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[1] Data assimilation in operational forecasting systems is a discipline undergoing rapid
development. Despite the ever increasing computational resources, it requires efficient
as well as robust assimilation schemes to support online prediction products. The
parameter considered for assimilation here is water levels from tide gauge stations. The
assimilation approach is Kalman filter based and examines the combination of the
Ensemble Kalman Filter with spatial and dynamic regularization techniques. Further, both
a Steady Kalman gain approximation and a dynamically evolving Kalman gain are
considered. The estimation skill of the various assimilation schemes is assessed in a
4-week hindcast experiment using a setup of an operational model in the North Sea and
Baltic Sea system. The computationally efficient dynamic regularization works very well
and is to be encouraged for water level nowcasts. Distance regularization gives much
improved results in data sparse areas, while maintaining performance in areas with a
denser distribution of tide gauges. INDEX TERMS: 3337 Meteorology and Atmospheric Dynamics:

Numerical modeling and data assimilation; KEYWORDS: tide gauge, data assimilation, North Sea, Baltic Sea
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1. Introduction

[2] Marine operational forecasting systems are being
increasingly applied for a number of engineering and public
service purposes [e.g., Pinardi and Woods, 2002; Erichsen
and Rasch, 2002]. The products are valuable for hindcast,
nowcast, and forecast situations, and in all cases, there is a
need for higher precision simulation of the physical varia-
bles. In order to increase the predictive skill, the numerical
models have been continuously improved during the past
decades. Better numerical methods have been developed,
smaller scales resolved, and improved parameterizations
implemented. The developments in the numerical models
have been carried over to the operational systems as
robustness has been proved. Along with this development,
attention has been paid to including an increasing number of
physical variables in the models. Hence the portfolio of
products has been expanded from the hydrodynamic and
thermodynamic parameters to include estimation and pre-
diction of waves, biogeochemical parameters, and sedi-
ments. All together, these developments have taken us to
the stage we have reached today.

[3] A number of model errors remain despite the clear
improvements of the predictive skill that the present oper-
ational systems have experienced during their lifetime.
However, the measurements that demonstrate this error
are often available online and can potentially be used to
update the estimation of the ocean state in real time.
Methods that pursue this line of thought are referred to as
operational data assimilation techniques. Data assimilation
is a cross-disciplinary field with a range of uses, for
example, the engineering community and meteorological
sciences have a long history of successful applications. Data
assimilation in ocean models for hindcast studies has also
been rather widespread during the past decade.
[4] However, the methodologies are computationally de-

manding, and hence the use of assimilation approaches has
only been applied to a lesser extent in the operational
modeling community. Examples are the MERCATOR proj-
ect [Bahurel et al., 2002] and the MFSTEP project
[Pinardi et al., 2002]. In common for these and similar
developments is the accessibility of high-performance com-
putational resources and assimilation of a large range of
satellite and in situ measurements into three-dimensional
regional or global models. For more widespread application,
techniques must be applicable on the moderate computa-
tional resources available to project engineers and scientists
working in applied modeling. For the assimilation of tide
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gauge data, operational storm surge forecasting has been one
of the targets. Here smaller geographical areas and simpler
two-dimensional models have often been considered, which
gives some reduction in the required computational resour-
ces. Simultaneously, cheap assimilation methods have also
been proven successful, hence encouraging their implemen-
tation [e.g., Vested et al., 1995; Gerritsen et al., 1995;
Cañizares et al., 2001].
[5] A less computationally demanding assimilation ap-

proach based on the steady solution of the Riccati equation
and subsequent use in a Kalman filter was suggested by
Heemink and Kloosterhuis [1990]. This approach reduces
the computational demands to the same order of magnitude
as a standard model execution. Verlaan and Heemink
[1997] suggested the improved reduced rank square root
(RRSQRT) extended Kalman filter, with successful appli-
cation for storm surge prediction along the Dutch coast.
Bertino et al. [2002] similarly used a RRSQRT Kalman
filter for water level assimilation in the Odra Lagoon.
Madsen and Cañizares [1999] demonstrated an implemen-
tation of the RRSQRT and the Ensemble Kalman Filter
(EnKF) [Evensen, 1994] in an idealized bay. They showed
that the two schemes have similar computational demands
and performance. However, computational times are of the
order 102 times greater than a standard model execution.
Cañizares et al. [2001] demonstrated a successful applica-
tion in the North Sea and Baltic Sea system of a Steady
Kalman filter using a gain obtained as a time average of the
gain produced by the EnKF. Interestingly, spurious correla-
tions caused the results to get worse in data sparse regions,
showing the limitation of the Kalman filter approach. On
the basis of ideas from Houtekamer and Mitchell [1998],
Hamill et al. [2001] discussed this artifact of the EnKF and
suggested that a distance function can be used to control the
effect of uncertain ensemble estimates. Evensen [2003]
argued that such an approach should be avoided because
it no longer generates updated ensembles as linear combi-
nations of the forecast ensembles.
[6] The main computational issue in Kalman filter based

data assimilation is the propagation of the system error
covariance matrix. The EnKF and RRSQRT schemes along
with, for example, the SEEK [Pham et al., 1997] and the
SEIK filter [Pham et al., 1998], attempt to save computa-
tional resources by constructing a low rank approximation
of the model error covariance. The Steady filter assumes no
time variation, but still requires a solution of the Riccati
equation or a more elaborate scheme for the generation of
the gain. Dee [1991] suggested using a simpler dynamical
model propagator for the error propagation. Fukumori and
Melanotte-Rizzoli [1995] presented a scheme which
employed a coarser grid for the error propagation, hence
reducing the dimension of the state-space but simultaneously
simplifying the dynamics.
[7] The objective of the present study is to investigate the

possibility of combining a range of approximate Kalman
filter based techniques for the assimilation of tidal gauge
data in the North Sea and Baltic Sea system. The techniques
are selected in order to provide an optimally efficient
scheme for this case, but their nature is discussed in
a general regularization perspective. This framework
acknowledges the violation of the underlying assumption
in the elaborate assimilation schemes and enables the

incorporation of prior independent knowledge in the esti-
mation of the ocean state.
[8] Within the regularization framework we describe four

approximations to the EnKF. These are temporal smoothing
of the Kalman gain, the Steady Kalman gain, a barotropic
model error approximation, and a distance dependence of
the Kalman gain. The performance of the techniques is
presently examined in a hindcast scenario of the North Sea
and Baltic Sea system, but the goal is to develop schemes
that can be used in an operational forecast setting.
[9] In section 2 the two- and three-dimensional hydrody-

namic models employed in this study are presented along
with the available tide gauge measurements. Section 3
provides the theoretical basis of the assimilation approaches
considered. This encompasses a general discussion of the
estimation technique used in Kalman filtering along with a
discussion of model and measurement uncertainties. The
EnKF is also described in section 3, as are four regulariza-
tion techniques leading to a Kalman gain smoothing and a
Steady Kalman filter as well as a barotropic and a distance
regularization. Section 4 presents the design of the numer-
ical experiments. The results are shown and discussed in
section 5, while section 6 concludes the paper. The nomen-
clature suggested by Ide et al. [1997] is followed throughout
this work, where applicable.

2. Description of Models and Measurements

[10] The Water Forecast is an operational forecasting
system covering a large part of the North Sea, the Baltic
Sea, and the interconnecting waters [Erichsen and Rasch,
2002]. The hydrodynamic model has run operationally as
part of the Water Forecast service since June 2001. While
the system provides 4-day forecasts of hydrodynamic, water
quality, and wave parameters every 12 hours, this study
restricts attention to water levels in a hindcast setting.
[11] The hydrodynamic model of the forecast system is the

three-dimensional MIKE 3 [DHI, 2001], which handles free
surface flows. It solves the primitive equations making the
hydrostatic and the Boussinesq approximations. The turbu-
lence closure scheme adopted is the k-� model in the vertical
and Smagorinsky horizontally. The area covered by the
model is shown in Figure 1. Tidally varying water levels
are prescribed at the two open boundaries, which are situated
in the English Channel and in the northern North Sea
between Stavanger in Norway and Aberdeen in Scotland.
Wind fields and sea surface pressure are derived from the
Vejr2 commercial weather service [Rogers et al., 2001], and
force the momentum equations at the sea surface. The
vertical resolution is 2 m within the top 80 m. Larger depths
are contained in the model bottom layer. The model is nested
as displayed in Figure 1, and the horizontal resolution varies
from 9 nautical miles to 1 nautical mile in the inner Danish
waters and one third nautical mile in a few narrow straits. A
two-way nesting technique is employed, securing a dynamic
exchange of mass and momentum between grids.
[12] The numerical model mentioned above attempts to

express the true state of the system in discrete space and
time. The model space is spanned by water level, l, velocity,
v, temperature, T, and salinity, S, averaged over spatial
volumes at discrete times. Let xM3(ti�1) 2 RnM3 be the
model estimate of the true state at time ti�1. Hence the one-
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time step-ahead model operation, MM3, provides the model
estimate at time ti as

xM3 tið Þ ¼ MM3 xM3 ti�1ð Þ; u ti�1ð Þð Þ; ð1Þ

where u(ti�1) is a vector containing the model forcing.
[13] For the purpose of this study the barotropic two-

dimensional model MIKE 21 DHI [2002] was set up on the
same horizontal grid and with the same forcing. The model
has a smaller state-space dimension and simpler dynamics,
excluding density variations and collapsing the vertical axis.
Only water level, l, and depth-averaged velocities, V, enters
the state, xM21(ti�1) 2 RnM21 . The model propagator, MM21,
provides the model estimate at time ti as

xM21 tið Þ ¼ MM21 xM21 ti�1ð Þ;u ti�1ð Þð Þ: ð2Þ

Both in terms of state-space dimension and execution times,
the barotropic model is significantly cheaper.
[14] For the purpose of this study, 17 tide gauge stations

were selected. These are displayed in Figure 1. All stations
are situated in Danish or Swedish waters. The 10 tide gauge
stations used for assimilation will be referred to as mea-
surement stations and indicated by an ‘‘M.’’ The seven
stations used for performance assessment will be referred to
as validation stations and indicated by a ‘‘V.’’ The stations
in each of these groups are numbered consecutively, and the

corresponding station names can be read from Figures 2
and 3.
[15] A much better data coverage than what is used in this

contribution is needed for improved storm surge predictions
in the North Sea. However, the Water Forecast model does
not have storm surge modeling as a sole objective. The
objective also lies in transports as well as ecosystem
parameters, and the aim is to apply a unified consistent
model for all purposes. Hence we employ a three-dimen-
sional model, and it would be appropriate to also validate
results against the velocity. However, very little representa-
tive velocity data have been at our disposal in the consid-
ered period, and we follow a more traditional storm surge
model validation approach in a restricted area, which should
be regarded as only a partial validation for the full purpose
of the system. In this respect, it is important that there are
validation stations (V6 and V7) far from assimilation
stations to examine aspects of the consistency of the
employed techniques.

3. Assimilation Approach

[16] The schemes used for the assimilation of water level
data in the present study can be categorized as sequential
estimation techniques. The theory can basically be divided
into two parts. One is an estimation of the true state based
on the distributions of the model and measured variables,

Figure 1. Bathymetry and available tide gauge stations, including 10 measurement stations (M1–M10)
and seven validation stations (V1–V7).
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respectively. The standard approach is to assume no bias
and use the best estimator in a minimal variance sense. This
estimator is presented in section 3.1. The other part is a
specification and a subsequent propagation of the stochastic
model state in between measurement times. The observa-
tional error also needs to be quantified. The specification of
an error model for the numerical model as well as for the
observations is built on a number of assumptions. A
discussion of these and a description of the error models
employed in the present study are presented in section 3.2.
In a dynamical model the model error is continuously
altered by the model dynamics, and hence the error descrip-
tion needs to be propagated in time. A Markov Chain Monte
Carlo approach is followed here, leading to the Ensemble
Kalman Filter (EnKF) described in section 3.3.
[17] The ensemble approach is an efficient way of making

the work load of the model error propagation tractable, by
reducing the degrees of freedom in the description dramat-
ically. However, the resulting scheme is still too expensive
for many operational systems, which are typically pushed
close to the limit in terms of computational resources in
order to resolve as many processes as possible. Further, the
EnKF scheme may introduce spurious correlations in data-
sparse regions due to an inaccurate model error description
and the stochastic nature of the scheme. Hence, despite
risking introducing nondynamical modes in the system,
various forms of regularization of the gain is proposed.
Section 3.4.1 presents a simple temporal smoothing of the
Kalman gain matrix, section 3.4.2 describes a Steady Kal-
man gain approach, and section 3.4.3 presents a dynamic
regularization based on the assumption that the errors are
barotropic. Finally, section 3.4.4 describes a distance regu-
larization technique.

3.1. BLUE Estimator

[18] In this section the estimation of the state of the
system is under consideration. This is often referred to as
the analysis step. The state is essentially a multivariate
continuous four-dimensional field. Observations are noisy
samples from this field and are typically integral measures
over some spatial and temporal scale. Similarly, model
variables represent per definition spatial averages of the
true state. The spatial and temporal representation of the
three-dimensional model is taken as a common reference
frame, and the state is described in terms of its projection
onto it, xt(ti) 2 Rn. Here ti denotes time indexed by i, and
xt(ti) is further restricted to include the model variables,
water level, li and velocity, vi, hence excluding temperature
and salinity. This approximation is due to later time savings
in the EnKF error propagation and is made in order to
facilitate the barotropic regularization in section 3.4.3. Next,
let the prediction by a numerical model, xf(ti), describe the
first moment of the stochastic state and assume its error
covariance matrix, Pf(ti), to be known.
[19] Now, let the observation at time ti, yi

o 2 Rp be related
to xt(ti) through the linear measurementequation,

yoi ¼ Hix
t tið Þ þ ���i: ð3Þ

The matrix Hi 2 Rp�n is a linear operator projecting the
state representation onto the measurement space, and the
measurement noise term ���i is assumed to be an i.i.d. random

process. Assume the first and the second moments of this
noise to be known, respectively, 0 and Ri.
[20] When information from the true system becomes

available in the form of measurements, an improved state
estimate can be obtained. One procedure for doing this is
to assume a linear combination of the unbiased model
prediction and the observation that gives the minimum
variance estimate, xa(ti). This approach is called the best
linear unbiased estimate (BLUE). A derivation is given by
Jazwinski [1970], yielding the following estimator:

xa tið Þ ¼ xf tið Þ þKi y
o
i �Hix

f tið Þ
� �

: ð4Þ

The Kalman gain matrix, Ki 2 Rn�p, is given by

Ki ¼ Pf tið ÞHT
i HiP

f tið ÞHT
i þ Ri

� ��1
: ð5Þ

The error covariance, Pa(ti), of x
a(ti) will always be less than

or equal to Pf(ti) and can be calculated as

Pa tið Þ ¼ Pf tið Þ �KiHiP
f tið Þ: ð6Þ

The set of equations (4) and (5) supplies the variance
minimizing analysis among the class of linear equations,
and equation (6) supplies the a posteriori error covariance, if
Ri and Pf(ti) indeed were the real a priori error covariances.

3.2. Error Descriptions

[21] The optimality of the BLUE estimator for the anal-
ysis relies on a correct specification of the model and
measurement error covariances. Hence any misspecification
of these will make the scheme suboptimal. This section
takes a closer look at model and observation errors and how
they are quantified in the scheme.
3.2.1. Measurement Error
[22] The error, ���i, in the measurement equation (3)

includes both an instrumental error and a representation
error and is thus properly referred to as a measurement
constraint error, as suggested by Fukumori et al. [1999].
Depending on the observation considered, either instrumen-
tal or representation error can be the dominating source. The
instrumental error refers to the actual error in measurement
of the physical property under consideration. Often such
statistics can be assessed rather precisely. However, the
instruments may be badly calibrated, and electronic or
mechanical malfunctioning may induce systematic errors.
Hence an elaborate quality check on the data must be
performed.
[23] The other contribution to the measurement constraint

error is due to the fact that the state estimation is done in the
model space. Fukumori et al. [1999] provide a nice dis-
cussion of this, arguing that the resulting measurement
representation error contributes to the measurement con-
straint error. A measurement typically represents a physical
property averaged over a different spatial and temporal scale
than the model representation. As an example, the measured
water level in a corner of a harbor needs not be represen-
tative of the water level averaged over an area of 1 � 1 km2.
If we had retained the continuous reality as the space in
which we estimate the state, then the spatial discretization of
the model should have been described as a model error.
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However, the adoption of the discrete model space as the
state-space moves the error to the measurement equation,
now expressing that the measurement only approximately
represents the spatial average adopted by the model.
[24] Similarly, observed signals that are caused by pro-

cesses not included in the numerical model can be described
as a representation error. The only difference is that we now
consider the dynamical subspace spanned by the model
rather than the spatial subspace. It must be stressed that the
adoption of the model space as the state-space is a choice.
We could have chosen another projection of reality, but
important in either case is that the error process description
is formulated according to this choice.
[25] When using the state definition discussed above, a

white noise error does not provide a good description of the
expected measurement error, and hence the entire premise
of the Kalman filter is violated. The representation error
must be expected to be colored and it should be described as
such. This can be done by augmenting the state-space by its
colored components of a suitable measurement error model.
This is, however, a difficult task, and the rather crude
approximation of merely increasing the white measurement
error standard deviation is taken here, as suggested by
Fukumori et al. [1999].
[26] The measurement error is usually given some pre-

defined value, by considering instrumentation errors and
representation errors as discussed above. The measurement
error can easily be time varying if justified by such consid-
erations. In the present implementation, the error at a given
tide gauge station is assumed independent of all other
stations. For the instrumental errors, this is true, but for
representation error, this might be violated.
3.2.2. Model Error
[27] Let xM

t (ti) define the true state represented in the
space of the model at time ti. A system equation can then be
formulated as

xtM tið Þ ¼ MM xtM ti�1ð Þ;u ti�1ð Þ
� �

þ Xi: ð7Þ

Thus the model error, Xi, describes the error imposed by the
model operator, MM, at time ti. This error must be described
along with the error covariance of the state at an initial point
in time in order to provide a stochastic description of the
system.
[28] The description of model error is a complex task. The

exclusion of processes at the very level of the definition of
the mathematical model and the spatial discretizations used
in the state description are model errors, but are described in
terms of the representation error as discussed in section 3.2.1.
Errors in the mathematical formulation of processes we
wish to describe (including feedback from undescribed
processes!), and the numerical methods used to solve the
equations as well as numerical truncation errors and param-
eter specifications, all impose errors in the model simulation.
Finally, incorrect forcing terms are potentially major sources
of model error. The model error has a complex spatially
varying structure and is dynamically altered throughout its
propagation in time. It is thus presently intractable to
describe accurately. However, an approximate second-order
description of its statistical properties is not out of reach.
[29] When looking at the sources of model error in a well-

calibrated hydrodynamic model of a coastal area, it is a

good first approximation to assume that the main error
source at each time step comes from the forcing terms.
The system is quite strongly driven by its forcing, and these
are known to be inaccurate. Atmospheric forcing is provided
by meteorological forecast or hindcast models, and open
boundary water levels are typically described by a model of
harmonic constituents. In the present implementation it is
assumed that all other model errors are neglectable and
hence a model error description can be provided if the error
sources in the forcing terms can be propagated throughout
the system. The errors in the forcing terms are assumed to
be colored processes described by an autoregressive model
with a spatially co-varying error driving it, i.e.,

Xi ¼ MAR 1ð Þ Xi�1;Hið Þ ¼ A xi�1 þ Hi; ð8Þ

where A = diag(A). For the sake of simplicity, the noise
process Hi is assumed Gaussian with zero mean and error
covariance matrix, Qi

h 2 Rr�r. Hence xt(ti) is augmented
with the open boundary water level and wind velocity error
description, and an extended operator, M = (MM,MAR(1))

T, is
introduced. This leads to a system equation with additive
noise, which will be used in the remainder of this work,

xtM tið Þ
Xi

� �
¼ xt tið Þ ¼ M xt ti�1ð Þ; u ti�1ð Þ;Hið Þ

¼ MM xtM ti�1ð Þ;u ti�1ð Þ
� �

þ xii�1

� �
A xii�1½ 	 ð9Þ

The error covariance of
0

Hi

� �
is Qi =

0 0

0 Q
H
i

� �
.

[30] Dee [1995] devised a technique for estimating error
covariance parameters, but it requires the number of obser-
vations at a single time step to exceed the number of tunable
parameters by 2 or 3 orders of magnitude. Hence, in real
application of assimilation schemes, the determination of
the error covariance Qi

h as well as Ri in equation (3) is based
on experience and theoretical considerations. Thus a mod-
erate sensitivity to these parameters is vital for their suc-
cessful application.

3.3. Ensemble Kalman Filter

[31] The Kalman filter based data assimilation schemes
used today are all based on the BLUE estimator. They differ
mainly in the way they propagate the stochastic state repre-
sentation. The foundation of the Ensemble Kalman Filter
(EnKF) is to approximate the propagation of the full pdf
using a Markov Chain Monte Carlo technique [Evensen,
1994]. While the deterministic model in equation (1) or
equation (2) propagates the state assuming the model and
forcing to be perfect, the EnKF takes the stochastic nature of
the model prediction and the nonlinearities explicitly into
account.
[32] An ensemble of q state realizations is defined at an

initial point in time. In the approach presented here, the
same initial state defines all ensembles with zero variance at
the beginning of a spin-up period. During this period the
forcing errors are propagated throughout the system to
provide the initial mean state estimate and model error
covariance matrix.
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[33] Each ensemble member is propagated according to

x
f
j tið Þ ¼ M xaj ti�1ð Þ;u ti�1ð Þ;Hj;i

� �
; j ¼ 1; . . . ; q: ð10Þ

The model error, Hj,i, is randomly drawn from a predefined
distribution with zero mean and covariance, Qi

h 2 Rr�r.
With each ensemble propagated by equation (10), the mean
state estimate and model error covariance estimate are
provided by the following equations:

x̂ f tið Þ ¼ 1

q

Xq
j¼1

x
f
j tið Þ ð11Þ

P f tið Þ ¼ S
f
i S

f
i

� �T

; s
f
j;i ¼

1ffiffiffiffiffiffiffiffiffiffiffi
q� 1

p x
f
j tið Þ � x̂ f tið Þ

� �
: ð12Þ

The vector, sj,i
f 2 Rn, is the jth column of S f

i 2 Rn�q. The
update can be performed by equations (4) and (5), when
given the proper interpretation in an ensemble setting. For
computational efficiency, an algebraically equivalent set of
equations are used.
[34] In order to maintain correct statistical properties of

the updated ensemble, each ensemble member must be
updated rather than the ensemble state estimate. For the
same reason, an ensemble of measurements must be gener-
ated and used for each ensemble member update accord-
ingly rather than the measurement itself [Burgers et al.,
1998]. Hence

yoj;i ¼ yoi þ ���j;i; j ¼ 1; . . . ; q: ð13Þ

Randomly generated realizations, ���j,i, of ���i are added for
each member. The update scheme presented here specifi-
cally uses the uncorrelated measurement structure to
assimilate simultaneous measurements sequentially. The
updating algorithm for every ensemble member, j, reads
[Chui and Chen, 1991],

xaj;m tið Þ ¼ xaj;m�1 tið Þ þ ki;m yoj;i;m � hi;mx
a
j;m�1 tið Þ

� �
; m ¼ 1; . . . ; p;

ð14Þ

and xj,0
a (ti) = xj

f(ti). In equation (14), yj,i,m
o is the mth element

in yj,i
o and hi,m is the mth row of Hi. Treating one

measurement at a time, the Kalman gain is a vector, ki,m,
given by

ki;m ¼
Sai;m�1ci;m

cTi;mci;m þ s2i;m
; ci;m ¼ Sai;m�1

� �T

hTi;m: ð15Þ

The mth diagonal element in Ri is denoted si,m
2. The matrix

Si,m
a in equation (15) is calculated as

Sai;m ¼ sa1;i;m . . . saq;i;m

h i
; saj;i;m ¼ 1ffiffiffiffiffiffiffiffiffiffiffi

q� 1
p xaj;m tið Þ � x̂am tið Þ

� �
;

ð16Þ

for m = 1, . . ., p and Si,0
a = Si

f. Now, equations (14), (15),
and (16) provide the update equations of all ensemble

members, one measurement at a time. The time consump-
tion of the EnKF is of the order of q times a standard model
execution.

3.4. Regularization

[35] In the EnKF, most of the computational effort is used
for providing an estimate of the Kalman gain matrix, Ki.
This matrix contains n � p elements which are calculated
based on q ensembles. This leads to uncertain estimates
which in particular can have an unwanted effect in data-
sparse regions with large model variability. Such areas are
susceptible to erroneous updates from spurious correlation
estimates [Hamill et al., 2001]. However, even for q = 1,
the gain estimate will only have a limited accuracy because
of the simplistic nature of the models used to describe
measurement and model error. Propagating an approximate
error source gives an approximate error covariance matrix.
[36] Regularization methods allow the expression of a

prior knowledge about the elements in Ki and their inter-
dependence to be taken into account [Hastie et al., 2001].
The techniques can usually be cast in a Bayesian frame-
work; for example, if prior information about the model
error covariance, Pprior, is available for Pf, then the posterior
estimate, Pposterior, is

Pposterior
� ��1¼ Pprior

� ��1þ Pf
� ��1

: ð17Þ

Such an approach is not tractable in the high-dimensional
state space under consideration. However, this line of
thought can still provide a useful angle on Kalman filtering.
Is there knowledge about the model error covariance that
clearly conflicts with the estimates provided by, for
example, the EnKF? Regularization methods deliberately
make biased estimates in order to lower the variance of the
estimated elements. Because of the approximate error
models and structural model errors, the estimates of the
Ki elements will typically be biased anyhow, so it makes
sense to express this in order to lower the total prediction
error of the elements, which is a sum of squared bias and
variance.
3.4.1. Smoothing of Kalman Gain
[37] Not to be confused with Kalman smoothing for the

state vector estimate, a temporal smoothing factor, s, is
introduced. It is used to regularize the EnKF derived gain
matrix in equation (5) and implemented in equation (15).
With the instantaneous Kalman gain still being denoted Ki,
a smoothed Kalman gain, Ki

S, which replaces Ki, is obtained
as

KS
i ¼ 1� sð ÞKS

i�1 þ sKi; s 2 0; 1½ 	: ð18Þ

This approach reduces the stochastic variability of the gain
estimate at the cost of leaving out high-frequency signals in
the gain as well as introducing a phase error. In general, the
use of a smoothing factor gives a good performance even
for insufficient ensemble sizes [Sørensen et al., 2004a].
Thus it allows a smaller q to be chosen for the same
performance, implicitly saving computational time. This
proves the need for regularization techniques for efficient
filtering. It can be regarded as an intermediate method in
between the Ensemble Kalman Filter and the Steady
Kalman filter described subsequently.
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3.4.2. Steady Approximation
[38] The Steady Kalman filter can be regarded as an

ad-hoc regularization method. Instead of calculating the
Kalman gain at every measurement time, it can be assumed
that the state and measurement error covariances are the
same at every update, which yields a constant Kalman gain.
This gain is calculated as a long-term average of Kalman
gains estimated by the EnKF. Since the gain actually is
varying, this introduces a bias in the gain, but the time
averaging that creates the steady gain smoothes the gain and
lowers the variance. This variance reduction possibly lowers
the prediction error of the gain elements if the time-varying
bias indeed is not too big. Using a snapshot of the gain from
the EnKF would similarly be expected to make the estimate
worse, since it still would result in an increased bias without
lowering the variance.
[39] The Steady Kalman filter uses equation (9) for the

model propagation with Hi = 0,

xf tið Þ ¼ M xa ti�1ð Þ;u ti�1ð Þ; 0ð Þ: ð19Þ

Subsequently, equation (14) is used for the analysis, where
ki is calculated as a time average from an execution of the
EnKF, p = 1 and yj,i,m

o = yi,m
o . The time consumption of the

Steady Kalman filter is of the order of a standard model
execution.
[40] The Kalman gain is calculated as a long-term aver-

age of the gain from an EnKF, where the error has been
assumed to lie in the open boundary water level and in the
wind velocity. The noise is thus included as a quadratic term
in the momentum equations. On average, this leads to an
overestimation of the values in the Steady Kalman gain, but
in periods with strong winds it is underestimated. This is the
approximation made by the steady assumption.
3.4.3. Barotropic Approximation
[41] The method described in this section belongs to the

group of methods that apply simplified dynamics for
calculating the model error covariance and hence the Kal-
man gain. The idea is that since the water level response to
variations in tides and wind-forcing is mainly barotropic, its
error covariance due to errors in open boundary conditions
and wind velocity can be well modeled by a depth-averaged
barotropic model. The forecast step is composed of an
ensemble forecast step using the 2D model and a single
forecast of the 3D model according to equation (19).
[42] The first component of the analysis step consists of

the EnKF analysis for the 2D model. The other component
is to update the full 3D forecast based on the ensemble
statistics from the 2D model. The augmented AR(1) error
model part of the state-space has the same size and
interpretation in both model spaces, and hence it can be
carried directly over from 2D to 3D. Depth-averaged
velocity, V, and water level, l, also have similar interpreta-
tion, and hence in the corresponding subspace the 2D
Kalman gain can be applied directly in 3D.
[43] However, temperature, T, salinity, S, and the three-

dimensional velocity, v, are not included in the 2D state-
space, and thus additional assumptions must be imposed.
The error covariances between T and S and water levels in
the measurement points are all assumed to be zero. This
means that the thermodynamic variables are unaffected by
the analysis. The velocity, on the other hand, needs to be

updated. When V is updated, then for consistency, v must be
updated as well, since V is the depth average of v. A vertical
structure, s(zk), must be chosen under the constraint that its
depth average is not zero. Let Vx

a be the updated depth-
averaged x velocity component in the 3D model. Let vx

f(zk)
and vx

a(zk) be the forecast and analysis of the x velocity in
the 3D model at depth zk. Now the updated full velocity
field can be found by solving the following equations for
vx
a = (vx

a(z1), . . ., vx
a(zKmax)) and the zonal structure scaling

parameter q:

Va
x ¼ vax

� �T
dz ð20Þ

vax ¼ vfx þ sq; ð21Þ

where vx
f = (vx

f(z1), . . ., vx
f(zKmax

)), s = (s(z1), . . ., s(zKmax
)), dz =

(dz(z1), . . ., dz(zKmax
)) is a vector of layer depth, and Kmax is

the number of layers.
[44] The solution to equations (20) and (21) is

q ¼
Va
x � v f

x

� �T
dz

sTdz
ð22Þ

vax ¼ v f
x þ s

Va
x � v f

x

� �T
dz

sTdz
: ð23Þ

A similar set of equations can be solved for the other
velocity component. The vertical velocity is updated by the
mass conservation equation. In the present study, s was
chosen to be s = (1, . . ., 1). This corresponds to simply
moving the entire forecast velocity profile to match the
updated depth-averaged velocity.
[45] In the light of regularization, the scheme assumes all

elements in Ki that are used for updating T and S to be zero
and elements for updating the velocity components to be
related through equation (23). Again, this certainly may
introduce a bias, if the assumption of no correlation to the
observed water levels or the vertical interdependence of the
velocity errors break down, but a much lower variance has
been obtained. Most importantly, a huge time reduction has
been won in the model error propagation.
[46] Sørensen et al. [2002] compared the barotropic

approximation applied to the Steady Kalman filter to the
standard EnKF as well as the Steady Kalman filter with no
barotropic approximation in an idealized bay setup. All
methods showed similar performance, but the barotropic
approximation has the lowest computational requirements
both in terms of time and memory demand.
3.4.4. Distance Regularization
[47] The use of distance regularization comes down to a

trade-off between accepting inaccurate elements in the
Kalman gain and introducing spurious or nondynamical
modes in the analysis. The model error covariance is
modeled dynamically by assuming errors in the forcing
terms. There are many good reasons for doing so, but it may
lead to correlations in the error of the state that conflicts
with our prior knowledge, and hence a regularization can be
performed taking this into account.
[48] The distance regularization is an ad hoc procedure

for expressing that we do not believe any tide gauge
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observation should be used for updating state variables that
are positioned far away. This is implemented by construct-
ing a vector, with coefficients between 0 and 1, which are a
Gaussian function f of their geographical distance, dm to
observation, m, according to

f dmð Þ ¼ exp � d2m
2D2


 �
: ð24Þ

The parameter, D, specifies the spatial decorrelation scale.
This regularization can be used in either the EnKF or the
Steady Kalman filter (p = 1) presented above, by modifying
the analysis equation (14) according to

xaj;m tið Þ ¼ xaj;m�1 tið Þ þ k̂i;m yoj;i;m � hi;mx
a
j;m�1 tið Þ

� �
; m ¼ 1; . . . ; p

k̂i;m ¼
k̂i;m 1ð Þ

..

.

k̂i;m nð Þ

0
B@

1
CA ¼

ki;m 1ð Þf dmð Þ
..
.

ki;m nð Þf dmð Þ

0
B@

1
CA:

4. Description of Experiments

[49] The main objective of this study is to demonstrate the
hindcast performance of the time-efficient barotropic ap-
proximation for a Steady Kalman filter in the Water Fore-
cast model. Further, the impact of applying a time-varying
EnKF with barotropic and distance regularization is inves-
tigated. No comparison is made to an Ensemble Kalman
Filter in the full three-dimensional setting, because it is not
operationally feasible. Further, Sørensen et al. [2002] dem-
onstrated that the dynamic regularization has similar per-
formance to the full three-dimensional implementation of
the time-varying EnKF in a simple test case.
[50] All experiments span the period: 0000 local time

(LT) January 1 to 0000 LT January 29, 2002. The initial
state is obtained from the database of the operational
system. The steady gain employed in the study is based
on the period 0000 LT January 2 to 0000 LT January 6,
2002. Figure 8 (in section 5) shows that this period includes
a single storm surge event and average winter conditions the
rest of the time.
[51] The results will be compared to a reference run,

which is obtained from a hindcast execution of the Water
Forecast system. All assimilation runs make use of the
barotropic approximation and hence do not have higher
demands to the computational hardware than the Water
Forecast itself, and have operational execution times less
than 2.5 times that of the reference run. The model runs can
be summarized as follows:
[52] . Reference Run is a standard 3D water forecast

model execution with no use of data assimilation.
[53] . Steady is a 3D model execution with the Steady

Kalman filter. The gain is obtained from the 2D model using
the EnKF with temporal smoothing.
[54] . Steady Dist is a 3D Model execution like Steady,

but with distance regularization used in the 3D environment.
[55] . EnKF is a 3D model execution using a time-

varying gain obtained from the 2D model employing
temporal smoothing. Distance regularization is enabled in
the 3D execution.

[56] When adopting the barotropic regularization in all
assimilation runs, it is implied that the central model
forecast (equation (19)) is employed for the 3D model,
while the ensemble forecast (equations (10) and (11)) is
employed for the calculation of 2D steady and time-varying
Kalman gains.
[57] In any assimilation approach it is important first to

correct the measurement datum such as to approximately
represent model datum in order to allow proper intercom-
parison between observed and modeled quantities. Model
datum is determined by the open boundary levels and a
long-term average dynamical balance. In order to assess the
model datum, the water levels at all measurement stations
were extracted from a 1-year simulation spanning all of
2002. The time average was calculated for each station, and
the corresponding measurement was adjusted to match this
average. Note that the model error may have a seasonal
dependence, and hence the datum-corrected measurements
may still contain an off-set in January, where the study is
performed. The measurements were adjusted to the model
datum for both the 2D and the 3D model.
[58] A number of parameters need to be specified in the

filtering schemes. The assimilation system is too complex
for statistically based parameter estimation, and hence first
guesses based on experience and theoretical considerations
are used. For tide gauges, the measurement representation
error is in general dominating over the instrumentation
error. The water level readings can be expected to measure
the truth projected onto the model space with an accuracy
around 0.05 m. Hence the tidal gauge measurement errors
are assumed to have mutually uncorrelated, unbiased Gauss-
ian distributions with a standard deviation of 0.05 m.
However, sometimes less trust is put in the measurement
in order to constrain the model less. This is the case in M1,
Esbjerg, M9, Rønne and M10, Kalix, where the standard
deviations were assumed to be 0.15, 0.08, and 0.15,
respectively.
[59] The model wind error was assumed to have a

temporal correlation scale of 5.7 hours and a spatial corre-
lation scale of 300 km. The standard deviation of the white
noise in equation (8) was assumed to be 0.3 m/s leading to a
standard deviation of 3.0 m/s for the wind. The model error
in open boundary water levels was assumed to have a
temporal correlation scale of 1.7 hours and a spatial corre-
lation scale of 95 km. The standard deviation of the white
noise in the boundary error was assumed to be 0.05 m. This
leads to a standard deviation of 0.27 m for the water level.
[60] An ensemble size of 100 and a smoothing factor of

0.05 was used for the EnKF runs of the study. Measure-
ments were available every 30 min. These were linearly
interpolated in time, and the model was updated from the
interpolated time series every 10 min. The distance param-
eter, D, in the distance regularization was set to 250 km.
[61] In the work of Sørensen et al. [2004a] a study of the

root mean square error (RMSE) sensitivity to a range of
filter parameters of the EnKF was undertaken in an ideal
test case. The study investigated both misspecified filter
parameter values and misspecified error structure. The
general conclusion was that the filter performance is robust
with respect to moderate parameter variability and also
significantly improves results even with different structural
error sources. On the basis of this analysis as well as our

(25)
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experience in applying the filter, it is fair to assume that the
sensitivity in the Water Forecast model is moderate at worst.
As a measure of the filter performance, the RMSE of water
levels, l, calculated over the 28-day simulation period for
each measurement and validation station is used,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I

XI

i¼1

lobs tið Þ � lpredicted tið Þ
� �2

vuut : ð26Þ

5. Results and Discussion

[62] The performance of the reference run and the three
assimilation runs are summarized in Figures 2 and 3 for
measurement and validation stations, respectively. For the
reference run, RMSE is in the range 0.10 m to 0.15 m for
most stations with M1-Esbjerg peaking above 0.20 m.
[63] The RMSE can be decomposed into a standard

deviation and a bias component. Such an analysis shows
that the datum correction method equating 1-year averages
discussed in section 4 leaves a variability at monthly time-
scales with biases in the range �0.12 to 0.07 for the
reference run. This might be due to long-term variability
in meteorological error (the boundaries cannot explain such
long-term variability) or long-term error components in the
model (biases in annual cycle of the density modeling, etc.).
However, at present, the bias is accepted as the working
conditions, adhering to the bias correction properties of
filters using a colored noise implementation [Sørensen et
al., 2004b].
[64] Figure 2 also shows that all assimilation runs signif-

icantly reduce the RMSE in measurement points. The
remaining error is in fair agreement with the standard
deviation of 0.05 m assumed in most stations. Figure 3
shows similar good performance in stations close to mea-
surement points. However, in the Baltic Sea (V6 and V7) far

from measurements, the Steady Kalman filter without
distance regularization significantly degrades the results.
[65] Figures 4–7 show examples of the water level part of

the Steady Kalman gain for the measurement stations, M3-
Skagen and M9-Rønne, with and without the distance
regularization imposed. In the M3-Skagen station the gain
is clearly affected by the error assumed in the tidal signal,
while the M9-Rønne station is dominated by the wind-
driven dynamics. In this latter case the gain without distance
regularization shows large corrections in the entire southern
part of the Baltic. This can in part be explained by the

Figure 2. RMSE performance of measurement stations.

Figure 3. RMSE performance of validation stations.
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assumed wind error model, which has spatial correlation
scale of 300 km. The distance regularization of the M3-
Skagen station effectively filters the gain structure in the
North Sea, which contrasts our prior understanding of the
system and our modeling capability.
[66] The model water level has a large variance far from

observations in the Baltic, and hence even a small covari-
ance will provide an impact on the update in this area. The
stochastic variability of the gain is filtered out in the Steady
approach and thus does not contribute significantly to the
gain structure. The distance regularized gain structure

dampens the effect of distant correlations by imposing the
assumption that such error correlation does not exist despite
its prediction by the filter. As is evident in Figure 3, this
significantly improves the results in the data-sparse Baltic.
The distance and barotropic regularized Steady Kalman
filter adds significant state estimation skill in all measure-
ment and validation points at a very low computational cost
both for the generation of the gains and for execution,
enabling use in an operational setting.
[67] A time series plot of measured water level in the

validation station, V1-Göteborg, is displayed in Figure 8

Figure 4. Water level part of the Steady Kalman gain for M3-Skagen.

Figure 5. Water level part of the distance regularized Steady Kalman gain for M3-Skagen.
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along with estimates by the reference run and the distance
and barotropic regularized Steady Kalman filter. This plot
shows the good performance previously expressed by
the statistical RMSE measure in a visually interpretative
form.
[68] The use of a time-varying gain from the EnKF with

the barotropic approximation and distance regulariza-
tion was compared with the successful Steady approach.
Figures 2 and 3 show the results as the last horizontally
striped bar. The performance is similar to that of the Steady
distance regularized scheme. However, its implementation

is more demanding on computational time, although the
2D EnKF execution with 100 ensemble members has a
similar speed as a single 3D model execution, and hence
still can be applied in operational settings.
[69] Figures 9 and 10 show the variance of the EnKF

derived gain for the water level portion of the gain for the
M9-Rønne station with and without smoothing in the
ensemble run. The variability of the nonsmoothed Kalman
gain shows its maximum values far from the station itself
indicating spurious correlations. This also explains the
model problems that has been encountered when applying

Figure 6. Water level part of the Steady Kalman gain for M9-Rønne.

Figure 7. Water level part of the distance regularized Steady Kalman gain for M9-Rønne.
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the standard EnKF without distance regularization. In this
case, the analysis may impose a state estimation which is
not a likely outcome in the real system despite the fact that
the EnKF always produces its analyzed ensemble members
as linear combinations of the forecast members (an example
is pulling water out of a shallow region until a water point is
dried out). A spurious correlation can last over a dynami-
cally significant length of time due to the colored noise
implementation.
[70] The variability near M9-Rønne is quite similar with

and without smoothing in the EnKF gain calculation, and in
both cases the variability is small compared to the actual
size of the steady gain in Figure 6. This small Kalman gain
variability in regions where the update is also largest

explains the similar performance of the Steady filter and
the EnKF.

6. Conclusions

[71] The water level estimation problem has been dis-
cussed and the well-known Ensemble Kalman Filter tech-
nique has been presented for solving the problem. In this
sequential setting the estimation of the water levels requires
an estimation of the elements of the Kalman gain matrix as
an intermediate step, which is important for understanding
the behavior of the scheme. The estimate of the gain
elements possess both a bias and a variance, because of
inaccurate measurement and model error descriptions and
the stochastic variability in the EnKF. This uncertainty is
discussed from the viewpoint of regularization techniques,
and a Kalman gain smoothing, a Steady Kalman filter, a
barotropic approximation, and a distance regularization are
discussed in this light.
[72] These techniques are combined and tested for the

assimilation of water levels in the Water Forecast opera-
tional system. The Steady and the barotropic approxima-
tions show the best performance at the lowest cost. The use
of distance regularization has been demonstrated to be
important for data sparse regions, while maintaining per-
formance in areas with denser data coverage. The difference
in the RMSE of the various filter algorithms is moderate in
the Inner Danish Waters, and it must be kept in mind that
the sensitivity to parameter values is likely on the same
scale.
[73] The distance and barotropic regularized Steady Kal-

man filter has a good estimation skill in all areas of the
model. Further, its low computational cost enables easy
operational implementation.
[74] Future developments will investigate the use of

regularization techniques for controlling the bias-variance

Figure 8. Time series of water level in V1-Göteborg. The
thin black line is the measured level. The thick black line
shows the reference solution. The thick shaded line shows
the solution with the barotropic and distance regularized
Steady Kalman filter.

Figure 9. Standard deviation of M9-Rønne water level part of the Kalman gain derived using
smoothing.
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trade-off together with attempting to improve model error
description. Also, more work needs to be done on estimat-
ing the bias of the measurements when applied in a model
datum frame work. Most important in an operational setting
is the forecast skill. This will be addressed in a future study.

[75] Acknowledgments. This research was carried out jointly at DHI
Water and Environment and the Technical University of Denmark under the
Industrial Ph.D. Programme (EF835). Contribution of tide gauge data from
the Danish Meteorological Institute, the Royal Danish Administration of
Navigation and Hydrography, and the Swedish Meteorological and Hydro-
logical Institute is acknowledged.

References
Bahurel, P., P. De Mey, C. Le Provost, and P.-Y. Le Traon (2002),
A GODAE prototype system with applications-Example of the
MERCATOR system, paper presented at International Symposium ‘‘En
route to GODAE,’’ Cent. Natl. d’Etudes Spatiales, Toulouse, France.

Bertino, L., G. Evensen, and H. Wackernagel (2002), Combining geosta-
tistics and Kalman filtering for data assimilation in an estuarine system,
Inverse Prob., 18, 1–23.

Burgers, G., P. J. van Leeuwen, and G. Evensen (1998), Analysis scheme in
the Ensemble Kalman Filter, Mon. Weather Rev., 126, 1719–1724.
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