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Abstract

An e2cient and 3exible parameter estimation scheme for grey-box models in the sense of discretely, partially observed Itô stochastic
di6erential equations with measurement noise is presented along with a corresponding software implementation. The estimation scheme
is based on the extended Kalman 9lter and features maximum likelihood as well as maximum a posteriori estimation on multiple
independent data sets, including irregularly sampled data sets and data sets with occasional outliers and missing observations. The software
implementation is compared to an existing software tool and proves to have better performance both in terms of quality of estimates for
nonlinear systems with signi9cant di6usion and in terms of reproducibility. In particular, the new tool provides more accurate and more
consistent estimates of the parameters of the di6usion term.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of various methods for advanced
model-based control (Bitmead, Gevers, & Wertz, 1990;
AllgBower & Zheng, 2000) and recent advances in sensor
technology allowing these methods to be applied to an in-
creasing number of complex physical, chemical and biolog-
ical systems has rendered the development of high-quality
models for such systems very important. In particular, since
a model must be able to predict the future evolution of the
system, it must capture the inherently nonlinear behaviour
of such systems and it must provide means to accommodate
noise in the form of process noise due to approximation
errors or unmodelled inputs and measurement noise due to
imperfect measurements.
White boxmodels, derived from 9rst principles, are often

able to satisfy the former requirement but fail to satisfy the
latter, whereas black box models, developed with methods
for system identi9cation (Ljung, 1987; SBoderstrBom& Stoica,
1989), satisfy the latter but often fail to satisfy the former.

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Johan
Schoukens under the direction of Editor Torsten SBoderstrBom.

∗ Corresponding author. Tel.: +45-45253408; fax: +45-45882673.
E-mail address: hm@imm.dtu.dk (H. Madsen).

Stochastic state space models or grey-box models, which
consist of a set of stochastic di6erential equations (SDEs)
describing the dynamics of the system in continuous time
and a set of discrete time measurement equations, provide
a way of combining the advantages of both model types by
allowing prior physical knowledge to be incorporated and
statistical methods for parameter estimation to be applied.
Bohlin and Graebe (1995) even argue that such models pro-
vide a natural framework for modelling dynamic systems.
Apart from the work by Bohlin and Graebe (1995) and

earlier work by the authors of the present paper, mathe-
matical modelling of dynamic systems based on SDEs has
received limited attention in the control and system iden-
ti9cation communities since Jazwinski (1970) and LAstrBom
(1970). This is evident from a series of review papers on
identi9cation of continuous time models (Young, 1981;
Unbehauen & Rao, 1990, 1998; Nielsen, Madsen, & Young,
2000). Due to the potential bene9ts of grey-box models,
utilized by, e.g. Madsen and Holst (1995) and Jacobsen
and Madsen (1996), it is the opinion of the authors that the
topic deserves much more attention.
Particular bene9ts of grey-box models as opposed to

black box models include the fact that physical knowledge
and other prior information can be incorporated directly.
This typically yields models with fewer and physically
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meaningful parameters, which are valid over much wider
ranges of state space. As opposed to white box models pa-
rameter estimation in grey-box models tends to give more
reproducible results and less bias, because random e6ects
due to process and measurement noise are not absorbed into
the parameter estimates but speci9cally accounted for by
the di6usion and measurement noise terms. Furthermore,
simultaneous estimation of the parameters of these terms
provides an estimate of the uncertainty of the model, upon
which further model development can be based. In partic-
ular, estimates of the parameters of the di6usion term can
be used to assess the quality of a model (Kristensen, Mad-
sen, & JHrgensen, 2001), to discriminate between di6erent
models (Kristensen, Madsen, & JHrgensen, 2002), and to
pinpoint model de9ciencies and subsequently uncover their
structural origin (Kristensen, Madsen, & JHrgensen, 2004).
Thus, obtaining accurate and consistent estimates of the
parameters of the di6usion term is very important.
The focus of the present paper is on estimation of un-

known parameters in grey-box models, and the primary aim
of the paper is to present an e2cient and 3exible scheme
for performing the estimation and a software implementa-
tion of this scheme. Not all of the material is new, as some
of the solutions presented have been implemented before.
Indeed, a similar parameter estimation scheme and soft-
ware tool has been presented by Bohlin and Graebe (1995).
There are, however, a number of very important di6erences
between the two schemes, and a secondary aim of the paper
is to outline these di6erences and illustrate how they in3u-
ence estimation performance. A key result is that the new
tool provides more accurate estimates for nonlinear systems
with signi9cant di6usion and more consistent estimates,
particularly with respect to the parameters of the di6usion
term. The paper is organized as follows: The mathematical
basis of the estimation scheme is presented in Section 2
and the software implementation is described in Section 3.
The di6erences between the scheme presented here and the
one by Bohlin and Graebe (1995) are outlined in Section
4, where the in3uence on estimation performance is also
illustrated. The results are discussed in Section 5 and the
conclusions are given in Section 6.

2. Mathematical basis

This section contains a condensed outline of the math-
ematics behind the proposed parameter estimation scheme
and of the algorithms of the corresponding software imple-
mentation (see Section 3). A complete outline can be found
in Kristensen and Madsen (2003).

2.1. General model structure

Adapting the terminology of Bohlin and Graebe (1995),
the term grey-box model will be used throughout this pa-
per for a model consisting of a set of nonlinear, discretely,

partially observed SDEs with measurement noise, i.e.

dxt = f (xt ; ut ; t; �) dt + �(ut ; t; �) d!t ; (1)

yk = h(xk ; uk ; tk ; �) + ek ; (2)

where t ∈R is the time variable (tk , k = 0; : : : ; N are sam-
pling instants); xt ∈X ⊂ Rn is a vector of state variables;
ut ∈U ⊂ Rm is a vector of input variables; yk ∈Y ⊂ Rl

is a vector of output variables; �∈	 ⊂ Rp is a vector of
(possibly unknown) parameters; f (·)∈Rn, �(·)∈Rn×n and
h(·)∈Rl are nonlinear functions; {!t} is an n-dimensional
standard Wiener process and {ek} is an l-dimensional white
noise process with ek ∈N (0;S(uk ; tk ; �)). The 9rst term on
the right-hand side of (1) is commonly called the drift term
and the second term is commonly called the di8usion term.

Remark 1. SDEs may be interpreted both in the sense
of Stratonovich and in the sense of Itô, but since the
Stratonovich interpretation is less suitable for parameter
estimation (Jazwinski, 1970; LAstrBom, 1970; Kloeden &
Platen, 1992), the Itô interpretation is adapted here.

Remark 2. The di6usion term is assumed to be independent
of the state variables, because this renders parameter estima-
tion more feasible. However, as shown by Nielsen and Mad-
sen (2001), a transformation may be applied for a restricted
class of systems with such dependencies or level e8ects,
allowing application of the proposed estimation scheme to
such systems as well.

2.2. Parameter estimation methods

2.2.1. Maximum likelihood estimation
Given the model structure in (1) and (2) maximum like-

lihood (ML) estimates of the unknown parameters can be
determined by 9nding the parameters � that maximize the
likelihood function of a given sequence of measurements
y0, y1; : : : ; yk ; : : : ; yN . Introducing the notation

Yk = [yk ; yk−1; : : : ; y1; y0] (3)

the likelihood function is the joint probability density

L(�;YN ) = p(YN |�) (4)

or equivalently

L(�;YN ) =

(
N∏

k=1

p(yk |Yk−1; �)
)

p(y0|�); (5)

where the rule P(A∩ B) = P(A|B)P(B) has been applied to
form a product of conditional densities.
In order to obtain an exact evaluation of the likelihood

function, a general nonlinear 9ltering problem must be
solved. Thus, the initial probability density function must
be known and all subsequent conditional densities must be
determined by successively solving Kolmogorov’s forward
equation and applying Bayes’ rule (Jazwinski, 1970). In



N.R. Kristensen et al. / Automatica 40 (2004) 225–237 227

practice, this approach is computationally infeasible, how-
ever, and an alternative is needed. Nielsen et al. (2000) have
recently reviewed the state of the art with respect to param-
eter estimation in discretely observed Itô stochastic di6eren-
tial equations. In the general case of higher order, partially
observed systems with measurement noise they conclude
that only methods based on approximate nonlinear 9lters
provide a computationally feasible solution to the problem.
However, since the di6usion term in (1) has been assumed
to be independent of the state variables, a simpler alterna-
tive can be used. Since the SDEs in (1) are driven by a
Wiener process, and since increments of a Wiener process
are Gaussian, it is reasonable to assume, under some regu-
larity conditions, that the conditional densities can be well
approximated by Gaussian densities, which means that a
method based on the extended Kalman 9lter (EKF), which
is linear, can be applied. The assumption can (and should)
be checked subsequent to the estimation (Holst, Holst, Mad-
sen, & Melgaard, 1992; Bak, Madsen, & Nielsen, 1999).
The Gaussian density is completely characterized by its

mean and covariance, so introducing the notation

ŷk|k−1 = E{yk |Yk−1; �}; (6)

Rk|k−1 = V{yk |Yk−1; �} (7)

and

”k = yk − ŷk|k−1 (8)

the likelihood function can be rewritten as

L(�;YN ) =


 N∏

k=1

exp
(
− 1

2 ”
T
k R

−1
k|k−1”k

)
√
det(Rk|k−1)

(√
2�
)l

p(y0|�) (9)

and the parameter estimates can be determined by condi-
tioning on y0 and solving the optimization problem

�̂= argmin
�∈	

{−ln(L(�;YN |y0))}: (10)

For each set of parameters � in the optimization, the inno-
vations ”k and their covariances Rk|k−1 are computed recur-
sively by means of the EKF, which consists of the output
prediction equations

ŷk|k−1 = h(x̂k|k−1; uk ; tk ; �); (11)

Rk|k−1 = CPk|k−1C
T + S ; (12)

the innovation equation

”k = yk − ŷk|k−1; (13)

the Kalman gain equation

Kk = Pk|k−1C
TR−1

k|k−1; (14)

the updating equations

x̂k|k = x̂k|k−1 + Kk”k ; (15)

Pk|k = Pk|k−1 − KkRk|k−1K
T
k (16)

and the state prediction equations
dx̂t|k
dt

= f (x̂t|k ; ut ; t; �); (17)

dPt|k
dt

= APt|k + Pt|kAT + ��T (18)

which are solved for t ∈ [tk ; tk+1[. In the above equations the
following notation has been applied:

A=
@f
@xt

∣∣∣∣
x̂k|k−1 ;uk ;tk

; C =
@h
@xt

∣∣∣∣
x̂k|k−1 ;uk ;tk

;

� = �(uk ; tk ; �); S = S(uk ; tk ; �):

Initial conditions for the EKF are x̂t|t0 = x0, which can ei-
ther be pre-speci9ed or estimated along with the unknown
parameters as a part of the overall problem, and Pt|t0 = P0,
which can be computed as follows:

P0 = Ps

∫ t1

t0
eAs��T(eAs)T ds;

i.e. as the integral of the Wiener process and the system
dynamics over the 9rst sample, scaled by a pre-speci9ed
scaling factor Ps¿ 1.
The EKF is sensitive to nonlinear e6ects, and the approx-

imate solution obtained by solving (17)–(18) may be too
crude (Jazwinski, 1970). Moreover, the assumption of Gaus-
sian conditional densities is only likely to hold for small
sample times (and should therefore be checked subsequent
to the estimation). To provide a better approximation, the
time interval [tk ; tk+1[ is subsampled, i.e. [tk ; : : : ; tj ; : : : ; tk+1[,
and the equations are linearized at each subsampling instant.
This way the numerical solution of (17)–(18) can be simpli-
9ed by applying the analytical solutions to the correspond-
ing linearized propagation equations given by
dx̂t|j
dt

= f0 + A(x̂t − x̂j) + B(ut − uj); (19)

dPt|j
dt

= APt|j + Pt|jAT + ��T (20)

which are solved for t ∈ [tj; tj+1[. Here the notation

A=
@f
@xt

∣∣∣∣
x̂j|j−1 ;uj ;tj

; B =
@f
@ut

∣∣∣∣
x̂j|j−1 ;uj ;tj

;

f0 = f (x̂j|j−1; uj; tj; �); � = �(uj; tj; �)

has been applied, and the analytical solutions are

x̂j+1|j = x̂j|j + A−1(�s − I)f0
+ (A−1(�s − I) − I�s)A−1B�; (21)

Pj+1|j =�sPj|j�
T
s +

∫ �s

0
eAs��TeAs

T
ds; (22)
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where �s = tj+1 − tj and �s = eA�s , and where

� =
uj+1 − uj
tj+1 − tj

(23)

has been introduced to allow assumption of either zero-order
hold (� = 0) or ;rst-order hold (� 
= 0) on the inputs be-
tween sampling instants. The matrix exponential �s = eA�s

can be computed in several di6erent ways, but in general
very e6ectively by means of a PadTe approximation with
repeated scaling and squaring (Moler & van Loan, 1978).
However, both �s and the integral in (22) can be computed
simultaneously through

exp

([−A ��T

0 AT

]
�s =

[
H1(�s) H2(�s)

0 H3(�s)

])
(24)

by combining submatrices of the result (van Loan, 1978):

�s =HT
3 (�s); (25)

∫ �s

0
eAs��TeAs

T
ds=HT

3 (�s)H2(�s): (26)

Remark 3. Solution (21) to (19) is unde9ned if A is sin-
gular, but by introducing a coordinate transformation based
on the SVD of A a solution to (19) can also be found for
singular A (Kristensen & Madsen, 2003).

2.2.2. Maximum a posteriori estimation
If prior information about the parameters is available in

terms of a prior probability density function p(�) for the
parameters, Bayes’ rule can be applied to give an improved
estimate of the parameters by forming the posterior proba-
bility density function

p(�|YN ) =
p(YN |�)p(�)

p(YN )
˙ p(YN |�)p(�) (27)

and subsequently 9nding the parameters that maximize this
function, i.e. by performing maximum a posteriori (MAP)
estimation. Assuming that the prior probability density of
the parameters is Gaussian, and introducing

�� = E{�}; (28)

�� = V{�} (29)

and

”� = �− ��; (30)

the posterior probability density function becomes

p(�|YN )˙


 N∏

k=1

exp
(
− 1

2 ”
T
kR

−1
k|k−1”k

)
√
det(Rk|k−1)

(√
2�
)l

p(y0|�)

exp
(− 1

2 ”
T
��

−1
� ”�

)
√
det(��)

(√
2�
)p (31)

and the parameter estimates can be determined by condi-
tioning on y0 and solving the optimization problem

�̂= argmin
�∈	

{−ln(p(�|YN ; y0))}: (32)

Remark 4. If no prior information is available (with p(�)
uniform), this formulation reduces to the ML formulation in
(10). Thus MAP estimation can be seen as a generalization
of ML estimation, which increases the 3exibility of the es-
timation scheme. In fact, the formulation also allows MAP
estimation on only some of the parameters (with p(�) partly
uniform), which increases the 3exibility of the estimation
scheme even further.

2.2.3. Using multiple independent data sets
If, instead of a single sequence of measurements, multiple

consecutive, but separate, sequences of measurements, i.e.
Y1

N1
, Y2

N2
; : : : ; Yi

Ni
; : : : ; YS

NS
, possibly of varying length, are

available, a similar estimation method can be applied by ex-
panding the expression for the posterior probability density
function to the general form

p(�|Y)˙
S∏

i=1


 Ni∏

k=1

exp
(
− 1

2 (”
i
k)

T(Ri
k|k−1)

−1”ik
)

√
det(Ri

k|k−1)
(√

2�
)l




p(yi0|�)
exp

(− 1
2 ”

T
��

−1
� ”�

)
√
det(��)

(√
2�
)p ; (33)

where

Y = [Y1
N1
;Y2

N2
; : : : ;Yi

Ni
; : : : ;YS

NS
] (34)

and assuming the individual sequences of measurements to
be stochastically independent. The parameter estimates can
now be determined by conditioning on

y0 = [y10; y
2
0; : : : ; y

i
0; : : : ; y

S
0 ] (35)

and applying nonlinear optimization to 9nd the minimum of
the negative logarithm of the resulting posterior probability
density function, i.e.

�̂= argmin
�∈	

{−ln(p(�|Y; y0))}: (36)

Remark 5. If only one sequence of measurements is avail-
able (S =1), this formulation reduces to the MAP formula-
tion in (32), and it can therefore be seen as a generalization
of the MAP formulation, which further increases the 3exi-
bility of the estimation scheme.

2.3. Optimization issues

To solve the nonlinear optimization problem (36) a
quasi-Newton method based on the BFGS updating formula
and a soft line search algorithm is applied within the soft-
ware implementation of the proposed estimation scheme
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(see Section 3). This method is similar to the one presented
by Dennis and Schnabel (1983), except for the fact that the
gradient of the objective function here is approximated by
a set of 9nite di6erence derivatives. During the initial itera-
tions of the optimization algorithm, forward di8erences are
used, but as the minimum of the objective function is ap-
proached the algorithm shifts to central di8erences to reduce
the error of the approximation. In order to ensure stability
in the calculation of the objective function in (36), simple
constraints on the parameters are introduced, i.e.

�min
j ¡�j ¡�max

j ; j = 1; : : : ; p: (37)

These constraints are satis9ed by solving with respect to a
transformation of the original parameters, i.e.

�̃j = ln

(
�j − �min

j

�max
j − �j

)
; j = 1; : : : ; p: (38)

This transformation does not in3uence the results of the es-
timation when �j is well within the imposed limits, because
the estimator in (36) is invariant to conformal mappings
such as the one in (38). However, a problem arises when
�j is close to one of the limits, because the 9nite di6erence
derivative with respect to �j may be close to zero. This prob-
lem is solved by adding a penalty function to (36) to give
the modi9ed objective function

F(�) = −ln(p(�|Y; y0)) + P(�; �; �min ; �max) (39)

which is used instead. The penalty function is given by

P(�; �; �min ; �max)

=�


 p∑

j=1

|�min
j |

�j − �min
j

+
p∑

j=1

|�max
j |

�max
j − �j


 (40)

for |�min
j |¿ 0 and |�max

j |¿ 0, j=1; : : : ; p. For proper choices
of the Lagrange multiplier � and the limiting values �min

j and
�max
j the penalty function has no in3uence on the estimation
for �j well within the limits, but forces the derivative to
increase for �j close to the limits.

2.4. Data issues

Raw data sequences are often di2cult to use for identi-
9cation and parameter estimation, e.g. if irregular sampling
has been applied, if there are occasional outliers or if some
of the observations are missing.
The software implementation of the proposed estimation

scheme (see Section 3) also provides features to deal with
these issues, making it very 3exible with respect to the types
of data that can be used for the estimation.

2.4.1. Irregular sampling
The fact that the system equation (1) is continuous makes

it easy to deal with irregular sampling, because the state
prediction equations (17) and (18) of the EKF can be solved
over time intervals of varying length.

2.4.2. Occasional outliers
The objective function (33) of the general formulation

in (36) is quadratic in the innovations ”ik , and this means
that the corresponding parameter estimates are heavily in-
3uenced by occasional outliers in the data sets used for the
estimation. To deal with this problem a robust estimation
method is applied, where the objective function is modi9ed
by replacing the quadratic term

�ik = (”ik)
T(Ri

k|k−1)
−1”ik (41)

with a function ’(�ik), which returns the argument for small
�ik , but is a linear function of ”ik for large �ik , i.e.

’(�ik) =




�ik ; �ik ¡ c2;

c
(
2
√

�ik − c
)

; �ik ¿ c2;
(42)

where c¿ 0 is a constant. The derivative of this function
with respect to ”ik is Huber’s  -function (Huber, 1981).

2.4.3. Missing observations
The algorithms of the proposed estimation scheme make

it easy to handle missing observations, i.e. missing values
in the output vector yik , when calculating the term

 i
k =

exp
(
− 1

2 (”
i
k)

T(Ri
k|k−1)

−1”ik
)

√
det(Ri

k|k−1)
(√

2�
)l (43)

in (33) for some i and some k. The usual way to account for
missing or noninformative values in the EKF is to set the
corresponding elements of the covariance matrix S in (12)
to in9nity, which in turn gives zeroes in the corresponding
elements of (Rk|k−1)−1 and the Kalman gain matrix Kk ,
meaning that no updating will take place in (15) and (16)
corresponding to the missing values.
This approach cannot be used for calculating (43),

because a solution is needed which modi9es ”ik and Ri
k|k−1

to re3ect that the e6ective dimension of yik is reduced due
to the missing values. This is accomplished by replacing
(2) with the alternative measurement equation

Wyk = E(h(xk ; uk ; tk ; �) + ek); (44)

where E is an appropriate permutation matrix, which can
be constructed from a unit matrix by eliminating the rows
corresponding to missing values in yk . If, for example, yk
has three elements, and the middle one is missing, the ap-
propriate permutation matrix is

E =

[
1 0 0

0 0 1

]
: (45)
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Equivalently, the equations of the EKF are replaced with the
alternative output prediction equations

Ŵyk|k−1 = Eh(x̂k|k−1; uk ; tk ; �); (46)

WRk|k−1 = ECPk|k−1C
TET + ESET; (47)

the alternative innovation equation

W”k = yk − Ŵyk|k−1; (48)

the alternative Kalman gain equation

WK k = Pk|k−1C
TET WR−1

k|k−1 (49)

and the alternative updating equations

x̂k|k = x̂k|k−1 + WK k W”k ; (50)

Pk|k = Pk|k−1 − WK k WRk|k−1 WKT
k : (51)

The state prediction equations remain the same, and this in
turn provides the necessary modi9cations of (43) to

 i
k =

exp
(
− 1

2 ( W”
i
k)

T( WRi
k|k−1)

−1 W” ik
)

√
det( WRi

k|k−1)
(√

2�
)Wl ; (52)

where Wl is l minus the number of missing values in yik .

2.5. Uncertainty of parameter estimates

Essential outputs of any statistical parameter estimation
scheme include an assessment of the uncertainty of the esti-
mates and quantities facilitating subsequent statistical tests.
Within the software implementation of the proposed estima-
tion scheme (see Section 3), an estimate of the uncertainty
of the parameter estimates is obtained by using the fact that
by the central limit theorem the estimator in (36) is asymp-
totically Gaussian with mean � and covariance matrix

��̂ =H
−1; (53)

where the matrix H is given by

hij = −E
{

@2

@�i@�j
ln(p(�|Y; y0))

}
; i; j = 1; : : : ; p

and where an approximation to H can be obtained from

hij ≈ −
(

@2

@�i@�j
ln(p(�|Y; y0))

)∣∣∣∣
�=�̂

; i; j = 1; : : : ; p:

The asymptotic Gaussianity of the estimator in (36) also
allows t-tests to be performed to test whether a given pa-
rameter is marginally insigni9cant or not. The test quantity
is the value of the parameter estimate divided by the stan-
dard deviation of the estimate, and under H0 this quantity
is asymptotically t-distributed with a number of degrees of
freedom that equals the total number of observations minus
the number of estimated parameters.

3. Software implementation

The parameter estimation scheme presented in Section 2
has been implemented in a software tool called CTSM,
which is available for both Linux, Solaris and Windows.

3.1. Features

Within the graphical user interface (GUI) of CTSM, un-
known parameters of model structures of the type in (1)
and (2) can be estimated using the methods presented in
Section 2. Once a model structure has been set up within the
GUI, the program analyzes the model equations to determine
the symbolic names of the parameters and displays them to
allow the user to specify which parameters to 9x, which to
estimate, and how each parameter should be estimated (ML
or MAP). The program automatically generates and com-
piles the FORTRAN-code needed to perform the estima-
tion, including the code for obtaining the Jacobians needed
for linearization of the nonlinear equations (through analyt-
ical manipulation of the FORTRAN-code in a pre-compiler
to avoid numerical approximation). After specifying which
data sets to use, the program determines the parameter esti-
mates and displays them along with the statistics mentioned
in Section 2. The program is very 3exible with respect to
the data sets that can be used for the estimation, because
the features presented in Section 2 for dealing with irregu-
lar sampling, occasional outliers and missing observations
have all been implemented as well.

3.2. Shared memory parallelization

Estimating parameters in grey-box models is a compu-
tationally demanding task in general, and the estimation
scheme presented in Section 2 is no exception. On Solaris
systems CTSM therefore supports shared memory paral-
lelization using the OpenMP application program interface
(API) by allowing the 9nite di6erence derivatives of the ob-
jective function constituting the gradient approximation to
be computed in parallel.
Fig. 1 shows the performance bene9ts of this approach

in terms of reduced execution time and demonstrates the
scalability of the program for a small problem with 11 un-
known parameters. The nonexisting e6ect of adding CPU’s
in the interval 6–10 is due to an uneven distribution of the
workload (at least one CPU performs two 9nite di6erence
computations, while the others wait), while for 11 and more
CPUs the distribution is optimal.

4. Comparison with another software tool

A parameter estimation scheme rather similar to the one
presented here and an associated software tool has previ-
ously been presented by Bohlin and Graebe (1995).
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Fig. 1. Performance and scalability of CTSM when using shared memory
parallelization. Solid lines: CTSM values; dashed lines: theoretical values
(linear scalability).

There are, however, a number of very important di6er-
ences between the two schemes, and this section is therefore
devoted to outlining these di6erences and illustrating their
in3uence on the estimation performance of the correspond-
ing software tools through simulation studies. As mentioned
in Section 3 the estimation scheme presented here has been
implemented in a tool called CTSM. The original tool in-
corporating the scheme of Bohlin and Graebe (1995) was
called IdKit, but has been further developed into a more
extensive tool called MoCaVa (Bohlin, 2001), which runs
under MATLAB.
Apart from parameter estimation, MoCaVa facilitates nu-

merous other important tasks within grey-box model devel-
opment, e.g. model validation, and is superior to CTSM in
that respect. The latter only allows state and output predic-
tions to be computed based on a given data set, whereas the
former has various test and visualization features that allow
a given model to be tested on another data set or against
other models using the same data set. In fact, the essence
of MoCaVa is the ability to iteratively develop unfalsi9ed
models by means of such techniques, or, more speci9cally,
by means of a method based on the stepwise forward in-
clusion rule and a modi9ed likelihood ratio statistic (Bohlin
& Graebe, 1995; Bohlin, 2001). For the purpose of the fol-
lowing comparison with CTSM, however, only parameter
estimation will be considered, since this constitutes a funda-
mental information generating task, upon which subsequent
model development can be based.

4.1. Mathematical and algorithmic di8erences

Although very similar in terms of parameter estimation
algorithms, there are some distinct di6erences between Mo-
CaVa and CTSM. Generally, MoCaVa has more restrictions
and uses more crude approximations than CTSM, which

reduces the computational load, but at the expense of accu-
racy and consistency.

4.1.1. General model structure
With respect to the general model structure MoCaVa

is less 3exible than CTSM, primarily with respect to the
di6usion and measurement noise terms. Within IdKit the
following class of models was allowed:

dxt = f (xt ; ut ; t; �) dt + �(t; �) d!t ; (54)

yk = h(xk ; uk ; tk ; �) + ek ; (55)

where ek ∈N(0;S(tk ; �)), i.e. almost the same class of mod-
els as in CTSM, but within MoCaVa this class has been
restricted to the following:

dxt = f (xt ; ut ; t; �) dt; (56)

yk = h(xk ; uk ; tk ; �) + ek ; (57)

where ek ∈N(0;S(�)) and S is a diagonal matrix. In other
words, no di6usion term is allowed and there are more re-
strictions on the parametrization of the measurement noise
term. This limits 3exibility, but instead some of the inputs
can be modelled as disturbances and a library of generic dis-
turbance models is provided. E.g. Bohlin (2001) argues that
moderate di6usion may be well approximated by a low-pass
9ltered white noise disturbance with a bandwidth below the
Nyquist frequency.

4.1.2. Parameter estimation methods
With respect to parameter estimation methods, both pro-

grams provide a ML/MAP estimation setup, but MoCaVa
does not allow estimation on multiple independent data sets
as is the case with CTSM. Furthermore, the speci9c im-
plementations of the ML estimation setup di6er, although
both programs rely on the same assumption of Gaussian-
ity of the innovations and use the EKF to compute them.
This is due to some important di6erences in the implemen-
tations of the EKF. MoCaVa uses an approach very simi-
lar to the linearization-based approach in CTSM, but with
a more crude 9rst order Taylor approximation to the ma-
trix exponential. In addition, since di6usion terms are not
allowed in the general model structure in MoCaVa, it suf-
9ces to compute the exponential of a much simpler matrix
than in CTSM. More importantly, however, like the origi-
nal IdKit program, MoCaVa obtains the Jacobians needed
for linearization of the nonlinear equations by making 9-
nite di6erence approximations around a reference trajectory
obtained by applying the EKF without updating. Thus the
original equations are not linearized at points corresponding
to the current state estimates, but at points along a determin-
istic reference trajectory. This is a very important di6erence
from CTSM, which renders IdKit and hence MoCaVa un-
suitable for estimation of parameters in nonlinear systems
with signi9cant di6usion (Bohlin & Graebe, 1995; Bohlin,
2001). This is demonstrated below.
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4.1.3. Optimization issues
There are also some important di6erences between the

two programs with respect to optimization method. CTSM
uses a quasi-Newton method based on the BFGS updating
formula for the Hessian and a soft line search algorithm,
whereasMoCaVa uses a modi9ed Newton-Raphsonmethod,
where the Hessian is approximated by applying a statistical
assumption (Bohlin, 2001). Both programs use 9nite di6er-
ences to approximate the gradient of the objective function,
but while CTSM shifts from forward to central di6erences
as the minimum of the objective function is approached Mo-
CaVa only uses forward di6erences. Finally, and perhaps
most importantly, the termination criterion in CTSM is a
function of the relative reduction in the objective function as
well as the relative change in the parameter values, whereas
in MoCaVa it is only a function of the relative reduction in
the objective function.

4.1.4. Data issues
In terms of 3exibility with respect to the types of data

that can be used for the estimation, the two programs are
almost equivalent. The only important di6erence is that
MoCaVa does not incorporate any outlier robustness
features, but relies on the user to remove outliers.

4.1.5. Uncertainty of parameter estimates
As opposed to CTSM, where an assessment of the uncer-

tainty of the parameter estimates is obtained, no such infor-
mation is obtained directly in MoCaVa.

4.2. Simulation studies

In the following some of the e6ects of the di6erences
between MoCaVa and CTSM are illustrated by means of
estimation results from two simulation examples.
Example 1: Nonlinear (NL) model: The 9rst example

used is a simple model of a fed-batch bioreactor. The system

equation of the model is

d




X

S

V


=




$(S)X − FX
V

−$(S)X
Y + F(SF−S)

V

F


 dt

+



'11 0 0

0 '22 0

0 0 '33


 d!t ;

where X is the biomass concentration, S is the substrate
concentration, V is the volume, F is the feed 3ow rate,
Y=0:5 is a yield coe2cient, SF=10 is the feed concentration,
and the growth rate $(S) is given by

$(S) = $max
S

K2S2 + S + K1

with $max, K1 and K2 = 0:5 as kinetic parameters. The
measurement equation of the model is


y1

y2

y3




k

=




X

S

V




k

+ ek ;

where ek ∈N(0;S) and where

S =



S11 0 0

0 S22 0

0 0 S33


 :

Using the true parameters and initial states shown in Ta-
bles 1–3 three di6erent sets of data (each 101 samples over
3:8 h) were generated by stochastic simulation using the
Euler scheme (Kloeden & Platen, 1992):

(1) A data set with no di6usion (Fig. 2a).
(2) A data set with weak di6usion (Fig. 2b).
(3) A data set with strong di6usion (Fig. 2c).
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Fig. 2. Simulated data sets for Example 1. Solid staircase: F ; dashed lines: y1; dotted lines: y2; dash-dotted lines: y3. (a) No di6usion; (b) weak
di6usion; (c) strong di6usion.
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Table 1
Estimation results. Example 1—Data in Fig. 2a

Parameter True value CTSM MoCaVa

X0 1.0000E+00 1.0081E+00 9.9187E-01
S0 2.4495E-01 2.5160E-01 2.3371E-01
V0 1.0000E+00 1.0007E+00 9.9533E-01
$max 1.0000E+00 1.0104E+00 1.0143E+00
K1 3.0000E-02 3.4177E-02 3.7176E-02
'11 0.0000E+00 6.8942E-06 9.9095E-03
'22 0.0000E+00 4.2411E-07 9.9727E-03
'33 0.0000E+00 5.1325E-07 9.7394E-03
S11 1.0000E-02 9.0855E-03 8.6565E-03
S22 1.0000E-03 9.7370E-04 9.4740E-04
S33 1.0000E-02 9.4517E-03 8.9991E-03

Example 2: Linear time-invariant (LTI)model: The sec-
ond example used is a simple second order lumped pa-
rameter model of the heat dynamics of a wall with system
equation

d

(
T1

T2

)
=




− 1

G1

(
1
H1

+ 1
H2

)
1

G1H2

1
G2H2

− 1
G2

(
1
H2

+ 1
H3

)


(

T1

T2

)

+




1
G1H1

0

0
1

G2H3



(

Te

Ti

) 
 dt

+

[
'11 0

0 '22

]
d!t ;

where T1 is the outer wall temperature, T2 is the inner wall
temperature, Te is the outdoor temperature, Ti is the indoor
temperature, and G1, G2, H1, H2 and H3 are parameters of
the second order thermal network describing the wall. The
measurement equation is

(qi)k =
[
0 − 1

H3

]( T1

T2

)
k

+
[
0 1

H3

]( Te

Ti

)
k

+ ek ;

where ek ∈N (0; S). Using the true parameters and initial
states shown in Tables 4 and 5 two di6erent sets of data
(each 719 samples over 718 h) were generated by stochastic
simulation using the method from Example 1:

(1) A data set without di6usion (Fig. 3a).
(2) A data set with di6usion (Fig. 3b).

4.2.1. Quality of estimates
The 9rst issue addressed in the comparison of the esti-

mation performance of MoCaVa and CTSM is quality of
estimates. This should ideally be based on extensive Monte
Carlo simulation analysis, which would deliver an assess-
ment of both bias and variance of both estimators. How-
ever, both CTSM and MoCaVa are interactive programs
in the sense that user intervention is required to process

Table 2
Estimation results. Example 1—Data in Fig. 2b

Parameter True value CTSM MoCaVa

X0 1.0000E+00 9.8615E-01 9.9193E-01
S0 2.4495E-01 2.3800E-01 2.3159E-01
V0 1.0000E+00 9.7733E-01 1.0694E+00
$max 1.0000E+00 9.9694E-01 9.5656E-01
K1 3.0000E-02 3.1506E-02 2.7128E-02
'11 1.0000E-01 1.1782E-01 3.0813E-01
'22 1.0000E-01 7.8251E-02 1.0167E-02
'33 1.0000E-01 6.2429E-02 1.0025E-02
S11 1.0000E-02 8.0729E-03 9.2114E-03
S22 1.0000E-03 9.2753E-04 1.2410E-03
S33 1.0000E-02 9.3570E-03 1.2237E-02

Table 3
Estimation results. Example 1—Data in Fig. 2c

Parameter True value CTSM MoCaVa

X0 1.0000E+00 9.6106E-01 9.5386E-01
S0 2.4495E-01 2.3457E-01 1.0003E-01
V0 1.0000E+00 9.9349E-01 1.0368E+00
$max 1.0000E+00 9.7142E-01 9.0460E-01
K1 3.0000E-02 3.2600E-02 1.9886E-02
'11 3.1623E-01 3.2500E-01 1.1169E+00
'22 3.1623E-01 2.8063E-01 1.0046E-02
'33 3.1623E-01 2.6078E-01 5.5165E-01
S11 1.0000E-02 7.7174E-03 9.9452E-03
S22 1.0000E-03 1.1618E-03 1.1330E-02
S33 1.0000E-02 8.3037E-03 1.5597E-02

each data set, and such analysis is therefore prohibitively
time-consuming given the number of data sets to be pro-
cessed to obtain a reliable assessment. Instead, the two pro-
grams are compared in terms of single estimation error using
the data sets mentioned above.
Tables 1–3 show estimation results from both programs

for the NL case in Example 1 using the data sets shown
in Fig. 2 (zero order hold on input). For the estimation in
MoCaVa the di6usion term was approximated by a low-pass
9ltered white noise disturbance with a bandwidth of 10 rad=h
(the Nyquist frequency is about 82:7 rad=h). The results
clearly show that the estimates obtained with CTSM have
less error, in particular the estimates of the parameters of
the di6usion term, some of which are an order of magni-
tude o6 in MoCaVa. Furthermore, the inability of MoCaVa
to correctly estimate these parameters seems to introduce
additional error in the estimates of the other parameters.
Tables 4 and 5 show estimation results for the LTI case

in Example 2 using the data sets shown in Fig. 3 (zero order
hold on input). For the estimation in MoCaVa the di6usion
term was approximated by a low-pass 9ltered white noise
disturbance with a bandwidth of 0:4 rad=h (the Nyquist fre-
quency is about 3:14 rad=h). In this case much more similar
estimates are obtained.
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Table 4
Estimation results. Example 2—Data in Fig. 3a

Parameter True value CTSM MoCaVa

T10 1.3200E+01 1.3134E+01 1.3271E+01
T20 2.5300E+01 2.5330E+01 2.5571E+01
G1 1.0000E+02 1.0394E+02 1.0189E+02
G2 5.0000E+01 4.9320E+01 4.9266E+01
H1 1.0000E+00 9.6509E-01 9.8904E-01
H2 2.0000E+00 2.0215E+00 1.9965E+00
H3 5.0000E-01 5.0929E-01 5.0929E-01
'11 0.0000E+00 4.2597E-08 8.3838E-03
'22 0.0000E+00 1.4278E-09 5.1542E-03
S 1.0000E-02 1.0330E-02 1.0019E-02

Table 5
Estimation results. Example 2—Data in Fig. 3b

Parameter True value CTSM MoCaVa

T10 1.3200E+01 1.9541E+01 1.4851E+01
T20 2.5300E+01 2.5360E+01 2.5580E+01
G1 1.0000E+02 1.0718E+02 7.6394E+01
G2 5.0000E+01 5.3125E+01 5.4272E+01
H1 1.0000E+00 1.9902E+00 1.4285E+00
H2 2.0000E+00 9.0621E-01 1.9034E+00
H3 5.0000E-01 5.0844E-01 5.1010E-01
'11 1.0000E-01 1.7791E-01 1.0206E-02
'22 1.0000E-01 1.4951E-01 1.4089E-01
S 1.0000E-02 9.4965E-03 3.2529E-02

4.2.2. Reproducibility
The second issue addressed in the comparison of the es-

timation performance of the two programs is reproducibil-
ity in terms of the sensitivity of the results to variations in
initial values for the optimization.
Tables 6 and 7 show estimation results from CTSM and

MoCaVa, respectively, for the NL case corresponding to
Table 1 using four di6erent sets of initial values. The initial
values used are the true values shown in Table 1, except
for the values of the parameters of the di6usion term, which
have been varied ([1; 0:1; 0:01; 0:001]). The results clearly

show that MoCaVa is much more sensitive than CTSM to
variations in initial values, particularly with respect to the
parameters of the di6usion term.
Tables 8 and 9 show equivalent results for the LTI case

corresponding to Table 4. The initial values used in this
case are the true values shown in Table 4, except for the
values of the parameters of the di6usion term, which have
been varied ([1; 0:1; 0:01; 0:001]). Note that for the 9rst set
of initial values, MoCaVa was not able to converge. Again
the results show that MoCaVa is more sensitive than CTSM,
particularly with respect to the parameters of the di6usion
term.

5. Discussion

The results presented in Section 4 show that the software
tool presented in Section 3 for estimation of parameters in
grey-box models (CTSM) generally performs well. In par-
ticular, it performs better than the one presented by Bohlin
(2001) (MoCaVa) due to a number of algorithmic di6er-
ences between the two programs.
In terms of quality of estimates, CTSM clearly gives less

error than MoCaVa for nonlinear systems with signi9cant
di6usion, especially with respect to the parameters of the
di6usion term. It may be argued that this is due to the ap-
proximation used in MoCaVa, because the di6usion term
cannot be modelled explicitly, and hence that a comparison
should have been made with the original IdKit program by
Bohlin and Graebe (1995), but this program is not readily
available. Furthermore, Bohlin and Graebe (1995) argue
that IdKit cannot be expected to work properly for models
with signi9cant di6usion, so the di6erences in results from
CTSM may be due to the construction of the algorithms
after all. With respect to the quality of the estimates of the
parameters of the di6usion term, it is particularly impor-
tant that the EKF implementation in CTSM uses analytical
Jacobians obtained at current values of the state estimates,
whereas MoCaVa uses numerical Jacobians obtained at
state values along a deterministic reference trajectory. This
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Fig. 3. Simulated data sets for Example 2. Solid lines: Ti; dashed lines: Te; dotted lines: qi . (a) Without di6usion; (b) with di6usion.
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Table 6
CTSM reproducibility. Example 1—Data in Fig. 2a

Parameter Result 1 Result 2 Result 3 Result 4

X0 1.0081E+00 1.0081E+00 1.0081E+00 1.0086E+00
S0 2.5160E-01 2.5160E-01 2.5160E-01 2.5205E-01
V0 1.0007E+00 1.0007E+00 1.0007E+00 1.0006E+00
$max 1.0104E+00 1.0104E+00 1.0104E+00 1.0107E+00
K1 3.4178E-02 3.4177E-02 3.4177E-02 3.4289E-02
'11 2.7167E-08 6.5411E-06 6.8942E-06 3.0674E-04
'22 3.5673E-06 8.7657E-18 4.2411E-07 5.9732E-05
'33 1.1250E-07 5.0250E-09 5.1325E-07 1.6944E-04
S11 9.0855E-03 9.0855E-03 9.0855E-03 9.0844E-03
S22 9.7371E-04 9.7370E-04 9.7370E-04 9.7068E-04
S33 9.4517E-03 9.4517E-03 9.4517E-03 9.4239E-03

Table 7
MoCaVa reproducibility. Example 1—Data in Fig. 2a

Parameter Result 1 Result 2 Result 3 Result 4

X0 9.8736E-01 9.8528E-01 9.9187E-01 9.9247E-01
S0 2.5036E-01 2.3963E-01 2.3371E-01 2.3351E-01
V0 1.0027E+00 9.9632E-01 9.9533E-01 9.9527E-01
$max 1.0230E+00 1.0213E+00 1.0143E+00 1.0134E+00
K1 3.7723E-02 3.7639E-02 3.7176E-02 3.7035E-02
'11 1.4692E-01 6.2238E-02 9.9095E-03 9.9963E-04
'22 1.5229E-01 7.7283E-02 9.9727E-03 1.0000E-03
'33 1.2476E-01 5.8497E-02 9.7394E-03 1.0022E-03
S11 8.2961E-03 8.4638E-03 8.6565E-03 8.6720E-03
S22 9.0169E-04 9.3558E-04 9.4740E-04 9.4002E-04
S33 8.7933E-03 8.8285E-03 8.9991E-03 9.0133E-03

becomes particularly evident when comparing the results
from the nonlinear model with the results from the linear
time invariant model. In the nonlinear case CTSM performs
better than MoCaVa, whereas the two programs perform
equally well in the linear time invariant case, where the
Jacobians are equal.
In terms of reproducibility, CTSM is less sensitive to

initial values and hence gives more consistent results, which
is most likely due to the fact that in MoCaVa the termination
criterion for the optimization algorithm is only a function
of the relative reduction in the objective function, whereas
in CTSM it is also a function of the relative change in the
parameter values. Evidence to support this conclusion is
the fact that similar results have been obtained using data
from a nonlinear and a linear time invariant system without
di6usion, indicating that the result is independent of the
system type and of the di6usion term approximation.
In the more general setting of providing support for sys-

tematic grey-box model development, MoCaVa is superior
to CTSM, because of the many additional features included
to facilitate various model development tasks. In this setting
it may also be argued that the improvement in speed obtained
through the more crude approximations made in MoCaVa
is an advantage, but unfortunately this improvement seems

to come at the price of accuracy for nonlinear systems with
signi9cant di6usion and of consistency, particularly with re-
spect to the estimates of the parameters of the di6usion term.
For applications where these estimates are used directly, e.g.
to assess the quality of a model (Kristensen et al., 2001),
to discriminate between di6erent models (Kristensen et al.,
2002), or to pinpoint model de9ciencies (Kristensen et al.,
2004), one cannot a6ord this.

6. Conclusion

An e2cient and 3exible scheme for parameter estimation
in stochastic grey-box models has been presented. Based on
the extended Kalman 9lter it features maximum likelihood
as well as maximum a posteriori estimation on multiple in-
dependent data sets, including irregularly sampled data sets
and data sets with occasional outliers and missing observa-
tions. A software tool implementing the estimation scheme
has also been presented and a comparison with an existing
tool has indicated that the new tool has better performance
both in terms of quality of estimates for nonlinear systems
with signi9cant di6usion and in terms of reproducibility. In
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Table 8
CTSM reproducibility. Example 2—Data in Fig. 3a

Parameter Result 1 Result 2 Result 3 Result 4

T10 1.3134E+01 1.3134E+01 1.3134E+01 1.3134E+01
T20 2.5330E+01 2.5330E+01 2.5330E+01 2.5330E+01
G1 1.0394E+02 1.0394E+02 1.0394E+02 1.0395E+02
G2 4.9320E+01 4.9320E+01 4.9320E+01 4.9320E+01
H1 9.6509E-01 9.6509E-01 9.6509E-01 9.6506E-01
H2 2.0215E+00 2.0215E+00 2.0215E+00 2.0215E+00
H3 5.0929E-01 5.0929E-01 5.0929E-01 5.0929E-01
'11 2.1538E-19 8.7694E-11 4.2597E-08 8.8565E-06
'22 3.4939E-08 5.5784E-08 1.4278E-09 3.0702E-07
S 1.0330E-02 1.0330E-02 1.0330E-02 1.0330E-02

Table 9
MoCaVa reproducibility. Example 2—Data in Fig. 3a

Parameter Result 1 Result 2 Result 3 Result 4

T10 — 1.3070E+01 1.3271E+01 1.3168E+01
T20 — 2.5577E+01 2.5571E+01 2.5567E+01
G1 — 1.0270E+02 1.0189E+02 1.0373E+02
G2 — 4.9277E+01 4.9266E+01 4.9312E+01
H1 — 9.5979E-01 9.8904E-01 9.6833E-01
H2 — 2.0277E+00 1.9965E+00 2.0180E+00
H3 — 5.0935E-01 5.0929E-01 5.0929E-01
'11 — 2.2435E-02 8.3838E-03 9.9907E-04
'22 — 7.9109E-03 5.1542E-03 1.0036E-03
S — 9.9315E-03 1.0019E-02 1.0224E-02

particular, the new tool provides more accurate and more
consistent estimates of the di6usion term parameters.
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