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Summary The standard software for non-linear mixed-effect analysis of pharma-
cokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-
effects package NLME is an alternative as long as the models are fairly simple. We
present the nlmeODE package which combines the ordinary differential equation
(ODE) solver package odesolve and the non-linearmixed effects package NLME thereby
enabling the analysis of complicated systems of ODEs by non-linear mixed-effects
modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to
illustrate the applicability of the nlmeODE package for population PK/PD analysis us-
ing the available data analysis tools in R for model inspection and validation. The
nlmeODE package is numerically stable and provides accurate parameter estimates
which are consistent with NONMEM estimates.
© 2004 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Mixed-effects modelling is the most used method
for analysis of population pharmacokinetic/phar-
macodynamic (PK/PD) data. The standard software
for non-linear mixed-effect analysis of PK/PD data
is NONMEM [1] while the non-linear mixed-effects
package NLME [2] previously has not been able to
handle differential equations thereby limiting its
use in PK/PD modelling. In this paper, we present
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the nlmeODE package, a mixed-effects modelling
package in R [3] for population PK/PD analysis
using ordinary differential equations (ODEs). The
odesolve package [4] which can handle stiff and
non-stiff systems of first-order ODE’s is used in
combination with the NLME package for parameter
estimation in non-linear mixed-effects models. In
order to investigate the possibility of increasing
the numerical stability and the rate of conver-
gence of the NLME algorithm, a gradient attribute
is included by simultaneous solution to the as-
sociated sensitivity equations to be used in the
Gauss-Newton non-linear least-squares optimiza-
tion algorithm.
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2. Computational methods and theory

The nlmeODE package is written in the S language
as implemented in the statistical modelling envi-
ronment R [3]. The nlmeODE package combines
the odesolve package [4] with the NLME package
[2] thereby enabling the use of ODE’s in non-linear
mixed-effects models. In the following, the com-
putational methods for the implementation of
ODE’s is presented along with the theory behind
non-linear mixed-effects modelling.

2.1. Ordinary differential equation solver

The odesolve package [4] provides an interface to
the Fortran ODE solver lsoda (livermore solver for
ordinary differential equations, with automatic al-
gorithm selection) [5] which can be used to solve
initial value problems for systems of first-order
ODE’s of the form

dx

dt
= g(x, t, p), x(t0) = x0, t ≥ t0 (1)

where x is an N-dimensional dependent-variable
vector, x0 the initial conditions, g the structural
model, t is the independent variable while p is an
M-dimensional vector of model parameters.

The algorithm used in lsoda includes automatic
selection between methods for stiff and non-stiff
systems of ODE’s. The definition of a stiff system
is a system with two or more eigenvalues where
the real parts of the eigenvalues are very different
in magnitude. Adam’s method is used for solving
non-stiff systems of ODE’s while the backwards dif-
ferentiation formula (BDF) is used for stiff systems
[5]. These methods are not able to handle systems
with discontinuities arising from multiple doses or
infusions. These problems are overcome by using
the critical time argument in lsoda (tcrit) and by
calling lsoda separately for each discontinuity so
that the solver does not attempt to integrate over
the discontinuity.

In order to investigate the possibility of increas-
ing the numerical stability and the rate of conver-
gence of the Gauss-Newton non-linear least-squares
optimization algorithm in NLME, the gradient ma-
trix ∂x/∂p is calculated by simultaneous solution of
the sensitivity equations associated with (1). The
sensitivity equations are automatically derived by
differentiating (1) with respect to p, i.e.

dS

dt
= J · S + ∂g

∂p
(2)

where S is the N × M sensitivity coefficient ma-
trix Sij ≡ ∂xi/∂pj, J the N × N Jacobian matrix

Jij ≡ ∂gi/∂xj, while ∂g/∂p is an N × M matrix of
partial derivatives ∂gi/∂pj [6].

2.2. Non-linear mixed-effects modelling

Non-linear mixed-effects models for repeated mea-
sures can be thought of as a hierarchical model in-
volving both fixed-effects associated with the pop-
ulation parameters and random-effects accounting
for unexplained inter- and intra-individual variabil-
ity [7,8].

At the first-stage model, the intra-individual
(residual) variability describing the difference be-
tween the individual predicted values and the
observations is modelled as

yij = f(φi, xij) + εij,

i = 1, . . . ,N, j = 1, . . . , ni (3)

where yij is the jth response for the ith individual,
f(·) a non-linear function of an individual-specific
parameter vector φi and predictor vector xij, N the
number of individuals, and ni the number of mea-
surements for individual i. The residual error terms
εij are assumed independently and identically dis-
tributed normal random variables with mean zero
and variance σ2.

At the second-stage of the hierarchy, the model
relates the parameters of the different individuals,
i.e.

φi = Aijβ + B ijbi (4)

where Aij and B ij are design matrices for the
fixed-effects vector β and random-effects vector
bi, respectively. The inter-individual variability
(IIV) is modelled by the random-effects vector bi
which consists of k zero-mean variables assumed
to be independent and identically distributed (tra-
ditionally thought to be the multivariate normal
distribution) with variance-covariance matrix Ψ .
The residual error terms εij and bi are assumed
independent for all i and j.

The parameters in the mixed-effects model de-
scribed by (3) and (4) are estimated either by maxi-
mum likelihood (ML) or by restricted maximum like-
lihood (REML) based on the marginal density of y

p(y|β, σ2, Ψ ) =
∫

p(y|β, σ2, b)p(b|Ψ )db (5)

where the conditional density of y given the
random-effects b is denoted by p(y|β, σ2, b) while
p(b|Ψ ) is the marginal distribution of b [2,9]. In
general, the REML approximation gives larger val-
ues for the estimates of the variance components
than the ML method [9].
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Since the structural model f(·) can be non-linear
in the random-effects, the integral in (5) does
generally not have a closed-form expression [2].
The method proposed by Lindstrom and Bates
[10] for approximating the likelihood function in
(5) is implemented in NLME. The method alter-
nates between two steps, a penalized non-linear
least-squares (PNLS) step and a linearmixed-effects
(LME) step. In the PNLS step, the conditional modes
of the random-effects b and the conditional esti-
mates of the fixed effects β based on the current
estimate of Ψ are obtained by minimizing the PNLS
objective function, i.e.

OPNLS =
N∑
i=1

||yi − f i(β, bi)||2
σ2

+ bTi Ψ
−1bi (6)

where [f i(β, bi)]j = f(φi, xij) with i = 1, . . . ,N and
j = 1, . . . , ni [9].

In order to update the estimate of Ψ , the model
function f (·) is linearized in the LME step using a
first-order Taylor expansion around the current esti-
mates of β and the conditional modes of the random
effects b. The approximative log-likelihood func-
tion for the estimation of Ψ in the LME step can
thereby be written as [9]

log LLME(β, σ2, Ψ )

= −M
2
log 2πσ2

− 1
2

N∑
i=1

{
log

∣∣∣∣∣
(

σ2I + ∂f i

∂βTΨ
∂f i

∂βT

T
)∣∣∣∣∣

+
[
yi − f i(β, bi) + ∂f i

∂bTi

b̂i

]T

×
(

σ2I + ∂f i

∂βTΨ
∂f i

∂βT

T
)−1

×
[
yi − f i(β, bi) + ∂f i

∂bTi

b̂i

]}
(7)

where M = ∑N
i=1 ni is the total number of observa-

tions for the N individuals and I the identity ma-
trix. The log-likelihood function in (7) is identical
to that of a linear mixed-effects model [11].

3. Program description

The current version of nlmeODE is 0.2-3 and is
compatible with R version 1.8.1, odesolve version
0.5-8 and NLME version 3.1-45. The basic idea of
nlmeODE is to use the same notation as NONMEM
[1], the de facto standard software for non-linear

mixed-effects analysis of PK/PD data. The com-
mands and R objects are printed in monospaced
typewriter font like this.

The data object is constructed using the
groupedData function by attaching a formula as
an attribute of the data along with labels and units
for default plots, i.e.

> data <- groupedData (formula, data,
labels, units)

The formula should as a minimum specify which
columns in the data object is the dependent
variable (e.g. Conc), independent variable (e.g.
Time), and grouping factor (e.g. Subject). Op-
tional columns in the data object are the dose
(Dose), dosing compartment (Cmt), rate of infu-
sion (Rate), covariate measurements, etc.

The models which the data should be analyzed
with are entered into a list, i.e.

> model <- list(DiffEq, ObsEq, Parms,
States,Init)

where the elements in the model object are ex-
plained below.

DiffEq A list of formulas containing the ODE’s
for the system in the same order as
the compartment numbers, i.e. formula
i is the ODE for compartment i.

ObsEq A list of formulas specifying which
states are observed along with possible
scaling parameters.

Parms A vector with the names of the
parameters used in DiffEq, ObsEq,
and Init.

States A vector with the names of the states
in DiffEq.

Init A list with the same length as States
specifying the initial states of the
system.

The model function ODEmodelwhich can be used
to fit non-linear mixed-effects models in NLME is
created by calling nlmeODE with the model and
data object as arguments, i.e.

> ODEmodel <- nlmeODE(model,data,. . .)

The reason for creating ODEmodel usingnlmeODE
is to make different internally created objects
(e.g. dosing information) available in the NLME call
using the lexical scoping rules in R (see [12] for
further details). Furthermore, the arguments in
ODEmodel are required to be of the same length as
the dependent variable in NLME which makes this
work around necessary in order to be able to spec-
ify the model object with which the data should be
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analyzed. The optional arguments for nlmeODE are

LogParms If TRUE, the parameters are reparameterized in terms of the logarithm of the parameters
(Default is TRUE).

JAC If TRUE, the Jacobian of the system of ODE’s is computed and passed to the ODE solver.
In some circumstances, supplying the
Jacobian can speed up the computations if the system is stiff (Default is TRUE).

SEQ A logical value, that when TRUE, adds a gradient attribute to the returned value
calculated by simultaneous solution of the sensitivity equations associated with the
system of ODE’s (Default is FALSE).

rtol Relative error tolerance for lsoda (Default is 0.01).
atol Absolute error tolerance for lsoda (Default is 0.01).
tcrit Time beyond which the integration should not proceed (Default is NULL).
hmin Minimum value of the integration stepsize (Default is 0).
hmax Maximum value of the integration stepsize (Default is infinity).

A typical NLME call looks like

> model.fit <- nlme(Conc ∼
ODEmodel(Parms,Time,Subject),

data, fixed, random, start, . . .)

where Conc is the dependent variable name,
Parms are the model parameters in the same order
as in the model object, Time is the independent
variable name, and Subject is the grouping factor
name where all of the variable names are to be
evaluated in the groupedData object data. The
fixed argument includes the fixed-effects param-
eters to be estimated, random specifies which of
the parameters in fixed should have an associated
random effect, start are the starting estimates
of the fixed-effects parameters, and ‘‘. . . ’’ are
optional arguments for NLME.

4. Sample of typical program run

The purpose of this section is to show a typical
program run using the nlmeODE package and to
show the available data analysis tools in R for
mixed-effects model building, inspection, and val-
idation. The R code for the graphs in this paper is
shown in Appendix A.

The pharmacokinetic (PK) data of the anti-
asthmatic drug theophylline is used for showing a
typical nlmeODE run since these data have been
extensively reported and analyzed in [1,2,13]. The
drug was administered orally to twelve subjects
and serum concentrations were measured at eleven
time points per subject.

4.1. Model building

The theophylline data which is distributed with
NLME and NONMEM is converted to a groupedData
object by calling

> Theoph <- groupedData(conc ∼
Time|Subject,

data = read. table (‘‘Theoph. dat’’,
header = TRUE),

labels = list (x = ‘‘Time since drug
administration’’,

y = ‘‘Theophylline serum
concentration’’),

units = list(x = ‘‘(hr)’’,
y = ‘‘(mg/L)’’) )

The pharmacokinetics of theophylline is mod-
elled using a one-compartment open model with
first-order absorption and elimination. The model
object OneComp used for analyzing the theo-
phylline data is created by

> OneComp <- list(
DiffEq = list(dy1dt = ∼ -ka*y1,
dy2dt = ∼ ka*y1-ke*y2),

ObsEq = list(SC ∼ 0, Cp ∼ y2/CL*ke),
Parms = c(‘‘ka’’,’’ke’’,’’CL’’),
States = c(‘‘y1’’,’’y2’’),
Init = list(0,0))

There are two differential equations in the
OneComp model object, dy1dt and dy2dt, repre-
senting the absorption and serum compartments,
respectively. Since it is only the theophylline serum
concentration which is measured, the observation
equation is zero for compartment 1 while that of
compartment 2 is equal to y2 divided by the serum
volume V = CL/ke. The parameters in OneComp
are the first-order absorption rate constant ka, the
first-order elimination rate constant ke, and the
clearance CL. The states in DiffEq are y1 and y2
and the initial states are set to zero in the Init
argument since there is no theophylline in the two
compartments before drug administration.

The model function to be used with NLME is cre-
ated by calling nlmeODE with the model object
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OneComp and the groupedData object Theoph as
arguments, i.e.

> TheophModel <- nlmeODE(OneComp,
Theoph,

LogParms = TRUE, JAC = TRUE, SEQ =
FALSE, rtol = 0.01, atol = 0.01)

where the parameters are reparameterized in
terms of the logarithm of the parameters in order
to ensure non-negative parameter estimates while
keeping the optimization problem unconstrained.
The Jacobian matrix JAC is automatically com-
puted using the deriv function and passed to the
ODE solver due to the stiffness of the system while
the sensitivity equations SEQ are not included since
they do not increase the numerical stability or the
rate of convergence for the particular problem.
The relative and absolute error tolerance for lsoda
are set to 0.01.

The NLME call is executed by

> Theoph1.nlme <- nlme(
conc ∼ TheophModel(ka,ke,CL,Time,
Subject),

data = Theoph, fixed = ka+ke+CL∼1,
random = pdDiag(ka+ke+CL∼1),

start = c(ka = log(1.65),
ke = log(0.08),CL = log(0.05)),

control = list(returnObject = T,
msVerbose = T), verbose = T)

Each parameter in themodel has an associated fixed
effect. The argument fixed is a formula defining

the structures of the fixed effects in the model.
The right-hand side of fixed is 1 which indicates
that a single parameter is associated with each
fixed effect. If a fixed-effects parameter should
depend linearly on a covariate, the covariate
should be included on the right-hand side of the
fixed formula for the particular parameter. The
fixed-effects parameters may or may not have an
associated random effect. If the random formula

is omitted, all fixed effects are by default assumed
to have an associated random effect with a gen-
eral positive-definite variance-covariance matrix Ψ

with Log-Cholesky parametrization (pdLogChol).
In this case, the random effects for ka, ke, and
CL are assumed independent of each other by
specifying a positive-definite diagonal variance co-
variance matrix using the pdDiag function. The
NLME package provides several other classes of
positive-definite variance-covariance matrices for
the random effects (see [2] for further details on
how to construct your own pdMat functions). The
start argument provides a list of starting esti-
mates for NLME for the fixed effects only. The con-
trol option returnObject is set to TRUE to get the
fitted object returned even if the maximum num-
ber of iterations is reached without convergence of
the algorithm. The msVerbose and verbose ar-
guments enable the user to trace the convergence
of the iterative NLME algorithm. The returned ob-
ject is of class NLME for which several methods are
available for examining the fitted model. Detailed
information about the fit is displayed using the
summary method (see below).
The standard deviation for the random effect asso-
ciated with ke is very small compared to the fixed
effect and is therefore excluded from the model.
The estimated covariances between the fixed-
effects parameter estimates in the model are inves-
tigated using the vcov function (see below). The
covariances between the parameters are very small
indicating that the parameters are all identifiable.

> summary(Theoph1.nlme)

Random effects: list(ka ∼ 1, ke ∼ 1, CL ∼ 1)
ka ke CL Residual

StdDev 0.667 1.84E-05 0.166 0.712
Fixed effects: ka + ke + CL ∼ 1

Value Std. Error t-value P-value
ka 0.490 0.200 2.45 0.02
ke −2.46 0.0471 −52.3 0.00
CL −3.23 0.0588 −55.0 0.00
Correlation

ka ke
ke −0.096
CL −0.029 0.518

> vcov(Theoph1.nlme)
ka ke CL

ka 0.0391 −0.0009 −0.0003
ke −0.0009 0.0022 0.0014
CL −0.0003 0.0014 0.0034

The Theoph1.nlme model is revised to only in-
clude random effects associated with ka and CL by
using the update function, i.e.
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> Theoph2.nlme <- update(Theoph1.
nlme, random = pdDiag(ka+CL∼1))

Most PK/PD data follow a proportional (het-
eroscedastic) residual error model but when the ob-
servations are near the lower limit of quantification
of the assay, it is often useful to model the residual
error using a combined additive (homoscedastic)
and proportional error model [1]. Extended resid-
ual variance models can be implemented using the
varFunc class objects in NLME. The constant plus
power variance model varConstPower is defined
as

Var(εij) = σ2(δ1 + |f(φi, xij)|δ2)2 (8)

which has the additive and proportional error mod-
els as special cases (i.e. δ2 = 0 for an additive and
δ1 = 0 ∧ δ2 = 1 for a proportional error model) and
smoothly interpolates between them. More com-
plicated residual variance models for e.g. multi-
level models with different types of measurements
are available in the varFunc class functions in
NLME and it is furthermore possible to specify
user-defined variance functions.

The standardized residuals of Theoph2.nlme
seems to indicate increasing residual error variabil-
ity with increasing theophylline serum concentra-
tions. The Theoph2.nlme model is updated using
the varConstPower function by

> Theoph3.nlme <- update(Theoph2.nlme,
weights = varConstPower(const = 0.7,
power = 0.3))

The variance parameter estimates of Theoph3.
nlme using the intervals function indicate that
the power variance estimate power is insignificant
on a 5% level.
> intervals(Theoph3.nlme)

lower estimate upper
const 0.219 0.593 1.606
power −0.290 0.188 0.665

The significance of the variance parameters
const and power is tested by comparing the
likelihood ratio statistics of Theoph2.nlme and
Theoph3.nlme which confirms the joint signif-
icance of power and const. The assumption of
homoscedasticity (power = 0) can therefore be
rejected.
> anova(Theoph2.nlme,Theoph3.nlme)

df logLik L.Ratio p-value
Theoph2.nlme 6 −191
Theoph3.nlme 8 −183 15.6 4E-04

It is furthermore possible to include covariates
in the model in order to explain some of the

inter-individual variability. The estimated individ-
ual parameters from the fitted model are extracted
using the coef function with the augFrame option.

> Theoph3.coef <- coef(Theoph3.nlme,
augFrame = T)

and the scatter plot of the weight covariate Wt ver-
sus the estimated individual parameters is shown in
Fig. 1.

The clearance CL of theophylline seems to de-
crease with increasing weight Wt in Fig. 1 while the
opposite is true for the relationship between the
absorption rate constant ka and Wt. Since the dose
is weight-adjusted, the weight is included as a co-
variate on the scaling parameter CL rather than on
ka by

> Theoph4.nlme <- update(Theoph3.nlme,
fixed = list(ka+ke∼1,CL∼Wt),

start = c(ka = 0.5, ke = −2.5, CL = −3.2,
Wt = −0.005))

where CL is the intercept and Wt is the slope pa-
rameter of the CL and Wt relationship.

The significance of the fixed-effects slope param-
eter CL.Wt is tested by

> anova(Theoph4.nlme,Terms=
c(‘‘CL.Wt’’))

F-test for: CL.Wt

numDF denDF F-value P-value
1 117 1.907204 0.1699

The F-test shows that the added term CL.Wt is
insignificant and the weight covariate is therefore
left out of the final model. The iterative procedure
of building a PK model for the theophylline data is
hereby terminated with Theoph3.nlme being the
final model.

4.2. Model validation

The inspection of the final Theoph3.nlme model
is based on goodness-of-fit (GOF) graphical analy-
sis of residuals and predictions, distribution of the
residual errors and random-effects parameters.
When examining a fitted model, the two main as-
sumptions which should be tested are that (1) the
normalized residuals are independent and identi-
cally normally distributed with mean zero and vari-
ance σ2, and (2) the random effects should be nor-
mally distributed with mean zero and covariance
matrix Ψ and independent of the residual errors
[14].

The augmented predictions of the fitted model
can be obtained using the augPred method which
produces a data frame containing the population
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Fig. 1 Scatter plot of the weight covariate Wt vs. the estimated individual parameters (left) ka and (right) CL.

predictions (obtained by setting the random effects
to zero), the individual predictions (using the es-
timated random effects) along with the observed
data (see Fig. 2). The fitted model seems to capture
the PK of theophylline nicely since the individual
predictions follows the observations.

The basic GOF graph of the observed data versus
the population and individual predictions in Fig. 3
indicates good agreement between the observed
serum theophylline concentrations and the model
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Fig. 2 Observed and predicted theophylline serum concentrations plotted vs. time. Population predictions (solid
line), individual predictions (dashed line), and observed theophylline concentrations (circles).

predictions since the dots are nicely scattered
around the line of identity.

The residual errors are tested next. The plot
of normalized residuals versus fitted values for
Theoph3.nlme is shown in Fig. 4 (left) where
the observations with absolute normalized resid-
uals greater than the 0.975 quantile of the stan-
dard normal distribution are identified with the
subject number. The ‘‘S’’ shaped curve in the
quantile-quantile (Q—Q ) plot (Fig. 4 middle) im-
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Fig. 4 Residual error plots for Theoph3.nlme. (Left) Normalized residuals vs. fitted values. (Middle) Q—Q plot of
normalized residuals. (Right) Box plot of subject vs. normalized residuals.

plies that the normalized residual error distribution
has longer tails than the Gaussian. The box plot
in Fig. 4 (right) shows the quartiles of the normal-
ized residual errors for each subject where the dot
inside the box represents the median while the
extreme residual errors are highlighted as circles.
The residual error plots in Fig. 4 show that the
normalized residuals are distributed symmetrically
around zero with an approximative constant vari-
ance. The normalized residuals are not perfectly
normal distributed but no serious violations of the
residual error assumptions seem to be present.

The autocorrelation function (ACF) is a useful tool
for investigating the correlation structure of the
residual errors. The empirical ACF of the normalized
residuals of Theoph3.nlme can be assessed using
the ACF function (see Fig. 5). The reason for only
calculating the ACF for the first 8 lags is because
only eleven theophylline concentration measures
are available from each subject in the Theoph data.
When investigating the ACF in Fig. 5, no significant
autocorrelation correlation seems too be present
indicating that the normalized residuals can be con-
sidered as white noise. In case of serially correlated
residual errors, the corStruct class objects for
residual error correlation structures can be called

with the corr argument. Implemented in NLME are
10 standard classes of correlation structures includ-
ing autocorrelation-moving average structures (e.g.
corAR1, corCAR1, corARMA) along with some spa-
tial correlation structures.

Finally, the assumptions on the random effects
are assessed by plotting the quantiles of the stan-
dard normal distribution versus the random-effects
parameters in Fig. 6. The plot does not indicate any
serious violations of the assumption of normality for
the random effects.

Fig. 5 Empirical autocorrelation function of the nor-
malized residuals of Theoph3.nlme for lag 0—8 along
with the 95% confidence interval (dotted line) under the
hypothesis that the normalized residuals are white noise.
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Fig. 6 Q—Q plot of the random effects for Theoph3.nlme.

5. Discussion

The nlmeODE package provides accurate parame-
ter estimates which are consistent with the results
obtained using NONMEM and the SSfol function in
NLME (not shown) [1,2,13]. It is numerical stable
with and without simultaneous solution of the as-
sociated sensitivity equations which only seems to
reduce the number of iterations but not the esti-
mation time.

The implementation of covariate relationships as
well as correlation and variance structures in NLME
is straightforward to implement by updating pre-
viously fitted models. Model validation of a fitted
non-linear mixed-effects model is made feasible
with the available data analysis tools in R as shown
in Section 4.2.

The odesolve package is only available in R and
not S-PLUS, but the plan is to port it along with the
nlmeODE package to S-PLUS andmake it compatible
with Xpose [15], a model building aid for population
PK/PD modelling.

In summary, we have demonstrated the use of the
nlmeODE package together with NLME and odes-
olve for non-linear mixed-effects PK/PD modelling.
The implementation of ODE’s in the non-linear
mixed-effects library NLME makes it a promising
tool for population PK/PD analysis of complicated

systems of ODE’s with and without a closed-form
solution. The nlmeODE package enables the analy-
sis of multiple dose and infusion PK studies as well
as simultaneous or sequential analysis of PD data
by e.g. turnover models. The nlmeODE package is
free of charge and can be obtained on the inter-
net addresses http://www.cran.r-project.org and
http://nlmeODE.sourceforge.net.
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Appendix A. R code

The code for creating the graphs in this paper is
shown below.

Figure Code

1 > plot(Theoph3.coef, form = ∼Wt)
2 > plot(augPred(Theoph3.nlme, level = 0:1))
3 > plot(Theoph3.nlme, conc∼fitted(.,0), abline = c(0,1))
3 > plot(Theoph3.nlme, conc∼fitted(.,1), abline = c(0,1))
4 > plot(Theoph3.nlme, resid(.,1,type = ‘‘n’’)∼fitted(.,1),

id = 0.05, abline = 0)
4 > qqnorm(Theoph3.nlme, ∼resid(.,1,type = ‘‘n’’), id = 0.05)
4 > plot(Theoph3.nlme, Subject∼resid(.,1,type = ‘‘n’’),

abline = 0)
5 > plot(ACF(Theoph3.nlme, maxLag = 8), alpha = 0.05)
6 > qqnorm(Theoph3.nlme, ∼ranef(.))

http://www.cran.r-project.org
http://nlmeODE.sourceforge.net
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