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Data assimilation in hydrodynamic modelling: on the treatment
of non-linearity and bias

Abstract The state estimation problem in hydrodynamic
modelling is formulated. The three-dimensional hydro-
dynamic model MIKE 3 is extended to provide a sto-
chastic state space description of the system and
observations are related to the state through the mea-
surement equation. Two state estimators, the maximum a
posteriori (MAP) estimator and the best linear unbiased
estimator (BLUE), are derived and their differences
discussed. Combined with various schemes for state and
error covariance propagation different sequential esti-
mators, basedon theKalmanfilter, are formulated. In this
paper, the ensembleKalman filter with either an ensemble
or central mean state propagation and the reduced rank
square root Kalman filter are implemented for assimila-
tion of tidal gauge data. The efficient data assimilation
algorithms are based on a number of assumptions to en-
able practical use in regional and coastal oceanic models.
Three measures of non-linearity and one bias measure
have been implemented to assess the validity of these
assumptions for a given model set-up. Two of these
measures further express the non-Gaussianity and thus
guide the proper statistical interpretation of the results.
The applicability of the measures is demonstrated in two
twin case experiments in an idealised set-up.

Keywords Data assimilation �Kalman filter �
Non-linearity measure �Bias �Hydrodynamic modelling

Abbreviations EnKF Ensemble Kalman filter �
RRSQRT Reduced rank square root Kalman filter �

CEnKF Central forecast ensemble Kalman filter �
BLUE Best linear unbiased estimator �
MAP Maximum a posteriori

1 Introduction

The state of coastal seas has an impact on a number of
socio-economic issues such as fisheries, tourism and
flood warning. Thus, estimating this state is of great
importance. One way of solving the state estimation
problem is by combining the theoretical knowledge
encapsulated in numerical models with available data at
or around the time of interest. Such an approach is
generally known as data assimilation.

One particular branch within data assimilation deals
with sequential state estimation based on a Kalman filter
approach. However, the optimality of the Kalman filter
can not be preserved without imposing linearisations
and constraints on the size of the state space, which are
severe for the application in a realistic set-up of a
hydrodynamic model. Thus, sub-optimal schemes have
been introduced that attempt to reduce computational
requirements by simplifying the model propagation
operator and/or reducing the degrees of freedom in the
model covariance estimation.

The use of a simplified process description was
investigated in (Dee 1991). Such an approach is case
dependent and relies on the validity of the rather strong
dynamical approximations. Alternatively, the error
covariance calculation can be performed on a coarser
grid (Fukumori and Melanotte-Rizzoli 1995). This im-
plies an assumption about the main model variability to
be at larger scales than the model resolution. Finally, the
model operator can be represented with a reduced rank
approximation by applying e.g. a singular value
decomposition (Cohn and Todling 1996). The simplified
process description, the coarse grid approximation and
the model reduction approach are all examples of
applying a regularised model operator.
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Agern Allé 11, DK-2970 H�rsholm, Denmark
E-mail: jts@dhi.dk
Tel.: +45 45-169304
Fax: +45 45-169292

H. Madsen
Informatics and Mathematical Modelling,
Technical University of Denmark, Richard Petersens Plads,
Building 321, DK-2800 Kongens Lyngby, Denmark



A different approach to speeding up a sub-optimal
Kalman filter is to work with a simplified error
covariance representation. One such approximation is to
assume that the error covariance is in steady state
(Heemink, 1986). This often works very well despite the
strong assumption and has the advantage of being
operational in many real time hydrodynamic forecast
systems, (Cañizares et al. 2001; Heemink et al. 1997). The
reduced rank square root Kalman filter (Verlaan and
Heemink 1997) obtains a time varying approximation of
the error covariance matrix. Based on the extended
Kalman filter, the covariance is continuously approxi-
mated by its leading eigen sets. This leads to a rather
smooth Kalman gain, but its application is limited when
very strong non-linearities are present and only few
measurements are available, (Verlaan and Heemink
2001). Alternatively the covariance can be calculated
using aMonte Carlo technique as introduced in (Evensen
1994). This approach handles even strong non-linearities
well, but at the price of rather noisy error covariance
estimations. A larger ensemble size reduces this problem,
but at the cost of an increased computational burden.
Finally, hybrids of regularised model operators and
approximate error covariance representations can be
formed. As an example, (Sørensen et al. 2002) success-
fully combined the ensemble Kalman filter with a depth
averaged model operator for generation of a steady
Kalman gain to be used in a 3D hydrodynamic model.

Each of the sub-optimal schemes is based on a set of
assumptions such as model linearity, a simplified
description of the error covariance and an unbiased
model operator. Often the assumptions are merely stated
or even implicit in order to focus on other important
issues. The schemes are typically validated by applica-
tion in one or two test cases, where performance is
rather good. Means of assessing the general validity of
the underlying assumptions often lack and the filter
performance when they are violated are generally not
discussed for the different schemes. We attempt to con-
tribute to this matter. The main aim of this paper is to
highlight the assumptions of different schemes and
analyse the validity of these assumptions under various
conditions. In order to perform this analysis, different
performance measures are introduced.

In Verlaan and Heemink (2001) a non-linearity mea-
sure is introduced, which can be used to assess the validity
of the assumption of the model operating in a regime,
which is weakly non-linear at worst. In this paper a sim-
plified version of the measure is implemented in a 3D
hydrodynamic model and the performance of two esti-
mation schemes based on a central forecast is examined
with respect to variation of this non-linearitymeasure and
compared to an ensemble forecast. The Gaussianity of a
solution affects the valid interpretation of the results and
thus two non-Gaussianity measures are introduced.
When the model noise is Gaussian, these simultaneously
provide alternative non-linearity measures. Finally, the
model bias is used to characterise the filter performance
under various error structure assumptions. It is very

important to understand the filter performance when ac-
tual errors are not well captured by the assumed error
structure. This aspect will be considered in the paper.

Section 2 introduces the considered coastal ocean
system, which is described by a stochastic hydrodynamic
model. Section 3 discusses state estimation with partic-
ular emphasis on issues of application to a hydrody-
namic model. The propagation of model error
covariance is discussed in Sect. 4 along with a presen-
tation of the ensemble Kalman filter, the central
ensemble Kalman filter and the reduced rank square
root Kalman filter. This section also describes the
characteristics of each filter. In Sect. 5 measures of non-
linearity, non-Gaussianity and bias, which will be ap-
plied to assess the validity of filter assumptions, are
introduced. The simulation study is described in Section
6 and a discussion of the results is given in Sect. 7.
Finally, Sect. 8 concludes the paper.

2 The stochastic state space model

The physical system under consideration consists of
hydrodynamic flow in bays, estuaries, coastal regions
and shelf seas. The body of water evolves according to
the laws of internal dynamics of a fluid and its interac-
tion with the atmosphere and the solid earth through the
sea floor. Among the processes encompassed by this
system are tidal waves, wind induced coastal upwelling,
eddy formation and turbulence.

The continuity and Navier-Stokes equations state the
conservation of mass and momentum in a continuum
like the considered system. By developing mathematical,
physical and numerical approximations of the system
dynamics, the problem of estimating and predicting the
state of the coastal ocean can be solved. This theoretical
approach has lead to the advance of a range of numer-
ical models, which are now routinely applied to solve a
number of scientific and engineering problems. One such
numerical modelling system is MIKE 3.

The MIKE 3 hydrodynamic model is part of a gen-
eral finite difference modelling system and is designed to
simulate non-linear, unsteady three-dimensional flows.
It is developed at DHI Water and Environment (DHI
2001) and has been successfully applied to various sci-
entific and engineering applications in domains with
scales ranging from meters to thousands of kilometres
(Øresundskonsortiet 1998; Vested et al. 1998; Erichsen
and Rasch 2002).

MIKE 3 utilises a finite difference technique, and thus
provides the discrete time evolution of the model vari-
ables defined on a mesh in the domain under consider-
ation. Details of the finite difference scheme can be
found in the scientific reference manual (DHI 2001). For
the purpose of the problem at hand it is sufficient to
acknowledge that the entire state of the model is
uniquely determined by the variables fðtÞ; fðt � 1=2Þ;
fðt � 1Þ; mxðtÞ; myðt � 1=2Þ; myðt þ 1=2Þ and mzðt � 1=4Þ
when the density of the water is assumed constant. The
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variable f is the water level, (mx; my ; mz) are the three
velocity components and t is the time index.

With knowledge of the initial conditions, sources and
sinks as well as boundary conditions represented by
surface elevation at open boundaries and wind velocity
and pressure at the sea surface, MIKE 3 calculates a
solution to the finite difference equations. Thus, an
estimate of the state of the fluid is given at discrete
temporal and spatial intervals and the state at time t þ 1
is completely determined by the state at time t and the
forcing terms embedded in the sources and sinks and
boundary conditions. Thus, let UD be the model opera-
tor representing the approximate finite difference equa-
tions, uD the forcing defined at a snapshot in time
projected onto the mesh and xDðtÞ the model state at
time t. The discrete deterministic model can then be
expressed as,

xDðt þ 1Þ ¼ UDðxDðtÞ; uDðtÞÞ ð1Þ
The hydrodynamic model attempts to construct the best
possible estimate of the state of the system within the
constraints of the model structure imposed. However
this estimate is based on a model and forcing terms,
which we know are uncertain, but often we will have
some knowledge of the second order statistical proper-
ties of the errors, dðtÞ. Thus, the discrete model can be
extended to a stochastic model, propagating a state that
is now a stochastic variable characterised by its second
order statistical properties rather than the deterministic
estimate in Eq. (1).

For the hydrodynamic part of a continental shelf
ocean model, a main source of error comes from inac-
curate meteorological and open boundary forcing.
Thus, in order to simplify the error description, it is
assumed that wind forcing and water level at open
boundaries are the sole sources of error. No initial
errors are assumed, but the model is allowed a spin-up
period to propagate the forcing induced error through-
out the system.

To reduce the computational requirements, errors
can be defined on a coarser grid, G2, than the forcing
grid, Gl, and thus an interpolation operator, K, is
introduced. In general any linear reduced rank repre-
sentation can be expressed by K, e.g. refer to Heemink
(1986) and Cañizares et al. (2001) for this approach. If
the errors in the forcing terms can be assumed to be
uncorrelated in time, then MIKE 3 can be generalised to
a stochastic model operator, UM3:

xM3ðt þ 1Þ ¼ UM3ðxM3ðtÞ; uDðtÞ þ KdðtÞÞ ð2Þ
where

xM3ðtÞ ¼

fðtÞ
fðt � 1=2Þ
fðt � 1Þ

mxðtÞ
myðt � 1=2Þ
myðt þ 1=2Þ
mzðt � 1=4Þ

0
BBBBBBBB@

1
CCCCCCCCA

ð3Þ

The only difference between xM3 and xD is that the ele-
ments in xM3 are stochastic.

However, the errors in the forcing terms are usually
correlated in time. Thus it makes sense as a first
approximation to construct an augmented state vector,
by including the error as modelled by a first order
autoregressive model (AR(1)),

dðtÞ ¼ adðt � 1Þ þ euðtÞ ð4Þ
where euðtÞ is an NB-dimensional i.i.d. variable with zero
mean and known covariance, QuðtÞ. In the physical
system under consideration a first order autoregressive
process typically explains 80–90% of the variance. If
necessary it is straightforward to formulate more general
correlation models still adhering to the state space
description.

Finally, by assuming the error to originate from the
forcing, using the augmented state vector with coloured
error description as expressed by Eq. (4) and allowing
for a noise to be defined on a reduced space (e.g. a coarse
grid), the following stochastic finite difference model is
obtained:

xðt þ 1Þ ¼
xM3ðt þ 1Þ
dðt þ 1Þ

� �

¼
UM3ðxM3ðtÞ; uDðtÞ þ KdðtÞÞ

adðtÞ þ euðtÞ

� �
ð5Þ

or

xðt þ 1Þ ¼ UðxðtÞ; uDðtÞÞ þ eðtÞ ð6Þ
where U is the augmented model operator and

eðtÞ ¼ ð 0 euðtÞÞT ð7Þ
is a N -dimensional i.i.d. variable with zero mean and
covariance QðtÞ. Equation (6) is called the system
equation and is the actual stochastic representation of
MIKE 3 that will be used subsequently. The dimension
of x is designated N . Note that the equation actually has
additive noise even though the error is defined to enter
through the forcing terms, i.e. e enters linearly, but has a
non-linear effect on xM3.

Tidal gauge measurements provide an additional
source of information about the state of the system.
They are characterised by a high temporal resolution,
but the gauges are very sparsely distributed in space.
Tidal gauge sensors typically have a random instru-
mentation error with a standard deviation less than 1
centimetre. Let the number of measurements be desig-
nated Nm.

For the purpose of data assimilation, we need to re-
late the measurements to the state vector x. By doing
this, a model representation error is introduced. As an
example, if the model resolution is 9 nautical miles, then
the model variable that would typically represent the
observation is the water level averaged over the grid box
at the position of the gauge, which clearly may deviate
from the point measurement. Representation error is
typically the main error source that needs to be
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considered when using tidal gauge data for modelling
purposes, (Fukumori 1999). Let x be the stochastic
model state defined by Eq. (6). It is assumed that the
observation can be expressed as a linear combination
represented by the Nm � N matrix CðtÞ of the state
variables, and an additive zero mean Gaussian distrib-
uted observational error, nðtÞ, with covariance RðtÞ.
zðtÞ ¼ CðtÞxðtÞ þ nðtÞ ð8Þ
This is called the measurement equation. The rows of
CðtÞ will in many cases consist of zeroes and a single one.
It is assumed that the separate tidal gauge stations have
both spatially and temporally uncorrelated errors. Thus
the measurement error covariance can be expressed as

RðtÞ ¼

r2
1 0 . . . 0

0 . .
. . .

. ..
.

..

. . .
. . .

.
0

0 . . . 0 r2
Nm

0
BBBBB@

1
CCCCCA

ð9Þ

Tide gauge observations are performed by independent
instruments and hence the instrumental errors are
independent. However, their main error source is prob-
ably representation error, (Fukumori 1995 and
Søerensen et al. 2002) and may depend on the system
state and thus be correlated. This effect is not present in
ideal scenarios as considered herein.

3 State estimation

In the previous section, stochastic descriptions of both
model and measurements have been presented. The
description of the system is provided by the system
Eq. (6), while the measurements are described by the
measurement Eq. (8). Now we will pay attention to how
the best estimate of the true oceanic state can be
obtained based on the available information from these
two sources of information. The model gives a state
estimate with high temporal and spatial resolution, but
the values are hampered by the accumulation of errors.
Measurements give an alternative estimate that is usu-
ally more certain when and where an observation is
made, but they are sparsely distributed in space and
time. The two sources of information are complimentary
and both ought to be included in the state estimate.

At a given point in time consider the stochastic state,
x, derived from the model, and an observation z. Note
that by restricting ourselves to a single time step, the
propagation and the estimation problems are separated.
First, we deal with estimation. One approach is to use
the information about the oceanic state provided by the
model probability density function (pdf) to give e.g. a
maximum likelihood (ML) estimate. However, including
the information provided by available measurements
will improve the estimate. By using a Bayesian approach
the resulting pdf of the estimate can be calculated as the
conditional probability of x given the data, z,

f ðxjzÞ ¼ f ðzjxÞf ðxÞ
f ðzÞ ¼ f ðzjxÞf ðxÞR

f ðzjxÞf ðxÞdx
ð10Þ

The value xa of x that maximises f ðxjzÞ is the maximum a
posteriori (MAP) estimate of x. It is common to work
with the logarithmic transformation of Eq. (10) in order
to ease the arithmetic expressions.

log f ðxjzÞ ¼ log f ðzjxÞ þ log f ðxÞ � logB ð11Þ
In Eq. (11) B is an abbreviation for the denominator of
Eq. (10). This last term does not affect the behaviour of
extreme values because it only depends on the data.
Thus, if the distributions f ðxÞ and f ðzjxÞ are known,
then the optimum can be found. However, these distri-
butions are in general unknown and further assumptions
must be imposed in order to progress.

It will now be assumed that the distributions f ðxÞ and
f ðzjxÞ are Gaussian with means xf and Cx and known
covariance matrices P f and R respectively. Thus,

f ðxÞ ¼ 1

ð2pÞN=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðP f Þ

p

� exp �1=2 x� xf
� �T

P f
� ��1

x� xf
� �h i� �

ð12Þ

f ðzjxÞ ¼ 1

ð2pÞNm=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðRÞ

p

� exp �1=2 ðz� CxÞT ðRÞ�1ðz� CxÞ
h i� �

ð13Þ

where N and Nm are the sizes of P f and R respectively.
By substituting Eqs. (12) and (13) into Eq. (11) and
differentiating with respect to x the maximum can be
found. This provides the same solution as the minimi-
sation in a least squares approach. For further elabo-
ration on the least square solution refer to Wunsch
(1996) and Jazwinski (1970).

The MAP estimator now reduces to,

xa ¼ xf þ Kðz� Cxf Þ; P a ¼ P f � KCP f ð14Þ

K ¼ P f CT CP f CT þ R
� 	�1 ð15Þ

The matrix P a is the error covariance of the estimated
state, xa. Since the estimator can alternatively be derived
from the least square approach as the best linear unbi-
ased estimator (BLUE) it will always supply the mini-
mum variance estimate under the assumption of a linear
and unbiased estimate for any distribution. In the
remainder of this paper we will refer to Eqs. (14) and
(15) as the BLUE estimator. Note that the problem of
finding the probability density of the state variables has
been reduced to estimating its a posteriori mean and
covariance.

The assumption about Gaussianity is certainly more
an operational assumption than a justified one. Partic-
ularly, model error sources are generally far from being
Gaussian. However, assimilation schemes are tradition-
ally based on the BLUE, which is only a minimal vari-
ance estimator under the Gaussian assumption. We
believe an improved estimation technique is essential in
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the further development of assimilation techniques. An
operational Bayesian approach as discussed in Christa-
kos (2002) could provide an interesting alternative.

The discussion above has focused on the estimate
when a prior model estimate is available at the time step
of a new measurement. We will now extend the discus-
sion to encompass available information up until the
time of the latest observation. In general the approach
can be extended to a sequential estimator with each
estimate having a similar MAP or BLUE interpretation
based on all past and present measurements (Maybeck
1979). If the BLUE estimator is used with a linear model
for propagation of the mean and the error covariance
matrix in between updates and all variables are Gaussian
distributed, then the classical Kalman filter is obtained.
The Kalman filter has in many cases been the starting
point in the literature and necessary generalisations have
subsequently been imposed, (e.g. Verlaan and Heemink
1997). Here, we present the general problem and impose
certain simplifications that allow a solution to be found
on available computational resources.

So far the origins of the mean and error covariance
estimates of model (system error) and measurement
variables (measurement error) were avoided in order to
pay attention to the estimator. However, their con-
struction is one of the major difficulties in sequential
data assimilation. For tidal gauge data the measure-
ments at separate stations can be assumed to have no
error correlation and RðtÞ becomes diagonal as expressed
by Eq. (9). This allows for an efficient sequential
updating of data from different tidal gauge stations
within the same time step (Madsen and Cañizares 1999).
The values of the diagonal elements are set, based on
reflections on the error sources discussed in Sect. 2.
Estimates of xf ðtÞ are typically based on the composite
hydrodynamic and the AR(1) model in Eq. (6). The
error covariance matrix, P f ðtÞ, on the other hand, has
been estimated by a number of different approaches in
the literature. These range from solving the Riccati dif-
ference equation (Fukumori et al. 1993) to geometric or
physical assumptions (Fox et al. 2000), and transient
propagation of P f ðtÞ by the hydrodynamic equations
(Verlaan and Heemink 1997; Evensen. 1994). The latter
approach is pursued in this work and is treated further in
the next section. Among its strengths it accommodates
the calculation of non-linearity measures.

Anyone of the approaches above requires a proper
definition of system noise, QðtÞ. The error in open
boundary water level or wind velocity will typically be
correlated in space. The spatial error correlation pat-
terns are here assumed to be isotropic for each error
source and can thus be described by a standard devia-
tion and a spatial correlation scale corresponding to the
distance at which the correlation is 0.5. Further, because
of the noise definition in Eq. (7) only the lower right
NB � NB portion of QðtÞ is non-zero. The specification of
QðtÞ poses quite a problem in real applications. Dee
(1995) suggested a maximum likelihood approach for
estimating the system noise from measurements.

However, this is quite costly and requires 2–3 orders of
magnitude of data more than the number of error
parameters to be estimated. An alternative solution to
the problem should be adaptive in nature, because of the
generally time-varying and state dependent errors. This
could be very interesting to test in ideal scenarios like the
one discussed in the present paper, but they probably
would be too computationally demanding for real
applications.

It makes filtering seem less complex if we remind our
selves that no matter what approach is taken, the pro-
cedure basically consists of two elements: Updating and
propagation of model state estimates and its error
covariance. We can pick and choose among various
estimators for the updating and various propagation
schemes, but in all cases we propagate model informa-
tion in between measurement times and update the state
instantaneously whenever a new measurement becomes
available. The resulting updated state estimate can then
be propagated onwards.

4 Error covariance propagation

This section will describe various ways of propagating
the model mean and error covariance in time. The
general approach for time evolution in stochastic dif-
ferential equations is based on dynamic stochastic pre-
diction (Evensen, 1994). The starting point there is a
stochastic differential equation with additive noise gen-
erated by a Wiener process. The general solution is given
by the Fokker-Planck equation and consists of the full
probability density function of the state. In our
approach, the stochastic extension was introduced in
Eq. (6) at the level of the actual numerical implemen-
tation in order to make clear the physical, mathematical
and numerical assumptions that we ideally attempt to
capture. For both approaches, the final aim is to provide
accurate estimates of the state by propagating informa-
tion about the probability density in time when called
for by the estimator. In both ensemble based filters
presented in Sect. 4.1 and 4.2 the pdf is approximated
by a finite ensemble. However, for the reduced rank
square root kalman filter presented in Sect. 4.3, the
propagation is restricted to first and second order sta-
tistics.

The treatment will be restricted to expressing the
various moments of the state vector.

Assuming the noise sequence, eðtÞ, to be a zero mean
i.i.d. random variable, cf. Eq. (6), then the expectation
of xðt þ 1Þ is:
Efxðt þ 1Þg ¼ EfUðxðtÞ; uDðtÞÞg ð16Þ
Even this first order moment is impossible to evaluate
exactly for a non-linear forecast model, such as MIKE 3.
Calculation of the second order moment demands even
more resources for a good approximation and so forth.
However, various approximate methods can be
imposed, which makes the error covariance propagation
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manageable. In the following two different ways of
approximation, which are both implemented in MIKE 3
are presented. The Ensemble Kalman Filter (Evensen
1994) is based on Monte Carlo theory, while the reduced
rank square root Kalman filter (Verlaan and Heemink
1997) uses a truncated Taylor series and a square root
error covariance representation.

4.1 Ensemble Kalman filter

In the Ensemble Kalman filter, (EnKF), an ensemble of
possible states represents the statistical properties of the
state vector. Each of these vectors is propagated
according to the dynamical system subjected to model
errors, and the resulting ensemble then provides esti-
mates of the forecast state vector and the error covari-
ance matrix. In the measurement update, the Kalman
gain matrix obtained from Eq. (15) is applied for each of
the forecast state vectors. To account for measurement
errors, the measurements are represented by an ensem-
ble of possible measurements (Burgers et al. 1998). The
resulting updated sample provides estimates of the
updated state vector and the associated error covariance
matrix. The following subsections provide the mathe-
matical detail of the scheme.

4.1.1 Forecast

Each member of the ensemble of M state vectors is
propagated forward in time according to the dynamics
of the augmented system in Eq. (6) and the specified
model error, i.e.

xf
i;t ¼ Uðxa

i;t�1; uD;tÞ þ ei;t; i ¼ 1; 2; . . . ;M ð17Þ

where the model error ei;t is randomly drawn from a
Gaussian distribution with zero mean and N � N
covariance matrix Qt which represents the system noise.
The time step index t has now become a subscript to
shorten notation. An estimate of the state vector (fore-
cast) is calculated as the average of the ensemble mem-
bers, i.e.

xf
t ¼ �xf

t ¼
1

M

XM
i¼1

xf
i;t ð18Þ

The error covariance matrix of the forecast is estimated
from the ensemble as

P f
t ¼ Sf

t ðSf
t ÞT; sf

i;t ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

M � 1
p ðxf

i;t � �xf
t Þ ð19Þ

where sf
i;t is the ith column in Sf

t .

4.1.2 Update

An ensemble of size M of possible measurements is
generated

zi;t ¼ zt þ ni;t; i ¼ 1; 2; . . . ;M ð20Þ
where zt is the actual measurement vector, and ni;t is the
measurement error that is randomly generated from a
Gaussian distribution with zero mean and covariance
matrix Rt.

Each ensemble member is updated according to the
updating scheme in Eq. (14). The updated state vector
and error covariance matrix are derived from Eq. (18)
and (19). When the data assimilation is based on in-situ
measurements that are sparsely represented in space, the
full error covariance matrix in Eq. (19) does not need to
be calculated. In this case, the measurement matrix Ct
only has a few non-zero elements and only the columns
in P f

t that correspond to these non-zero elements in Ct
have to be calculated. Furthermore, since it is assumed
that measurement errors are uncorrelated, a sequential
updating algorithm that processes one measurement at a
time can be implemented and the matrix inversion in
Eq. (15) can be avoided.

The sequential updating algorithm reads (Chui and
Chen 1991),

xa
t;j ¼ xa

t;j�1 þ kt;j zt;j � ct;jxa
t;j�1

� �
;

j ¼ 1; . . . ;Nm; xa
t;0 ¼ xf

t ð21Þ

where Nm is the number of measurements, ct;j is the jth
row in the measurement matrix Ct, ct;jxa

t;j�1 is the ele-
ment in the state vector that corresponds to the mea-
surement zt;j, (i.e. zt;j � ct;jxa

t;j�1) is the model deviation
from measurement j), and kt;j is a Kalman gain vector
corresponding to measurement j. The Kalman gain
vector is given by

kt;j ¼
Sa

t;j�1ht;j

hTt;jht;j þ r2
j
; ht;j ¼ ðSa

t;j�1Þ
TcTt;j; Sa

t;0 ¼ Sf
t ð22Þ

where the numerator is the covariance between the
measurement j and the state vector and the denominator
is the sum of the variance of measurement j and the
predictive variance of the measurement. In the EnKF
the sequential updating scheme is applied for each
ensemble member, and after each measurement update
Sa

t;j is calculated from the ensemble cf. Equation (19).
Remember that the scheme encompasses both the
MIKE 3 part and the auto regressive augmented part of
the state vector. For an infinite number of ensembles
(1-EnKF) and correct error description this scheme will
provide an optimal estimate and is in this sense
asymptotically optimal.

4.2 Central ensemble Kalman filter

A second version of the EnKF that uses a central fore-
cast instead of the ensemble average forecast for xf

t has
also been implemented for the purpose of calculation of
the non-linearity measures discussed in Sect. 5. This fil-
ter is referred to as the Central Ensemble Kalman Filter
(CEnKF). A new central state vector, xc

t , is introduced.
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At initial time t0 it is set equal to the mean estimate of xa
t

and subsequently it is propagated and updated like any
other of the ensemble members, i.e:

xc;a
0 ¼ xa

0 ð23Þ

xc;f
t ¼ Uðxc;a

t�1; uD;tÞ ð24Þ
The error covariance propagation is still centred at the
ensemble forecast and hence the Kalman gain is exactly
the same as in the EnKF - only the state estimate is
different. The computational requirements are similar to
those of the EnKF, requiring only one more model
execution.

4.3 Reduced rank square root Kalman filter

The reduced rank square root Kalman filter (RRSQRT)
is based on the extended Kalman filter formulation in
which the error propagation is calculated using a sta-
tistical linearisation of the model equation based on a
first order Taylor series expansion.

4.3.1 Forecast

In the case of a coloured system noise process as
assumed in Eq. (6), the forecast step is given by

xf
t ¼ Uðxa

t�1; uD;tÞ ð25Þ

P f
t ¼ FtP a

t�1F T
t þ Qt ð26Þ

Ft ¼
oU
ox







x¼xf

t

ð27Þ

The RRSQRT approximation of the extended Kalman
filter uses a square root algorithm as well as a lower rank
approximation of the error covariance matrix. Denote
by Sa

t�1 the approximation of rank M of the square root
of the error covariance matrix P a

t�1. The propagation of
the error covariance matrix is then given by

Sf
t ¼ FtSa

t�1




Q1=2
t

h i
ð28Þ

where Q1=2
t is the N � NB-dimensional square root of Qt.

The matrix Sa
t�1 has M columns where M is chosen much

smaller than the dimension of the state vector. To cal-
culate the derivatives in Ft a finite difference approxi-
mation of Uð�Þ is adopted as follows,

ðFtSa
t�1Þi ¼ ½Uðxa

t�1 þ Sa
i;t�1; uD;tÞ

� Uðxa
t�1; uD;tÞ�; i ¼ 1; . . . ;M ð29Þ

where sa
i;t�1, is the ith column of Sa

t�1. Thus, the propa-
gation of the error covariance matrix requires M model
integrations.

The propagation step in Eq. (28) increases the num-
ber of columns in the error covariance matrix from M to
M þ NB. In order to reduce the number of columns and

hence keep the rank of the error covariance matrix
constant throughout the simulation, a lower rank
approximation of Sf

t is applied by keeping only the M
leading eigenvectors of the error covariance matrix. The
reduction is achieved by an eigenvalue decomposition of
the matrix (Sf

t ÞTSf
t . For full details refer to (Cañizares

1999). For a proper reduction Sf
t must be normalised

prior to the eigenvalue decomposition. Basically the
normalisation is chosen to ensure that the potential
energy expressed by the surface elevation and the kinetic
energy expressed by the velocity get similar total weight
in (Sf

t ÞTSf
t before the leading eigenvalues are found. The

augmented forcing correction part of the state vector is
similarly given an equal total weight.

4.3.2 Update

Based on the square root approximation of rank M ; Sf
t ,

the error covariance matrix can be calculated as
P f

t ¼ Sf
t ðSf

t ÞT, and subsequently used for the Kalman
filter update. However, by using the sequential updating
algorithm described for the EnKF it is not necessary to
calculate the forecast error covariance matrix and the
sequential updating can be performed using Sf

t directly.
In this case the state vector is updated using Eq. (21),
and the updated square root covariance matrix is given
by (Cañizares 1999),

Sa
t;j ¼ Sa

t;j�1 �
kt;jhTt;j

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
j

hT
t;jht;jþr2

j

r ; Sa
t;0 ¼ Sf

t ð30Þ

where kt;j and ht;j are defined in Eq. (22).

4.4 Filter characteristics

In the previous subsections three specific Kalman filter
schemes have been presented. In the present subsection
we will discuss some of their properties in greater detail.
All the schemes attempt to provide time-efficient esti-
mates of the predicted first and second order moments of
the state vector. They differ primarily in the way they
approximate these moments. The ensemble approach
tries to make an exact propagation at the cost of an
estimate that may be significantly influenced by sto-
chastic errors due to slow convergence of the ensemble
estimate (proportional to 1=

ffiffiffiffiffi
M
p

). On the other hand,
the RRSQRT KF deliberately introduces a bias in both
the first and second order moments, but eliminates the
stochastic error.

In the EnKF stochastic errors are introduced in both
first and second order moments, but when all assump-
tions are valid it provides an unbiased and asymptoti-
cally efficient estimate. The CEnKF maintains the
stochastic error in the error covariance propagation. The
state estimate inherits this stochastic error component
through the update, but on top it has a bias from its first
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order approximation of the dynamics provided by the
central forecast.

The state and its associated covariance estimate are
biased in the RRSQRT KF because of the first order
Taylor series truncation. A second order truncation
would introduce an additional term in the estimate of
the mean state, but not otherwise affect the error
covariance estimate, Verlaan and Heemink (2001).
Furthermore, the error covariance has a truncation error
originating from the eigenvalue decomposition and
reduction. Generally, the RRSQRT will underestimate
the model error covariance for correctly specified QðtÞ
and thus provide a state estimate closer to the model
solution than the optimal estimate. However, there is no
stochastic error in this scheme.

The various Kalman filter algorithms generally
attempts to minimise the variance assuming no bias, Dee
(1998). However, a bias, b, can enter the state estimate
either through a bias in the system error or through non-
linearities in the model operator in schemes using central
forecasts such as RRSQRT KF and CEnKF. In this case
the optimal estimator in a minimal prediction error
sense must be calculated by using P f þ bbT instead of P f

in the BLUE estimator, Eqs. (14) and (15), and thus the
error covariance estimate provided by the 1-EnKF is
no longer optimal. Alternatively, the filter can estimate
the bias by augmenting the state with the bias terms. The
bias is propagated by a persistence model or a long
memory auto regressive model. For a proper value of
a in Eq. (4) this is exactly what the AR(1) noise
description does under the assumption of all bias coming
from the forcing term (Ignagni, 1990). Thus all filters
accommodate bias correction in the forcing.

The reaction time of the bias correction is determined
by the relative sizes of the elements in Rt and Qt. If Qt is
comparatively large, the state will be updated to fit the
measurements rather closely where available and
simultaneously update all other state variables according
to the assumed correlation structure of the model error
and its subsequent propagation throughout the model
domain. Thus the imposed error structure in Qt is of
prime importance. If the correlation between data rich
and data sparse regions are poorly estimated, significant
errors can be introduced into data sparse regions. For a
comparatively small Qt there will be more trust in the
model and the state estimate will move slowly towards
the measurements.

However, a potential structural error will still be
introduced into data sparse regions albeit at a slower
speed.

5 Measures of non-linearity, Gaussianity and bias

It is important to note that all schemes are imposing a
number of approximations in order to make the data
assimilation problem manageable. The validity of these
assumptions will be case dependent for a set-up of a
model like MIKE 3. Thus, before blindly relying on the

schemes, the correctness of the underlying assumptions
ought to be tested. In the following we will discuss a
number of ways to estimate the non-linearity, Gaussia-
nity and bias of a data assimilation algorithm.

According to Verlaan and Heemink (2001), the gen-
eral aim of a non-linearity measure of a data assimila-
tion system is, without the artificial twin experiment, to
assess the accuracy of the data assimilation algorithm
associated with the non-linearity of a particular appli-
cation. In pursuing this goal, they developed a measure
that is based on the Taylor series second order contri-
bution to the propagation of the state estimate.

Here we would like to add that the accuracy of a filter
is associated with other aspects than the expected bias
accumulation induced by non-linearity, all though this is
an important factor in highly non-linear applications.
The applicability of the BLUE estimator as being opti-
mal in a prediction error sense and the MAP interpre-
tation builds on the assumption of an unbiased and
Gaussian distributed state. A non-linear model propa-
gator inherently violates the latter of these assumptions
and bias is only avoided in the EnKF and when using
unbiased forcing.

Verlaan and Heemink (2001) demonstrate the per-
formance of their measure in the Burgers equation and
in the Lorenz-system. Depending on the set-up, MIKE 3
possesses dynamics that can stretch over both these
domains of non-linearity. Thus, it is of great interest to
examine the non-linearity of a given model application
in order to provide guidance in selecting the correct filter
and to obtain an indication of filter performance and the
accuracy of the provided error estimates. Along with
validating the underlying assumptions, non-linearity
measures also help the modeller configuring a data
assimilation approach and obtaining a better under-
standing of the dynamics in the particular model domain
under consideration.

Three non-linearity measures are used in the present
investigation. Verlaan and Heemink’s NL-measure V2,
and two measures based on skewness and kurtosis
respectively, s2 and k2. The first of these gives informa-
tion about the accumulation of bias introduced by the
non-linearity, while the latter two measure the instan-
taneous deviation from Gaussianity. Gaussianity and
linearity are closely related. In general Gaussianity
implies linearity whereas the opposite is only true in the
case of Gaussian distributions of the error sources and
the initial field. All three measures are time varying
spatial L2-norms. Based on the derivation in Verlaan
and Heemink (2001), the V2 measure can be written as:

V2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

biðtÞ
ciðtÞ

� �2

vuut ð31Þ

biðtÞ ¼ xc
i ðtÞ � xiðtÞ ð32Þ

Here, N is the number of elements in the state vector and
ciðtÞ is the standard deviation of the state estimate de-
rived as the square root of the diagonal elements of
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P aðtÞ. The bias, biðtÞ is simply estimated as the difference
between the central ensemble estimate and the average
ensemble estimate. In the update step the EnKF scheme
is used to estimate the error covariance for both state
estimates. Thus, the measure includes effects from the
stochastic estimate of the error covariance and average
state estimate as well as the error introduced by the non-
linear dynamics. For a proper assessment of non-line-
arity, it must be assumed that the latter is dominating,
i.e. that the ensemble size is sufficiently large. The V2-
measure differs from the V -measure suggested in (Ver-
laan and Heemink 2001),

V ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT P�1b
p

; b ¼ ½b1; . . . ; bN �T ð33Þ
While V2 measures the bias compared to the variance, i.e.
the trace of the error covariance matrix, the V -measure
compares the bias to the full matrix taking correlations
into account.

With M still being the ensemble size, the s2-measure is
simply the spatial L2-norm of the skewness, siðtÞ:

siðtÞ ¼
M
PM

j¼1 xjðtÞ � �xðtÞ
� �3

ðM � 1ÞðM � 2Þc3i ðtÞ
ð34Þ

s2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðsiðtÞÞ2

vuut ð35Þ

A positive skewness expresses that the distribution
has a longer tail towards larger values and vice versa for
a negative value. Likewise the k2-measure is the spatial
L2-norm of the kurtosis, kiðtÞ:

kiðtÞ ¼
MðM þ 1Þ

PM
j¼1ðxjðtÞ � �xðtÞÞ4

ðM � 1ÞðM � 2ÞðM � 3Þc4i ðtÞ
� 3ðM � 1Þ2

ðM � 2ÞðM � 3Þ
ð36Þ

k2ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1
ðkiðtÞÞ2

vuut ð37Þ

A positive or negative kurtosis respectively expresses
that the distribution is peaked or flat relative to the
Gaussian distribution.

The two latter measures are introduced in order to
measure the point by point non-Gaussianity of the
ensemble distribution. Having a Gaussian initial dis-
tribution and Gaussian error sources, the non-Gaus-
sianity is an expression of the effect of accumulated
non-linearity in the modelled state. However, the
measures have both a bias and a variance due to a
limited ensemble size. Keep in mind that the forcing
function is part of the model operator when employing
the augmented state description. Thus, the squared
dependence between wind velocity and surface
momentum transfer will introduce a skewness into the
velocity components. An important operational issue is
the robustness of these measures to the ensemble size.
All three measures have an off-set that vary with

ensemble size. Further, the larger the ensemble size the
smaller variance of the measures.

The V2 measure corresponds to a 2nd order Taylor
series expansion in the error covariance propagation.
Thus, it can provide information about the validity of
the extended Kalman filter (EKF) and its size can be
used to measure the linear deviation from this EKF
validity regime as long as third and higher order mo-
ments can be neglected. The s2 and the k2 measures will
provide measures of non-linearity that exceeds the
point at which the V2 measure levels out. However,
their interpretation as measures of non-linearity
depends on having Gaussian system errors. Further,
measures based on higher order moments could be
introduced to measure higher order non-linearity. E.g.
the deviation between the EKF and the EnKF error
covariance estimates could be applied in an appropriate
way.

Finally, a bias measure is introduced, which com-
pares the updated model to observations where avail-
able. The measurements should include validation
stations not assimilated, since assimilation might actu-
ally increase bias in validation stations. For every mea-
surement, j, the bias measure, bj, is defined as,

bj ¼
1

T

XT

t¼1

zt;j � ct;jxa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ct;jP a

t cT
t:j þ r2

j

q ð38Þ

T is the number of time steps. The b-measure is appli-
cable to any run in which a model standard deviation
is estimated. Taking the L2-norm over all available
measurements, possibly divided into assimilated and
non-assimilated stations can aggregate the information
of the measure further.

6 Simulation study

A twin test in an idealised set-up is used to demonstrate
the application of the non-linearity measures in MIKE
3. The study also investigates the model performance in
a set-up with biased forcing using different error corre-
lation structures to estimate the state both with and
without a long memory AR(1) error assumption. Both
investigations have been designed in order to assess the
validity of filter assumptions and the performance when
they are violated. However, first attention must be paid
to the performance measures used.

Only water level is used in the performance measures,
which are as such different from the cost function that
the scheme attempts to minimise. However water level is
considered the most important forecast variable, and it
is the variable that has the largest correlations with the
tidal gauge measurements and therefore most clearly
shows the strengths and weaknesses of the various
approaches. Practically all results transfer to the velocity
part of the state vector, albeit with a smaller amplitude.
Similarly, the non-linearity, non-Gaussianity and bias
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measures defined in Section 5 are restricted to include
only water levels as well.

A standard performance measure of data assimilation
schemes is the root mean square error (RMSE) between
the true (true) and assimilating or perturbed solutions
(pert) in a twin experiment (Verlaan and Heemink 2001;
Madsen and Cañizares 1999). It can be expressed in a
way that collapses either the temporal or the spatial
dimension. In the present paper, the following definition
is used,

RMSE ¼ 1

n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1
ðftrue

t ðiÞ � fpert
t ðiÞÞ

2

vuut ð39Þ

where n is the number of water level grid points, T is the
number of time steps included in the estimate and f the
water level. Similarly bias and standard deviation can be
defined as,

Bias ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

1

T

XT

t¼1
ftrue

t ðiÞ � fpert
t ðiÞ

� �" #2vuut ð40Þ

St.dev.¼1
n

�
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

t¼1
ftrue

t ðiÞ��ftrue
t ðiÞ

� �
� fpert

t ðiÞ��fpert
t ðiÞ

� �� �2
vuut

ð41Þ
The filter theory is based on ensemble statistics, but in
order to estimate the filter performance time sampled
statistics must be used. This requires ergodicity and a
sufficiently long time period for the statistics to have
acceptable accuracy.

For ergodicity to apply a basin with constant wind
forcing and constant open boundary elevation provides
the basis of the test case. The basin contains a simple horse
shoe island and the initial state has a constant surface
elevation at 0m and is at rest. The spatial resolution is
10 km and the time step is 15min. The northern open
boundary has surface elevation 1.0m and the eastern has
surface elevation 0.0m. The bathymetry, which is shown
in Fig. 1, was chosen to mimic a typical application of
MIKE 3 in shelf seas, while remaining simple enough for
fairly fast execution and ease of interpretation. In the non-
linearity twin test, NL, the false run uses a steady 20m/s
westerly wind, while the true run is forced by the same
wind field with a realisation of two similar AR(1) pro-
cesses added to the x- and y-components of the wind
velocity, respectively. Each AR(1) process has a time
constant of one hour and 25min and is forced with a
Gaussian distributed white noise with a standard devia-
tion of 5m/s. In the error structure twin test case, ES, the
false run is similar, but the true run uses a steady 19.8m/s
south-westerly wind corresponding to x and y wind
velocity components equal to 14m/s.

The model was run for 16 days and statistics were
calculated during the last 15 days. The realised wind

errors (the two AR(1) processes) added to the 20m/s
westerly wind in the true NL run had spatially averaged
standard deviations of 9.0m/s and 9.3m/s in the x and y
directions respectively, and maximum norms of the
mean of 0.5m/s and 0.3m/s with spatial averages of
minus 0.01 and 0.03. This is taken to provide a suffi-
ciently good representation of the assumed error statis-
tics of zero mean and standard deviation of 9.2m/s.
Thus, any bias introduced in the system in the NL false
run must be due to non-linearity.

Note here that it is not sufficient to work with a
period much longer than the time constant of the noise
itself, since the model operator potentially filters the
input and thus transforms the characteristic time scales.
This is clearly seen when an auto-regressive noise is used,
but even in the case of direct Gaussian wind stress per-
turbation, the model operator performs a filtering. In
order to make sure that the time statistics are reliable,
the time average of the model output from an execution
with the assumed true run should compare well with the
result of a 1-EnKF of the false run. For the NL true
run this was successfully validated against a 1000 EnKF
run without assimilation.

Measurements were extracted from four points in
each of the true runs to be assimilated into the false runs.
The positions shown in Fig. 1 were chosen at bound-
aries, as is typically the case for tidal gauge stations. The
asymmetry of the positions suggests a similar asymmetry
in the standard deviation of the state estimate to be
provided by the assimilation schemes. The measurement
positions are also chosen to investigate the filter per-
formance in data sparse regions as compared to data
rich regions for various error structure assumptions.

The NL-experiments were designed to provide a
comparison between the various non-linearity measures
and relate these to the filter performance of the three
filters presented in Section 4. The design enables the
1-EnKF to provide the optimal estimate since care has
been taken not to have significant reminiscent bias in the
system apart from that introduced by the non-linearity

Fig. 1 Test case bathymetry [m]. The black dots indicate
measurement positions (10, 160 km), (60, 80 km), (80, 10 km)
and (200, 30 km)
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in the schemes based on a central forecast. Thus the
relation between bias and non-linearity should stand
clear. The non-linearity is expected to increase with
increasing update time intervals, (Verlaan & Heemink
2001). Therefore, update interval (ui) is chosen as a
control parameter of non-linearity. The update interval
is given in time steps and thus the ui12 run updates the
state every 12th time step or equivalently every 3 h.
Update intervals equal to 1,4, 8, 12, 24 and 48 are chosen
and compared to a simulation without updating.

The ES-experiments are meant to expose the
importance of using the augmented AR(1) error
description in the presence of bias. More generally they
highlight the performance of the Kalman filter using
true and false descriptions of the error structure and
how insight can be obtained from the bias measure.
The ES false run has a clearly biased wind forcing
having a direction, which is turned 45 degrees. The
EnKF is used to assimilate the true results under the
assumptions of biased and unbiased wind, i.e. time
constants of 0 and 106 seconds equivalent to an AR(1)
parameter a equal to 0.0 and 0.9994 respectively. This
is done in combination with four different spatial cor-
relation scales of 0, 100, 495 and 10,000 km for the
wind error.

7 Results and discussion

7.1 Non-linearity (NL) experiments

7.1.1 Solution without data assimilation

In order to give an impression of the general solution of
the NL true and false run and central and ensemble
forecast without assimilation, Fig. 2 shows a time series
of water level at the measurement point (60, 80 km) for
each case. The ensemble run is based on 1000 ensembles.
All variability in the true run is due to a changing wind
field. A rather large variation has been imposed and the
shortcomings of the false runs are obvious. Further, the

bias introduced by the central forecast stands out
clearly.

An alternative view of the false run is provided by
Fig. 3, which shows the bias and standard deviation
over the last 15 days for the central forecast false run.
The spatial distribution of the bias reflects the non-lin-
earity from the squared dependence of wind speed in the
momentum transfer. The distribution of the standard
deviation arises from the coloured wind error showing
its peak values close to the closed boundaries. Similar
statistics are shown for a 1000 ensemble forecast in
Fig. 4. Note the reduction in bias, while the standard
deviation remains literally unaltered.

7.1.2 General filter performance

The assimilation schemes all improve the rather poor
false solution significantly. Figures 5 and 6 show the
bias and standard deviation for the RRSQRT with 40
leading eigenvalues and EnKF based on 1000 ensembles,
respectively, and should be compared to Figs. 3 and 4.
In both cases the state was updated at every time step,
i.e. ui ¼ 1. An obvious error reduction is seen in either
case, which proves the efficiency of the assimilation
schemes. Figure 7 shows the standard deviation esti-
mated by the EnKF averaged over the last 15 days.
Ensuringly, the structure of this estimate is seen to
correspond closely to the actual standard deviation in
Fig. 6. Neither of the schemes have a significant bias.
Note that ui ¼ 1 is the most linear of the NL model runs.
The good estimation of standard deviation generalises to
all assimilation runs.

Table 1 sums up the performance of the schemes as
estimated by the RMSE between the true run and
each run with false forcing with assimilation and
varying update interval and a run without assimila-
tion. The good filter performance already demon-
strated in the figures generalises to all cases. The
larger the update interval the worse performance, as
expected when longer periods of time with possible

Fig. 2 Water levels extracted
at (60, 80 km). Grey: True
run. Black dot-dashed: Cen-
tral forecast false run. Black:
Ensemble forecast false run
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drift away from the true state is allowed. An EnKF
with 100 ensembles is also included in the present
study and has approximately the same execution time
as the RRSQRT KF with 40 leading eigenvalues.
These numbers have been shown by Madsen and
Cañizares (1999) to be sufficient in the kind of system
under consideration. In order to assess the stochastic
variation of the EnKF, five realisations of the 100
EnKF have been calculated. Only one of these is in-
cluded in Table 1, but the variability of the RMSE is
generally less than 0.005.

7.1.3 Assessment of non-linearity and non-Gaussianity

Consider the bias in the central forecast provided by the
CEnKF versus the EnKF based forecast with no
assimilation. Figures 3 and 4 show maps of their time
averaged bias for 1000 ensembles in the extreme case of
no updates. Table 2 shows the spatial L2-norm of the
time averaged bias for the range of different runs with
false forcing and using the various schemes and update
intervals. It is clear how the non-linear model equation
introduces a model bias as the update interval increases
in the schemes relying on central forecasts, RRSQRT

and CEnKF, whereas the ensemble forecast has a neg-
ligible bias.

This behaviour is well captured by the non-linearity
measure, V2, defined in Section 5. As can be seen in
Table 3 the effect of changing the update interval is
consistently to increase V2. This is a consequence of the
bias demonstrated in Table 2. As assumed, the non-
linearities in the model operator introduces progressively
more bias in the system as the update interval (ui) is
increased. However even when no assimilation is used at
all, the V2 non-linearity measures remain small. The
main source of non-linearity in the model is the con-
version of wind velocity to wind stress in the interplay
between the augmented and the model part of the state
vector. Thus, the present set-up is not highly non-linear,
but on the other hand non-linearities are not negligible
either.

The s2 and k2 measures in Table 3 show a similar
dependence on update interval and thus provide inter-
esting complimentary measures. While describing the
non-linearity they simultaneously provide an indicator
of non-Gaussianity and thus the reliability of interpret-
ing the results as MAP-estimates. For s2 and k2 the
variability with update interval is somewhat different
from V2. They increase rather steadily with update

Fig. 3 Top: Central forecast NL false run water level bias [m].
Bottom: Central forecast NL false run water level standard
deviation [m]

Fig. 4 Top: 1000 ensemble forecast NL false run water level
bias [m]. Bottom: 1000 ensemble forecast NL false run water
level standard deviation [m]
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interval for the chosen intervals and even in the most
linear case (ui ¼ 1) the solution seems to be non-
Gaussian. Therefore, even the 1000 ensemble estimate
does not give the state with the maximum a-posteriori
probability, but rather the state estimate with the lowest
mean square error using linear and unbiased estimators.

All three measures are merely stochastic realisation
and their variability should be assessed. First of all, the
measures obviously vary with ensemble size. This is to
be expected since they rely on sample estimates of
second and higher order moments. However, for a
given ensemble size there might still be a stochastic
variability, due to limited ensemble size. Five realisa-
tions of 100 EnKF have been used to assess this vari-
ability. In all cases, the maximum difference is less than
0.02 in the RMSE estimate, 0.02 in V2, 0.03 in s2 and
0.06 in k2. Thus the single run estimates can be con-
sidered sufficiently accurate to indicate the relative non-
linearity and Gaussianity of various data assimilating
set-ups.

Bias has been introduced as a product and measure of
non-linearity, but simultaneously it is the source of
trouble for schemes based on the extended Kalman fil-
ter, such as the RRSQRT, in strongly non-linear appli-
cations. In Segers et al. (2000) a second order RRSQRT

filter was introduced, which handles significantly more
non-linear situations. However, the only enhancement
as compared to the regular RRSQRT filter is to
estimate and correct the bias introduced in the state
estimate by non-linearities. The forcing induced bias,
which can have a similar impact on the filter perfor-
mance, is most often not considered in literature, but

Fig. 5 Top: Forecast NL false run water level bias [m] using
the RRSQRT. Bottom: Forecast NL false run water level
standard deviation [m] using RRSQRT

Fig. 6 Top: Forecast NL false run water level bias [m] using
the 1000 EnKF. Bottom: Forecast NL false run water level
standard deviation [m] using 1000EnKF

Fig. 7 Estimated water level standard deviation [m] by the
1000EnKF
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much more attention needs to be paid to this aspect for
operational use of Kalman filtering techniques. The next
part of the discussion attempts to examine this bias
source and how the implemented schemes can handle it
in the case of true as well as false error structure
assumptions.

7.2 Error structure (ES) experiments

7.2.1 Solution without data assimilation

Both the true and the false ES runs reach a steady state
rather fast and thus the false run error is essentially
determined by the bias, which is shown in Fig. 8. The
bias is created by a constant difference in wind direc-
tion throughout the domain. Thus, the error source is
known to be a bias in the wind velocity with infinite
spatial correlation. The bias is evident and has an L2-
norm of 0.27m. However, the bias varies throughout
the domain. In real applications the bias can only be
estimated in measurement points. Thus, sufficient data
coverage is required for a proper assessment of bias.
The bias in Fig. 8 does not necessarily suggest a spa-
tially constant bias to the untrained eye. Only with the
proper physical insight and sufficient sampling, this can
be anticipated.

By running one of the data assimilation schemes with
no updates, the model standard deviation and thus the
b-measure can be estimated. Assuming the entire field to
be known, the L2-norm of b is 1.8 and if we restrict
ourselves to the measurement points the corresponding
value is also 1.8, but obviously a different set of points
could yield a substantially different value. Four valida-
tion points were selected: (10, 80 km), (160, 10 km), (130,
90 km) and (190, 190 km). Based on these the L2-norm of
b is 2.1. In all cases the measure shows that the model-

Table 1 Root mean square error (RMSE) in the NL assimilation runs for varying update interval (ui) and assimilation scheme. Runs with
no update are denoted ui-1

RMSE ui1 ui4 ui8 ui12 ui24 ui48 ui-1

1000 EnKF 0.10 0.12 0.17 0.22 0.27 0.31 0.34
100 EnKF 0.10 0.12 0.17 0.22 0.27 0.32 0.34
40 RRSQRT 0.12 0.13 0.19 0.24 0.30 0.34 0.36
1000 CEnKF 0.10 0.12 0.17 0.22 0.28 0.33 0.36
100 CEnKF 0.10 0.13 0.18 0.23 0.29 0.33 0.36
No assim. 0.36 0.36 0.36 0.36 0.36 0.36 0.36

Table 2 Spatial L2-norm of the bias in the NL assimilation runs for varying update interval (ui) and assimilation scheme. Runs with no
update are denoted ui-1

Bias ui1 ui4 ui8 ui12 ui24 ui48 ui-1

1000 EnKF 0.01 0.01 0.01 0.01 0.01 0.02 0.01
100 EnKF 0.02 0.01 0.01 0.02 0.02 0.02 0.01
40 RRSQRT 0.01 0.01 0.02 0.04 0.07 0.11 0.13
1000 CEnKF 0.01 0.01 0.03 0.04 0.07 0.11 0.13
100 CEnKF 0.01 0.02 0.02 0.04 0.07 0.11 0.13
No assim. 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Table 3 Non-linearity measures for the NL assimilation runs for varying update interval (ui). Runs with no update are denoted ui-1

NL-measure ui1 ui4 ui8 ui12 ui24 ui48 ui-1

V2 0.10 0.12 0.14 0.17 0.22 0.29 0.33
s2 0.21 0.25 0.35 0.40 0.49 0.54 0.60
k2 0.37 0.43 0.52 0.56 0.61 0.64 0.69

Fig. 8 Forecast ES false run water level bias [m]
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measurement difference is significantly larger than its
standard deviation. Knowing that the measurements are
unbiased in this idealised test case, we can conclude that
the model has a bias.

7.2.2 Solution with data assimilation

The biased error structure can be cast within the assim-
ilation schemes presented in Section 4 and thus these
ought to give a very good estimation of the bias. This is
demonstrated in Fig. 9 showing the bias from the 100
EnKF scheme correctly assuming a biased error with a
very high spatial correlation of 10.000 km. Alternatively,
if the error is assumed to be white, a bias will always
remain as shown in Fig. 10, still assuming a spatial cor-
relation of 10.000 km. The results are summarised in
Table 4, showing the L2-norm of bias and b for varying
spatial correlation lengths with a white noise or bias
assumption corresponding to a time constant of zero and
106 s, respectively. The effectiveness in bias correction is

seen to clearly depend on the validity of the imposed
error assumptions. The assimilation runs assuming col-
oured and spatially correlated noise leave a bias, which is
smaller than the estimated standard deviation of the
model-measurement difference. Since the model believes
it is correcting an error in all assimilation runs, this
standard deviation is rather quickly dominated by the
measurement standard deviation of 0.05m. However, for
the assimilation runs assuming white noise the resulting
bias is only barely within the bounds of the uncertainty
even for the correct spatial correlation.

Applying a wrong spatial correlation scale can
potentially increase the bias in data sparse areas as
demonstrated in Fig. 11, which shows the bias for a
spatial correlation scale of 0 kilometres and a time
constant of 106 seconds. Compared to Fig. 8 there is an
evident bias increase in the data sparse bay of the horse
shoe island.

All together, these experiments show the importance
of treating the error structure correctly. Making false
assumptions can severely affect the filter performance.
Both in the deterministic case and when employing an
assimilation scheme the bias in measurement points
ought to be examined. The b-measure can be used to
indicate whether the bias is within the range of uncer-
tainty for every point of interest.

Fig. 9 Forecast ES false run water level bias [m] using
100EnkF with a time constant of 106 and a spatial correlation
scale of 10,000 km

Fig. 10 Forecast ES false run water level bias [m] using
100EnkF with a time constant of zero and a spatial correlation
scale of 10,000 km

Table 4 Top: The L2-norm of the bias. Bottom: The L2-norm of b.
The time constant and the spatial correlation scale vary along the
vertical and horizontal axes respectively. All runs are based on the
100 EnKF scheme

Bias 0 km 100 km 495 km 10,000 km

0 s 0.25 m 0.13 m 0.08 m 0.05 m
106 s 0.17 m 0.04 m 0.01 m 0.00 m

b
0 s 4.13 1.63 1.12 0.84
106 s 3.03 0.64 0.21 0.06

Fig. 11 Forecast ES false run water level bias [m] using 100
EnkF with a time constant of 106 and a spatial correlation scale
of 0 km
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8 Summary and conclusions

A stochastic model of the physical system consisting of
hydrodynamic flow in coastal and continental shelf seas
has been formulated. This stochastic model and obser-
vations are the foundation of providing statistically
based estimates of the oceanic state. However, in order
to obtain such estimates a number of assumptions must
be imposed. A non-linearity measure, two measures
for non-Gaussianity and a bias measure have been
presented with the aim of providing means of assessing
the validity of these assumptions.

The non-linearity measure has been demonstrated to
vary consistently with the non-linearity of the set-up.
The EnKF handles the non-linearity well, leaving only a
minor bias, whereas procedures based on central fore-
cast have significant biases for more non-linear set-ups.
The correspondence between the non-linearity and non-
Gaussianity has been verified. The MAP interpretation
of the estimated state must be discredited in the case of
strong non-linearities or lack of Gaussian noise input.
Finally, it has been demonstrated how wrong error
structure assumptions may severely hamper the results.
This is particularly true for data sparse regions.

For the simple test case examined in this paper, the
wind driven coastal circulation does not require data
assimilation schemes, which handles strongly non-
linear dynamics for assimilation of tidal gauge data.
This might not be the case for all bathymetries and
thus it is recommended to employ non-linearity mea-
sures to assess the applicability of the various schemes.
The non-Gaussianity measures provide complimentary
measures that simultaneously guides the user to a
proper interpretation of the results. In many real case
applications, the bias introduced by non-linearity is
not the dominating source of bias. Rather the forcing
induced bias will often be larger. A general bias
measure, which is easy to calculate, has been formu-
lated. This measure indicates the presence of bias, but
not whether the source is model non-linearity or
biased forcing. However, in combination with the non-
linearity measures, the contribution from each can be
approximately assessed. Hence work can proceed to
take the bias properly into account in the data
assimilation scheme. In any case, the presence of bias
indicates that the filter is working under the wrong
assumptions and therefore is not optimal in a least
square sense. Another prerequisite of optimality of the
estimator is a correct error structure description. It is
demonstrated that the specification of a correct error
structure is important in practical application and
wrong assumptions can induce severe errors in data
sparse regions.
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Cañizares R (1999) On the application of data assimilation in
regional coastal models. PhD thesis Delft University of Tech-
nology
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