cannot be further improved with the avail-
Tibshirani, 1990) able information.

2.7. An overall algorithm for systematic model Remark 13. The estimation methods described in
improvement Section 2.2(estimation in a PE setting) tend to emphasize

the one-step-ahead prediction capabilities of the model and

In the following the methodologies from the various steps &r€ therefore not ideal for models intended for open-loop
of the proposed modelling cycle are summarized in the form applications. Nevertheless, these methods should be used in
of an algorithm for systematic model improvement given a the development of such models as well, because of the pos-
pre-specified purpose of the model: sibility of using the tools described above for improving the

structure of the model, if necessary, which would otherwise
(1) Use first engineering principles and physical insights to not be possible. Once an appropriate model structure has
derive an initial model structure in the form of an ODE been obtained (ultimately corresponding to an insignificant
model (seeSection 2.). diffusion term), the parameters can then be re-calibrated
(2) Translate the ODE model into a stochastic state spacewith an estimation method that emphasizes the pure sim-
model using a diagonal parameterization of the diffusion ulation capabilities of the model (estimation in an OE
term (seeSection 2.} setting).
(3) Estimate the parameters of the model from available
experimental data using ML or MAP estimation (see

Section 2.2 3. Case study: modelling a fed-batch bioreactor
(4) Evaluate the quality of the model by performing residual
analysis on cross-validation data (s&ection 2.3. To illustrate the performance of the proposed framework

(5) Determine if the model is sufficiently accurate to serve in terms of improving the quality of an existing model,
its intended purpose. If unfalsified, terminate model de- a simple simulation example is considered in the follow-
velopment. If falsified, proceed with model development ing. The process considered is a fed-batch bioreactor, where
(seeSection 2.4. the true model used to simulate the process is given as

(6) Try to pinpoint specific model deficiencies by applying follows:
statistical tests and by re-formulating the model with gx EX
additional state variables and repeating the estimation 5~ = #(9X — =~ (35)
and test procedures (s&ection 2.5.

(7) If specific model deficiencies can be pinpointed, use 95 _  u(HX n F(SF = 9) (36)
state estimation and nonparametric modelling to un- dr Y 1%
cover their structural origin by obtaining appropriate es- dv
timates of functional relations (s&ection 2.§. @ F (37)

(8) Reformulate the model according to the estimated func-
tional relations and physical insights and repeat from whereX is the biomass concentratiofi,the substrate con-

(3) (seeSection 2.5. centration,V the volume,F the feed flow ratey = 0.5 the
yield coefficient of biomass§g = 10 the feed concentration
This algorithm can be applied to develop new as well as of substrate, ang.(S) is the biomass growth rate, which

to improve existing models of dynamic systems for a vari- is described by Monod kinetics with substrate inhibition,

ety of purposes. More specifically, models can be developedi.e.:

with emphasis on short-term as well as long-term prediction S

capabilities, i.e. models intended for closed-loop as well as ©1(S) = o B

open-loop applications. However, as discusse8éntion 4 2 1

the algorithm is not guaranteed to converge, especially notwhere yumax = 1, K1 = 0.03 and K2 = 0.5. Using

if insufficient prior information is available or if the quality  (Xo, So, Vo) = (1,0.2449 1) as initial states, simulated

and amount of available experimental data is limited. In par- data sets from two batch runs (101 samples each) are gener-

ticular, a situation may occur, where the model is falsified, ated by perturbing the feed flow rate along a pre-determined
but where none of the parameters of the diffusion term ap- trajectory and subsequently adding Gaussian measurement
pear to be significant and pinpointing a specific model defi- noise to the appropriate variables using the noise levels
ciency is impossible. A situation may also occur, where the mentioned beneatkig. 2 In the following it is assumed that
model is falsified and the significance of certain parameters the model to be developed is to be used for an open-loop

of the diffusion term have allowed a specific deficiency to be application, where long-term prediction capabilities are im-

pinpointed, but where the structural origin of the deficiency portant, and that the model maker has been able to set up

cannot be uncovered. In the context of the proposed frame-an initial model structure corresponding to (35)—(37) but is
work, both situations imply that a point has been reached, unaware of the true structure p{S) given in (38). In terms

(38)
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(a) Batch no. 1. (b) Batch no. 2.

Fig. 2. The two batch data sets available for case 1. Solid staircase: feed flow;rdéshed lines: biomass measurementgwith N(0, 0.01) noise);
dotted lines: substrate measuremeytqwith N(0, 0.001) noise); dash-dotted lines: volume measuremegtéwith N(O, 0.01) noise)).

of available measurements, two different cases are consid-and the following measurement equation:
ered: A full state information case, where it is assumed

that all state variables can be measured, and a partial statgf Y1 X
information case, where it is assumed that only the biomass| y2 | =| § + e, e € NO,S),
and the volume can be measured. 3 1%
k k
. . [S11 0 O
3.1. Case 1: full state information
S=| 0 S» O (40)
The available sets of experimental data for the full state | 0 O Ss3

information case are shown kig. 2 Using these data sets
it will now be illustrated how the proposed modelling cy-

cle can be used to improve the initial model set up by the . o .
. ) : . recommended above, a diagonal parameterization of the dif-
model maker. In this particular case only two iterations of : . )
fusion term in the system equation has been used to al-

f[he ”?°de”'”9 cycle are needed. In the general case MO 5w model deficiencies to be pinpointed if the model is
iterations may be needed. falsified

where, because the true structureudafS) given in (38) is
unknown, a constant growth rate has been assumed. As

3.1.1. First modelling cycle iteration o
Parameter estimatianAs the next step, the unknown pa-

Model formulation The first iteration of the modelling cycle  rameters of the model in (39) and (40) are estimated with
starts with the model formulation step, where it is assumed the ML method using the data from batch no.Fig( 2a),

structure corresponding to (35)—(37), which is then trans-

lated into a stochastic state space model with the following Residual analysisEvaluating the quality of the resulting

system equation:

FX
dl s |=| ux FSe=9 |a
Y Vv
v F
o171 O 0

0 0 o33

model is the next step. Pure simulation residual analysis is
therefore performed as shown kig. 3, and the results of
this show that the model does a poor job, particularlyyfor
and ys.

Model falsification or unfalsificationMoving to the model
falsification or unfalsification step, the poor pure simula-
tion capabilities falsify the model for its intended purpose,
which means that the modelling cycle must be repeated by
re-formulating the model.
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Table 1 Table 2
Estimation results. Model in (39)-(40). Data from batch no. 1 Estimation results. Model in (41) and (40). Data from batch no. 1
Parameter Estimate S.D. t-Score Significant? Parameter  Estimate S.D. t-Score Significant?
Xo 9.6973E-01 3.4150E-02 28.3962 Yes Xo 1.0239E-00 4.9566E-03  206.5723  Yes
So 2.5155E-01 3.1938E-02 7.8761 Yes So 2.3282E-01  1.1735E-02 19.8405  Yes
Vo 1.0384E-00 1.8238E-02 56.9359 Yes Vo 1.0099E-00 3.8148E-03  264.7290 Yes
n 6.8548E-01 2.2932E-02 29.8921 Yes ) 7.8658E-01  2.4653E-02 31.9061  Yes
011 1.8411E-01 2.5570E-02 7.2000 Yes 011 2.0791E-18 1.4367E-17 0.1447 No
022 2.2206E-01 3.4209E-02 6.4912 Yes 022 1.1811E-30  1.6162E-29 0.0731  No
033 2.7979E-02 1.7943E-02 1.5594 No 033 3.1429E-04 2.0546E-04 1.5297 No
S11 6.7468E-03 1.3888E-03 4.8580 Yes 044 1.2276E-01  2.5751E-02 47674  Yes
S22 3.9131E-04 2.4722E-04 1.5828 No S11 7.5085E-03  9.9625E-04 7.5368  Yes
Sa3 1.0884E-02 1.5409E-03 7.0633 Yes S22 1.1743E-03  1.6803E-04 6.9887  Yes

S33 1.1317E-02  1.3637E-03 8.2990 VYes

Statistical tests To obtain information about how to
re-formulate the model in an intelligent way, model de-
ficiencies should be pinpointed, if possiblEable 1 also
includest-scores for performing marginal tests for signifi-
cance of the individual parameters, which show that, on a
5% level, only one of the parameters of the diffusion term
is insignificant, viz.os3, whereasr1; andoy, are both sig-
nificant, which indicates that the first two elements of the

Using the re-formulated model in (40) and (41) and the
parameter estimates ifable 2 state estimate§k|k, S‘Hk,
f/k|k, frk, k=0, ..., N, are obtained by means of the EKF
and an additive model is fitted to reveal the true structure
of the function describinge by means of estimates of func-
tional relations between and the state and input variables.

It is reasonable to assume thatdoes not depend on

drift term may be incorrect. These elements both dependy, 404 F so only functional relations betweeiy; and

on u and a skilled model maker, who knows how difficult
it is to model complex dynamic phenomena such as growth
rates, would immediately suspecto be deficient. To avoid
jumping to conclusions, the suspicion should be confirmed,
which is done by first re-formulating the model wijthas an
additional state variable, which yields the system equation:

L FX
X 1% v
s X FSe—S
d ) Sl VY P
\% Y Vv
F
# 0
ou 0 0 0
0 000 0 0
d 41
Tl o 0 s 0 |2 (41)
0 0 0 om

Xk|k and §k|k are estimated, giving the results shown in
Fig. 4in the form of partial dependence plots with associated
bootstrap confidence intervals. These plots indicate/that
does not depend ofmk, but is highly dependent oﬁk|k,
which in turn suggests to replace the assumption of constant
w with an assumption of. being a function ofS when the
model is re-formulated for the next iteration of the modelling
cycle. More specifically, this function should comply with
the functional relation revealed in the partial dependence
plot betweenyi;; and Skx.

3.1.2. Second modelling cycle iteration

Model re-formulation To a skilled model maker with ex-
perience in bioreactor modelling, the functional relation re-
vealed in the partial dependence plot betwggp and Sy x

in Fig. 4 is a clear indication that the growth of biomass
is governed by Monod kinetics and inhibited by substrate,
which in the first step of the second iteration of the mod-

where, becausg has been assumed to be constant, the last g|jing cycle makes it possible to re-formulate the model in
element of the drift term is zero. The measurement equatlon(39) and (40) accordingly to yield the system equation:

is the same as in (40).

Estimating the parameters of this model, using the same

data set as before, gives the results showmahle 2 and
inspection of the-scores for marginal tests for insignificance
now show that, of the parameters of the diffusion term, only
044 1S significant on a 5% level. This in turn indicates that
there is substantial variation in and thus confirms the
suspicion thaj is deficient.

Nonparametric modellingHaving pinpointedy as being

FX
X w(SX — 2
dl s |=| _rox  Fse-s) |d
\% Y \%
F
o171 O 0
+]1 0 o092 0 |doy (42)
0 0 o33

deficient, nonparametric modelling can be applied as the whereu(S) is given by the true structure in (38). The mea-

next step to uncover the structural origin of the deficiency.

surement equation remains the same as in (40).
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Fig. 4. Partial dependence plots @f vs. 5(;“ and §k‘k. Solid lines: estimates; dotted lines: 95% bootstrap confidence intervals (1000 replicates).

Parameter estimatianAs the next step, estimation of the Table 3 _
unknown parameters of the re-formulated model using the Estimation results. Model in (42) and (40). Data from batch no. 1

same data set as before gives the results showabie 3 Parameter  Estimate S.D. t-Score Significant?
Xo 1.0148E-00 1.08132-02  93.8515 Yes
. . . . . So 2.4127E-01  9.4924E-03 254177 Yes
Residual analysisEvaluating the qua_1I|ty of _the resultmg Vo 1.0072E:00 8.7723E03 114.8168  Yes
model as the next step, pure simulation residual analysis iS s 1.0305E-00  1.7254E-02 59.7225  Yes
performed as shown iRig. 5 and the results of this show K1 3.7929E-02  4.1638E-03 9.1092  Yes
that the re-formulated model does a very good job. K> 5.4211E-01  24949E-02  21.7286  Yes
o11 2.3250E-10  2.1044E-07 0.0011  No
022 1.4486E-07  7.9348E-05 0.0018 No

Model falsification or unfalsificationMoving to the model ~ ©33 3.2842E-12  3.6604E-09 0.0009  No
7.4828E-03  1.0114E-03 73982  Yes

. . - . ) S11
falsification or unfalsification step, the re-formulated model s 10433603 14331E.04 72804 Yes
is thus unfalsified for its intended purpose with respect to .. 1.1359E-02  1.6028E-03 70867  Yes
the available information, and the model development pro-

cedure can now be terminated. As the intended purpose Ofassum tions apolv with respect to the intended puroose of
the model is to use it for an open-loop application, the pa- P pply P purp

rameters should ideally be re-calibrated at this goiwith the model and the availability of an initial model structure,

an estimation method that emphasizes the pure simulationWhere the growth rate is unknown.

capabilities of the model, but this is outside the scope of the 3 5 1 First modelling cycle iteration
present paper. This therefore concludes the full state infor-

mation case. Model formulation The first iteration of the modelling cycle
again starts with the model formulation step, where it is
3.2. Case 2: partial state information assumed that the model maker has been able to set up an

initial model structure corresponding to (35)—(37), which
To illustrate that the proposed modelling cycle can also be is translated into a stochastic state space model with the
used when only a subset of the state variables can be meafollowing system equation:

sured, the previous example is repeated with the assumption EX
that only the biomass and the volume can be measured. The / x uX — v
available sets of experimental data for this partial state in- s |= dr
formation case are shown iig. 6, and, otherwise, the same | S + FSe =9
Y \%4
F

1 Inspection of ther-scores for marginal tests for insignificance o171 O 0

(Table 3 suggest that, on a 5% level, there are no significant parame- + 0 o2 O dw, (43)

ters in the diffusion term, which is confirmed by a test for simultaneous
insignificance based on WaldW -statistic. 0 0 o33
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(a) Batch no. 1.

(b) Batch no. 2.

Fig. 6. The two batch data sets available for case 2. Solid staircase: feed flow;rdéshed lines: biomass measurementgwith N(0, 0.01) noise);
dash-dotted lines: volume measurememtgwith N(0O, 0.01) noise)).

and the following modified measurement equation:

(),

S 0
S=|: 11

14

0 S

X
< )-l—ek, e, € NO, S),
k

(44)

where, because the true structureudafs) given in (38) is

unknown, a constant growth ratehas again been assumed.

Parameter estimatianEstimating the unknown parameters
of the model in (43) and (44) using the data from batch no.

1 (Fig. 6a) gives the results shown irable 4

Residual analysisEvaluating the quality of the resulting

model, the pure simulation residual analysis resultsign 7
shows that the model does a poor job.

Model falsification or unfalsificationAgain the model is
thus falsified for its intended purpose, and the modelling

Table 4

Estimation results. Model in (43)-(44). Data from batch no. 1
Parameter Estimate S.D. t-Score Significant?
Xo 9.6230E-01 1.2996E-02 74.0451 Yes
Vo 1.0272E+00 2.1417E-02 47.9641 Yes
m 6.8730E-01 2.1875E-02 31.4198 Yes
o011 1.8846E-01 3.9179E-02 4.8104 Yes
022 8.7290E-03 1.8577E-03 4.6989 Yes
033 1.7391E-02 1.5107E-02 1.1512 No
S11 6.7225E-03 1.0795E-03 6.2273 Yes
S22 1.1078E-02 1.5137E-03 7.3184 Yes

cycle must be repeated by re-formulating the model once its
deficiencies have been pinpointed, if possible.

Statistical testsTable 4also includes-scores for perform-

ing marginal tests for significance of the individual param-
eters, and, as in the full state information case, these show
that, on a 5% level, onlyss is insignificant, whereas the
other parameters of the diffusion term are both significant.
This indicates that the first two elements of the drift term
may be incorrect, and hence thatis a possible suspect
for being deficient. To confirm this suspicion the model is
re-formulated withu as an additional state variable to yield
the system equation:

¥ FX
X 123 Vv
S X F(Sg-—-S
d _| _mX FGE=S dr
\% Y \%
F
g 0

d 45
1o 0 o 0 |% (45)

0 O O o44

and the measurement equation in (44). The parameters of
this model are estimated using the same data set as before
to give the results shown iflable 5 and inspection of the
t-scores again show that onbug is now significant on a

5% level, which in turn indicates that there is substantial
variation in u and thus confirms the suspicion thatis
deficient.
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Fig. 7. Pure simulation residual analysis for the model in (43) and (44) with paramefgabl4using data from batch no. Fig. 6b). Top: comparison
(solid lines are simulated values); bottom: residuals, LDF and PLDFfand y,.

Nonparametric modellingThe structural origin of the defi- Assuming again that does not depend ovi and F, the
ciency can again be uncovered by using the re-formulated partial dependence plots shown Fig. 8 are obtained. In
modelin (44) and (45) and the parameterestimaté’aﬁrle 5 this case there seems to be a dependence betiygeand
to obtain state est|matesc|k, Sk‘k, Vk|k Mk k=0,..., N, both Xk|k and Sk‘k However, since the dependencem
and by fitting an additive model to reveal the true structure is much stronger than the dependenceXy., this again
of the function describing. suggests to replace the assumption of constamtith an
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Table 5 Table 6
Estimation results. Model in (45) and (44). Data from batch no. 1 Estimation results. Model in (46) and (44). Data from batch no. 1
Parameter Estimate S.D. t-Score Significant? Parameter Estimate S.D. t-Score Significant?
Xo 1.0069E-00  2.1105E-02  47.7095  Yes Xo 1.0137E-00 1.6790E-02 60.3759 Yes
Vo 1.0250E-00  2.7800E-02  36.8687  Yes Vo 1.0118E+00 1.1571E-02  87.4443  Yes
o 8.1305E-01 1.2223E-01 6.6516  Yes Mmax 1.0679E+-00 1.4353E-01 7.4405  Yes
o11 8.5637E-05  5.5485E-05 1.5434 No K1 4.1664E-02  3.2800E-02 1.2702 No
022 8.2654E-03  8.5005E-03 0.9723 No K> 6.3372E-01 1.8116E-01 3.4980 Yes
033 1.5241E-02  2.4948E-02 0.6109 No o11 6.8577E-11  2.2270E-08 0.0031 No
044 1.4751E-01 4.5181E-02 3.2648 Yes 022 7.9677E-06 1.1223E-03 0.0071 No
S11 7.7509E-03 1.1338E-03 6.8362  Yes 033 1.4241E-07  2.6577E-05 0.0054 No
S22 1.1118E-02 1.5652E-03 7.1033  Yes S11 7.4094E-03 1.0986E-03 6.7447 Yes
S22 1.1364E-02 1.6193E-03 7.0174  Yes

assumption ofu being a function ofS when the model is

re-formulated for the next iteration. whereu(S) is given by the true structure in (38), while the

measurement equation remains the same as in (44).
3.2.2. Second modelling cycle iteration

Model re-formulationAlthough less obvious, the functional Parameter estimatiarEstimating the unknown parameters
relation revealed in the partial dependence plot between Of the re-formulated model using the same data set as before

fux and Sgx in Fig. 8 is again an indication to a skilled gives the results shown ifeble 6

model maker that the growth rate of biomass can be appro-

priately described with Monod kinetics and substrate inhi- Residual analysisExamining the pure simulation residual
bition, which allows the model to be re-formulated to y|e|d ana'ysis results shown |ﬁ|g 9, there still seems to be

the system equation: some non-random variation left in the cross-validation data
set that is not explained by the model. This may be at-
X w(S)X — FX tributed to the fact that the data set used for parameter esti-
14 mation and the cross-validation data set cover different re-
di § [=] _r©®X n F(Sp—8) |dr gions of state space, which, because only partial state infor-
1% Y Vv mation is available, the model is more sensitive to in this
F
case.
o171 O 0
+| 0 o2 0 |de (46) Model falsification or unfalsificatianin principle, although
0 0 o33 the results obtained with the re-formulated model are
0.25- 0.15-
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Fig. 8. Partial dependence plots @f vs. Xk‘k and §k|k. Solid lines: estimates; dotted lines: 95% bootstrap confidence intervals (1000 replicates).
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Fig. 9. Pure simulation residual analysis for the model in (44) and (46) with paramefBablan 6using data from batch no. Fig. 6b). Top: comparison
(solid lines are simulated values); bottom: residuals, LDF and PLDF{and y;.

much better than those obtained with the initial model, insignificant? In other words it is not possible to pinpoint

the re-formulated model is thus falsified for its intended any model deficiencies directly, because these deficiencies

purpose, and the modelling cycle should be repeated by

re-formulating the model again. However, in the context of —, — , o

the proposed framework. all information available in the Inspection of ther-scores for marginal tests for insignificance
prop o (Table § suggest that, on a 5% level, there are no significant parame-

data set used for estimation has been exhausted, becausgs in the diffusion term, which is confirmed by a test for simultaneous

a model has been developed where the diffusion term isinsignificance based on Wald® -statistic.
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are only revealed by the cross-validation data set and not byBohlin, 2001) and also prevents him or her from having
the data set used for estimation. Ideally, the parameters of theto resort to using black-box models for filling gaps in the
model should thus be re-estimated using the cross-validationmodel. This is due to the fact that estimates of unknown
data set as well before re-formulating the model, but this functional relations can be obtained and visualized directly.
takes away the possibility of easily evaluating the quality of  The proposed framework may be seen as a stochas-
the resulting model through cross-validation, unless more tic grey-box model generalization of the well-developed
data is obtained. A discussion of possible ways to resolve methodologies for identification of linear black-box models
this issue is outside the scope of the present paper, and thigBox & Jenkins, 1976; Ljung, 1987; Soderstrom & Stoica,
thus concludes the partial state information case. 1989) However, unlike in the linear case, where conver-
gence is guaranteed if certain conditions of identifiability
of parameters and persistency of excitation of inputs are
4. Discussion fulfilled, no rigorous proof of convergence is available for
the framework proposed here. Nevertheless, the case study
The case study presented in the previous section illus- presented in the previous section has demonstrated that the
trates the strength of the proposed stochastic grey-box mod-proposed framework can indeed be used to obtain valuable
elling framework in terms of facilitating systematic model information to facilitate faster model development.
improvement. A key feature in this regard is the ability to
pinpoint and subsequently uncover the structural origin of
model deficiencies by means of estimates of unknown func- 5. Conclusion
tional relations, and another key result is that this is also
possible in situations where all process variables cannot be A systematic framework for improving the quality of con-
measured. More specifically, the full state information case tinuous time models of dynamic systems based on exper-
demonstrates that a high quality estimate of the functional imental data has been presented. The proposed stochastic
relation between the biomass growth rate, which cannot begrey-box modelling framework is based on an interplay be-
measured, and the substrate concentration, which is meatween stochastic differential equation modelling, statistical
sured, can easily be obtained, and the partial state informa-tests and nonparametric modelling and provides features that
tion case demonstrates that a similar estimate, of lower qual-allow model deficiencies to be pinpointed and their struc-
ity, can be obtained without measuring the substrate con-tural origin to be uncovered to improve the model. A key
centration. result in this regard is that the proposed framework can be
The lower quality of the estimate obtained in the partial ysed to obtain nonparametric estimates of unknown func-
state information case is due to the fact that the performancetional relations, which allows unknown or inappropriately
of the proposed framework is limited by the quality and modelled phenomena to be uncovered and proper paramet-
amount of available experimental data, in the sense that, if ric expressions to be inferred from the estimated functional
the available data is insufficiently informative, e.g. due to relations. The performance of the proposed framework has
large measurement noise, or if the available measurementgeen illustrated through a case study involving a dynamic
render certain subsets of the state variables of the systemmodel of a fed-batch bioreactor, where it has been shown
unobservable, parameter Identlflablllty and hence the relia- how an inappropriate|y modelled biomass growth rate can
bility of the proposed methods for pinpointing and uncov- be uncovered and a proper parametric expression inferred. A
ering the structural origin of model deficiencies is affected. key point illustrated through this case study is that estimates

Experimental design and selection of appropriate measure-of functional relations involving only unmeasured variables
ments are thus key issues that must also be addressed igan also be obtained.

model development, but these are outside the scope of the

present paper. The performance of the proposed stochastic

grey-box modelling framework is also limited by the quality

and amount of available prior information, and if there is in- References

sufficient information to establish an initial model structure,

it may not be worthwhile to use this approach as Opposed Allgéwer, F., & Zheng_, A. (Eds.). (2000). Nonlinear modgl predictive
to a black-box modelling approach. Furthermore, the model ‘é‘i’r'&tr:‘;t;’;'::c/’glzzs in systend control theory(Vol. 26). Switzerland:
make_r musft be_able to determ_m_e the _specn‘lc phenomer_‘O”Astrtsm, K. J. (1970)Introduction to stochastic control thearew York,
causing a pinpointed model deficiency in order to uncoverits  ysa: Academic Press.

structural origin, and this may not always be possible either. Bak, J., Madsen, H., & Nielsen, H. A. (1999). Goodness of fit of stochastic
If, however, sufficient prior information and experimental differential equations. In P. Linde, A. Holm (Eds§ymposium i An-
data is available, the proposed framework is very powerful vendt StatistikCopenhagen, Denmark: Copenhagen Business School.

tool for tematic model imorovement. In rticular Bohlin, T. (2001). A Grey-Box Process Identification Tool: Theory and
as a tool for systematic mode provement. particular, Practice. Technical Report IR-S3-REG-0103, Department of Signals,

it relies less on the model maker than other approaches sensors and Systems, Royal Institute of Technology, Stockholm, Swe-
to stochastic grey-box modellin@ohlin & Graebe, 1995; den.



N.R. Kristensen et al./Computers and Chemical Engineering 28 (2004) 1431-1449

1449

Bohlin, T., & Graebe, S. F. (1995). Issues in nonlinear stochastic grey-box Ljung, L. (1987).System identification: theory for the usétew York,

identification. International Journal of Adaptive Control and Signal
Processing, 9465-490.

Box, G. E. P., & Jenkins, J. M. (1976)ime series analysis: forecasting
and control San Francisco, USA: Holden-Day.

Brockwell, P. J., & Davis, R. A. (1991)lime series: theory and methods
(2nd ed.). New York, USA: Springer-Verlag.

Hastie, T. J., & Tibshirani, R. J. (1990%eneralized additive models
London, England: Chapman & Hall.

Hastie, T. J., Tibshirani, R. J., & Friedman, J. (200Ihe elements of
statistical learning—data mining, inference and predictiblew York,
USA: Springer-Verlag.

Holst, J., Holst, U., Madsen, H., & Melgaard, H. (1992). Validation of
grey box models. In L. Dugard, M. M’'Saad, & I. D. Landau (Eds.),

Selected papers from the fourth IFAC symposium on adaptive systems

in control and signal processingpp. 407—-414). Oxford: Pergamon
Press.

Jazwinski, A. H. (1970)Stochastic processes and filtering theoNew
York, USA: Academic Press.

Kristensen, N. R., Madsen, H., & Jgrgensen, S. B. (200&yameter
estimation in stochastic grey-box modefaitomatica in press.

USA: Prentice-Hall.

Madsen, H., & Melgaard, H. (1991). The Mathematical and Numerical
Methods Used in CTLSM. Technical Report 7, IMM, Technical Uni-
versity of Denmark, Lyngby, Denmark.

Melgaard, H., & Madsen, H. (1993). CTLSM—A Program for Parameter
Estimation in Stochastic Differential Equations. Technical Reportl,
IMM, Technical University of Denmark, Lyngby, Denmark.

Nielsen, H. A., & Madsen, H. (2001). A generalization of some classical
time series toolsComputational Statistics and Data Analysis,(BJ
13-31.

Dksendal, B. (1998)Stochastic differential equations—an introduction
with applications(5th ed.). Berlin, Germany: Springer-Verlag.

Raisch, J. (2000). Complex systems—simple models? In L. T. Biegler, A.
Brambilla, C. Scali, & G. Marchetti (Eds.proceedings of the IFAC
symposium on advanced control of chemical proce§zes275-286).
Amsterdam: Elsevier.

Sdderstrom, T., & Stoica, P. (1989%ystem identificationNew York,
USA: Prentice-Hall.

Young, P. C. (1981). Parameter estimation for continuous-time models—a
survey.Automatica, 1{1), 23—-39.



	A method for systematic improvement of stochastic grey-box models
	Introduction
	Methodology
	Model (re)formulation
	Parameter estimation
	Maximum likelihood (ML) estimation
	Maximum a posteriori (MAP) estimation
	Using multiple independent data sets

	Residual analysis
	Model falsification or unfalsification
	Statistical tests
	Pinpointing model deficiencies

	Nonparametric modelling
	Estimating unknown functional relations

	An overall algorithm for systematic model improvement

	Case study: modelling a fed-batch bioreactor
	Case 1: full state information
	First modelling cycle iteration
	Second modelling cycle iteration

	Case 2: partial state information
	First modelling cycle iteration
	Second modelling cycle iteration


	Discussion
	Conclusion
	References


