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In this paper, the two non-linear mixed-effects programs NONMEM and NLME were compared
for their use in population pharmacokinetic/pharmacodynamic (PK/PD) modelling. We have
described the first-order conditional estimation (FOCE) method as implemented in NONMEM
and the alternating algorithm in NLME proposed by Lindstrom and Bates. The two programs were
tested using clinical PK/PD data of a new gonadotropin-releasing hormone (GnRH) antagonist
degarelix currently being developed for prostate cancer treatment. The pharmacokinetics of
intravenous administered degarelix was analysed using a three compartment model while the
pharmacodynamics was analysed using a turnover model with a pool compartment. The results
indicated that the two algorithms produce consistent parameter estimates. The bias and precision
of the two algorithms were further investigated using a parametric bootstrap procedure which
showed that NONMEM produced more accurate results than NLME together with the nlmeODE
package for this specific study.

KEY WORDS: population pharmacokinetic/pharmacodynamic modelling; non-linear mixed-
effects programs; NONMEM; NLME; degarelix; GnRH antagonist.

INTRODUCTION

Population pharmacokinetic/pharmacodynamic (PK/PD) data analy-
sis using non-linear mixed effects models has become an increasingly
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important tool in all phases of drug development [1]. The advantage of
using non-linear mixed-effects models are that population mean parameters
are obtained simultaneously with estimates of the inter- and intra-individ-
ual variability. The available software for population PK/PD modelling
have previously been reviewed in [2, 3] and extensively compared using sim-
ulated and clinical data in [4–7]. NONMEM [8] is by far the most applied
program in population PK/PD modelling while the NLME package [9] has
had limited use in that area so far. With the implementation of an ordinary
differential equation (ODE) solver in nlmeODE [10] combining NLME and
the odesolve package [11] in the statistical modelling environment R [12], it
is now possible to use NLME for modelling complicated PK/PD systems
for which closed-form solutions do not exist. This calls for a comparison
between NONMEM and NLME using the nlmeODE package.

NONMEM and NLME are both parametric non-Bayesian likelihood
approaches proposing different approximations of the population likeli-
hood function. The first-order conditional estimation (FOCE) method in
NONMEM is compared with the maximum likelihood (ML) method in
the alternating algorithm proposed by Lindstrom and Bates as imple-
mented in NLME since these seem to be the most similar [8]. Several
other algorithms are available in NONMEM and NLME but these are
not compared in this study.

The objectives of this study are: (1) to model the PK/PD of GnRH
antagonist degarelix, (2) to compare the parameter estimates obtained
from NONMEM and NLME, and (3) to identify the advantages and dis-
advantages of these two non-linear mixed-effects programs in population
PK/PD modelling.

THEORETICAL

The statistical framework for non-linear mixed-effects modelling is
presented in the following along with the first-order conditional estima-
tion (FOCE) method as implemented in NONMEM [8] and the alternat-
ing algorithm in NLME proposed by Lindstrom and Bates [13].

NON-LINEAR MIXED-EFFECTS MODELLING

Population PK/PD data analysis is typically performed using non-lin-
ear mixed-effects models which allow for estimation of inter- and
intra-individual variability (random effects) as well as the influence of
measured concomitant effects or covariates on the fixed-effects parame-
ters. To ease the notation, bold symbols refer to vector or matrix
representation.
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Non-linear mixed-effects models can be thought of as a hierarchical
model structure where the variability in response is split into inter- and
intra-individual variability. The likelihood method described below may
only be used when there is a complete model for the probability distribu-
tion underlying the data. The hierarchical model consists of the following
two-stage hierarchy [14,15].

The first-stage model describes the intra-individual (residual) variabil-
ity and is modelled for each individual conditioned on the independent
variables and a set of individual parameters, i.e.

p1ðyijj/i;R; xijÞ; i ¼ 1; . . . ;N j ¼ 1; . . . ; ni ð1Þ

where p1(Æ) is a generic probability density function, yij is the jth response
vector for the ith individual, /i is the individual-specific parameter vector,
R is the first-stage variance, xij is a known regressor matrix, N is the num-
ber of individuals, and ni is the number of measurements for individual i.
To ease the exposition, we only consider univariate measurement with a
homoscedastic residual error model, i.e.

yij ¼ fð/i; xijÞ þ �ij ð2Þ

where f(Æ) is the structural model and the error terms �ij are assumed inde-
pendent and identically distributed residual errors with mean zero and
variance R ¼ r2.

At the second-stage, the model relates the parameters of the different
individuals, i.e.

p2ð/ijh; ziÞ; i ¼ 1; . . . ;N ð3Þ

with the second-stage model commonly modelled as

/i ¼ hðh; ziÞexpðgiÞ ð4Þ

where hð�Þ denotes the structural type parameter model which is a
function of the fixed-effects parameters h, covariates zi, and random-
effects parameters gi influencing /i. This parameterization is chosen in
order to constrain the parameters to be non-negative. The random-ef-
fects gi are independent and identically distributed with zero mean and
variance-covariance matrix X. The second-stage distribution p2(Æ) is nor-
mally assumed to be the multivariate normal distribution and the two
levels of random-effects �ij and gi are assumed independent for all i
and j.

The marginal density of yi ¼ ½yi1; . . . ; yini � is obtained from the condi-
tional density of yi given the random effects gi and the marginal distribu-
tion of gi, i.e.

443PK/PD Modelling of Degarelix using NONMEM and NLME



pðyijh;R;XÞ ¼
Z

p1ðyijh;R; giÞp2ðgijXÞdgi ð5Þ

where the conditional density of yi given the random-effects gi is denoted
by p1ðyijh;R; giÞ while p2ðgijXÞ is the marginal distribution of gi [9].

The likelihood function for the population parameters based on the
marginal density in (5) can be written as the following product of inte-
grals [5,14,16]

Lðh;R;XÞ ¼
YN
i¼1

Z
p1ðyijh;R; giÞp2ðgijXÞdgi

/ R�
M
2 jXj�

N
2

YN
i¼1

Z
expð�liÞdgi ð6Þ

where

li ¼
1

2

XNi

j¼1

ðyij � fð/i; xijÞÞ
2

R

( )
þ 1

2
gTi X�1gi ð7Þ

with M ¼ RN
i¼1ni being the total number of observations for the N

individuals.
This formulation of the likelihood function is valid due to the fact

that the empirical Bayes estimates ĝi satisfy the following equation [I7]

@li
@gi
jĝi ¼ 0; i ¼ 1; . . . ;N ð8Þ

In general, the integral in (6) does not have a closed-form expression when
the structural model function f(Æ) is non-linear in g and can therefore not
be evaluated analytically [18]. Approximations therefore have to be made
in order to be able to estimate the model parameters. The two likelihood
approximations in NONMEM and NLME are therefore considered next.

FIRST-ORDER CONDITIONAL ESTIMATION METHOD

IN NONMEM

The three main likelihood approximations available in NONMEM
are the Laplacian approximation, the first-order conditional estimation
(FOCE) method, and the first-order (FO) method listed in order of
decreasing accuracy. The FOCE method in NONMEM of evaluating the
exact marginal likelihood in (6) consists of using a second-order Taylor
series expansion of li around the value of gi which minimizes (7) [8].
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Laplace’s approximation of the integral in (6) states that if li has a
unique minimum at ĝi the integral in the likelihood function (6) can be
approximated by using [17,19,20]Z

expð�liÞdgi � ð2pÞk=2jDlij�1=2expð�liÞ ð9Þ

where gi is a k-dimensional random-effects vector and Dli is the Hessian
matrix calculated by

Dli ¼
XNi

j¼1

rfð/i xijÞrfð/i; xijÞ
T

R
þX�1 ð10Þ

with the gradient vector rfð/ixijÞ ¼ @fi
@gi
jĝi . Only first-order partia1 deriva-

tives are included in (10) since the contribution of the second-order
partial derivatives is negligible [18].

The objective function of the FOCE approximation thereby becomes

�2logLðh;R;XÞ aM logRþNlogjXj þ
XN
i¼1

logjDlij þ 2li½ � ð11Þ

LINDSTROM AND BATES ALTERNATING ALGORITHM IN NLME

The method proposed by Lindstrom and Bates [13] for approximat-
ing the likelihood function in (5) is implemented in NLME [9,18]. The
method uses a first-order Taylor expansion about the conditional
estimates of the inter-individual random effects. The estimation algorithm
alternates between two steps: A penalized non-linear least-squares (PNLS)
step and a linear mixed-effects (LME) step.

In the PNLS step, the conditional modes of the random effects gi and
the conditional estimates of the fixed effects h based on the current estimate
of X are obtained by minimizing the PNLS objective function [18], i.e.

OPNLS ¼
1

2

XN
i¼1

yi � fiðh; giÞð ÞTR�1 yi � fiðh; giÞð Þ
n o

þ 1

2
gTi X�1gi ð12Þ

where ½fiðh; giÞ�j ¼ fið/ixijÞ for i =1,. . .,N and j ¼ 1; . . . ; ni.
In order to update the estimate of X, the model function f(Æ) is line-

arized in the LME step using a first-order Taylor expansion around the
current estimates of h and the conditional modes of the random effects gi
denoted by ĝi [18]. The approximative log-likelihood function for the esti-
mation of X in the LME step can thereby be written as
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logLLMEðh;R;XÞ ¼ �M
2 log2pR� 1

2

PN
i¼1

log Rþ @fi
@hT

X @fi
T

@hT

� �n

þ yi � fiðh; diÞ þ @fi
@gT

i

ĝi

h iT
Rþ @fi

@hT
X @fi

T

@hT

� ��1
yi � fiðh; giÞ þ @fi

@giT
ĝi

h i�
ð13Þ

The log-likelihood function in (13) is identical to that of a linear mixed-
effects model [21].

MATERIALS AND METHODS

Compound

Degarelix (FE200486, Ac-D-2Nal-D-4Cpa-D-3Pal-Ser-4Aph (L-hy-
droorotyl)-D-4Aph (carbmoyl)-Leu-ILys-Pio-D-Ala-NH2) is a new long-
acting GnRH antagonist with high affinity and selectivity for GnRH
receptors currently being developed for prostate cancer treatment [22–26].

Experimental Design

The phase I study was designed as an open-label, escalating dose
study with sequential intravenous treatment groups with 24 healthy male
subjects enrolled in the study. The study was performed in accordance
with the Declaration of Helsinki and according to Good Clinical Practice
(GCP). The appropriate independent ethics committee approved the
protocol prior to study initiation. Written informed consent was obtained
from all patients prior to participation in the study.

Four treatment groups with six subjects in each received degarelix
administered as an intravenous infusion at escalating doses of 1.5, 6, 15,
and 30 lg/kg, respectively. The concentration of the infusion solution was
5 lg/ml and it was infused at a constant rate within each subject over a
period of 15 min (for the 1.5 and 6 lg/kg groups) and over 45 min (for
the 15 and 30 lg/kg groups).

Blood samples for assessment of degarelix were taken prior to dos-
ing, three times during the infusion, and 5, 10, 15, 30, 45, 60 min, 2, 4, 8,
12, 24, 36, 48 h, 3, 4, 7, and 14 days after end of infusion. Blood samples
for assessment of pharmacodynamic effect were taken prior to dosing,
every 15 min during the infusion, and 15, 30, 60 min, 2, 4, 8, 12, 24, 48 h,
3, 4, 7, and 14 days after infusion stop.

Analytical Methods

Degarelix plasma concentrations and total serum testosterone con-
centrations were measured according to Good Laboratory Practice (GLP)
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by liquid chromatography with tandem mass spectrometric detection
(LC-MS/MS) validated according to current guidelines for bioanalytical
samples [27].

The lower limit of quantification (LLOQ) of the degarelix assay was
0.5 lg/ml. The intra and inter-assay precision (expressed as coefficient of
variation (CV)) were less than or equal to 7.5% and 14.1%, respectively.
The accuracy was between 98.2% and 102.6%.

The LLOQ the testosterone assay was 0.05 ng/ml and the intra- and
inter-assay precision were less than or equal to 15.8% and 14.1%, respec-
tively. The accuracy was between 93.8% and 107.8%.

Mechanism of Action for GnRH Antagonists

The following is a brief description of the physiological aspects and
mechanisms of the endocrine system with respect to the hypothalamic-
pituitary-gonadal (HPG) axis on which gonadotropin-releasing hormone
(GnRH) antagonist degarelix acts. Endogenous GnRH is secreted from
neurons in the hypothalamus and acts as an agonist stimulating the
synthesis and secretion of the gonadotropins luteinizing hormone (LH)
and follicle-stimulating hormone (FSH) [28]. LH interacts with receptors
on the plasma membrane of testicular Leydig cells which stimulate
de novo synthesis of androgens [29,30].

Treatment with GnRH antagonists cause immediate suppression of
gonadotropin secretion by binding to the GnRH receptors in the pituitary
[31]. The blockage of gonadotropins causes suppression of de novo synthe-
sis of androgens (primarily testosterone) in the Leydig cells on which the
growth of prostate cancer cells depend [29,30,32]. Continuous blockade of
the pituitary GnRH receptors by GnRH antagonists subsequently results
in down-regulation of GnRH receptors followed by decreased sensitivity
to endogenous GnRH [28].

Data Analysis

The population PK/PD data analysis was carried out using NON-
MEM version V with ADVAN8 [8] and NLME version 3.1–45 [9] on a
Pentium 4-M 2.0 GHz computer with 512 MB RAM running Windows
XP.

The fixed-effects parameters were parameterized in terms of the loga-
rithm of the parameters to ensure non-negative parameter estimates while
keeping the optimization problem unconstrained. This procedure was not
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necessary in NONMEM but to be able to compare the results from
NONMEM and NLME, it was used in both programs.

The precision of the parameter estimates was calculated using the in-
verse Hessian matrix thereby assuming asymptotic normality. Since the
logarithm of the fixed-effects parameters were estimated, the relative stan-
dard error (RSE) estimate of the untransformed fixed-effect parameters h

were calculated by the following Taylor approximation

RSE ¼ SEðĥÞ
ĥ
� SEðlog ĥÞĥ

ĥ
¼ SEðlog ĥÞ ð14Þ

where SEðlogĥÞ are the reported standard error estimates.
The inter-individual variability (IIV) was estimated using an expo-

nentiol model, i.e.

/i ¼ h expðgiÞ ð15Þ

where /i denotes an arbitrary PK/PD parameter for individual i, h is the
corresponding population parameter while gi is a normal distributed
variable with variance x2

h to distinguish the ith subject’s parameter from
the population mean. The inter-individual variance matrix X was specified
as a diagonal matrix since the correlation among all pairs of gi were
assumed to be zero. The inter-individual variability was parameterized in
terms of the coefficient of variation x in both NONMEM and NLME in
order to automatically get the asymptotic standard error estimates of x
instead of x2.

A sequential approach for analysing the PK/PD data was chosen
since the PD can be assumed not to influence the PK because degarelix is
an exogenous compound. First, the individual (empirical Bayes) PK
parameters were estimated using the PK data alone. Secondly, using the
individual PK parameters and the PD data only, the PD parameters were
estimated. This approach is referred to as the individual PK parameters
(IPP) method in [33].

RESULTS

Pharmacokinetics

The pharmacokinetics of degarelix following a single intravenous
infusion was adequately described by a three-compartment disposition
model with first-order elimination from the central compartment in equi-
librium with two peripheral compartments (see Fig. 1). The differential
equations governing the structural PK model are
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dA1

dt
¼ Q1

V2
A2 þ

Q2

V3
A3 �

CLþQ1 þQ2

V1
A1 þ Rin ð16Þ

dA2

dt
¼ Q1

A1

V1
� A2

V2

� �
ð17Þ

dA3

dt
¼ Q2

A1

V1
� A3

V3

� �
ð18Þ

where A1, A2, and A3 are the state variables for the amount of drug in the
central and the two peripheral compartments, respectively, with the corre-
sponding volumes V1, V2 and V3. The inter-compartmental clearance
parameters are Q1 and Q2 while CL is the clearance and Rin is the IV
infusion rate. The IIV model in (15) was applied to CL, Q1, and V1. No
demographic covariates were found to be significant by graphical analysis
using Xpose [34] and were therefore not included in the final model.

To obtain homogeneity of the residual error variance for the PK
data analysis, the intra-individual variability was modelled using an addi-
tive residual error model on the log-scale corresponding to a constant
coefficient of variation (CV) model on the untransformed scale, i.e.

logCPK
ij ¼ log

A1;ij

V1;i
þ �PKij ð19Þ

where Cij
PK is the jth observed plasma degarelix concentration for

individual i and �PK are the residuals which are independent and identi-
cally distributed (iid) with mean zero and variance r2

PK.

Fig. 1. Schematic illustration of the structural PK/PD model for GnRH antagonist degar-
elix. The solid lines illustrate mass transfer while the dashed line represents effect interaction.
The parameters are explained in the text.
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The population PK parameter estimates obtained by NONMEM and
NLME are summarized in Table I. The NONMEM and NLME parame-
ter estimates were quite similar while the discrepancy in the RSE esti-
mates was a bit higher. The bias and precision were investigated further
using a parametric bootstrap procedure (see the Parametric Bootstrapping
section).

The observed degarelix concentration-time profiles are shown in
Fig. 2 together with the model predictions. The goodness-of-fit (GOF)
graphs of observed versus individual predicted and population predicted
plasma degarelix concentrations are displayed in Fig. 3. The GOF graphs
show that the NONMEM and NLME PK model predictions are almost
identical and that a three-compartment PK model seems to capture the
pharmacokinetics of IV administered degarelix since the circles in Fig. 3
are nicely scattered around the line of identity.

Pharmacodynamics

To model the testosterone system following exposure to GnRH
antagonist degarelix, a turnover model with a pool compartment [35,36]

Table I. Population PK/PD Parameter Estimates Obtained from NONMEM and NLME

Together with their Relative Standard Error (RSE) Estimates

Parameter Unit

NONMEM NLME

Estimate (RSEa (%)) Estimate (RSEa (%))

CL [l/h] 3.29 (4.01) 3.29 (4.94)

Q1 [l/h] 2.57 (12.4) 2.91 (10.6)

Q2 [l/h] 10.7 (14.9) 10.9 (3.05)

V1 [l] 9.78 (6.99) 9.64 (6.64)

V2 [l] 31.8 (4.75) 32.3 (4.74)

V3 [l] 8.85 (10.5) 7.74 (6.75)

kout [1/h] 0.217 (4.82) 0.213 (5.08)

krel [1/h] 0.00224 (37.2) 0.00320 (34.9)

Imax [-] 0.948 (0.580) 0.958 (0.601)

IC50 [ng/ml] 0.696 (12.4) 0.683 (15.7)

c [-] 3.03 (11.2) 2.30 (5.97)

xCL [%] 17.6 (17.3) 20.6 (22.1)

xQ1
[%] 30.8 (33.0) 46.9 (24.8)

xV1
[%] 27.7 (17.7) 31.5 (19.6)

xkout
[%] 18.5 (20.0) 19.1 (25.0)

xIC50 [%] 54.5 (15.2) 54.1 (20.3)

rPK [%] 19.8 (4.22) 20.2 (4.29)

rPD [%] 23.8 (4.02) 23.9 (4.16)

aRSE of fixed-effects estimates are calculated by RSEðĥÞ � SEðlog ĥÞ:
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(see Fig. 1) was considered the most appropriate given the available data
and the current knowledge about the system. The observed rebound effect
where the testosterone concentration levels rise above the baseline concen-
tration was accounted for by adding a pool compartment representing
intracellular testosterone. The release of intracellular testosterone to the
plasma testosterone compartment is thought to be inhibited by plasma
degarelix concentrations through a sigmoidal Emax model. The down-reg-
ulation of GnRH receptors was not modelled since the extent of exposure
to degarelix is limited in the current study.

The differential equations governing the structural PD model are

dP

dt
¼ Kin � krel 1� ImaxðA1=V1Þc

ICc
50 þ ðA1=V1Þc

� �
P ð20Þ

dT

dt
¼ krel 1� ImaxðA1=V1Þc

ICc
50 þ ðA1=V1Þc

� �
P� kout T ð21Þ

where P and T are the state variables for the intracellular pool and
testosterone concentrations, respectively. The PD model parameters are
Kin (zero-order rate constant for production of P), krel (first-order rate-
constant for release of P), kout (first-order rate constant for elimination of
testosterone), Imax (maximal inhibiting effect constrained to be less than

Fig. 2. Observed and predicted plasma degarelix concentration-time profiles plotted on a
semi-logarithmic scale with each line representing data from one individual. NONMEM
(Top), NLME (Bottom), observed data (Left), individual predictions (Middle), and popula-
tion predictions (Right). The dashed lines represent the lower limit of quantification (LLOQ)
of 0.5 ng/ml for the degarelix assay.
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or equal to 1), IC50 (plasma degarelix concentration producing 50% of
maximal inhibiting effect), and c (sigmoidicity factor). IIV was estimated
for kout and IC50.

By assuming steady-state before drug administration, the initial condi-
tions for the system of differential Eqs. in (20) and (21) were specified by

P0 ¼
Kin

krel
ð22Þ

T0 ¼
Kin

kout
ð23Þ

The initial testosterone concentration T0 was set equal the observed
testosterone baseline at t=0 h while removing this observation from the
data used for the estimation. The parameter Kin was therefore reparame-
terized using the relationship in (23), i.e. Kin=koutT0. Attempts were
made to estimate the testosterone baseline but without success.

Fig. 3. Observed versus individual predicted (Left) and population predicted (Right) plasma
degarelix concentrations plotted on a double-logarithmic scale. NONMEM (Top) and
NLME (Bottom) results. The solid lines are the lines of identity.
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The observation equation for the PD data analysis of testosterone is

logCPD
ij ¼ logTij þ �PDij ð24Þ

where the residuals �PD are iid with mean zero and variance r2
PD.

The population PD parameter estimates obtained from NONMEM
and NLME are summarized in Table I. The discrepancy between the
NONMEM and NLME PD parameter estimates was a bit higher than
what was observed for the PK parameters. Especially the relative differ-
ence in the NONMEM and NLME parameter estimates of krel and c was
approximately 30% and 25%, respectively.

The concentration-time profiles of observed and predicted testoster-
one concentrations are illustrated in Fig. 4 while the GOF graphs of
observed versus predicted testosterone concentrations are displayed in
Fig. 5.

IV administration of degarelix resulted in a rapid decrease in
testosterone concentrations of all treated subjects and castration levels
(testosterone concentrations below 0.5 ng/ml) were reached within 24 h.
The duration of testosterone suppression was up to 48 h whereafter a
rebound effect was observed where the testosterone concentration rises

Fig. 4. Observed and predicted testosterone concentration-time profiles with each line repre-
senting data from one individual. NONMEM (Top), NLME (Bottom), observed data (Left),
individual predictions (Middle), and population predictions (Right). The dashed lines repre-
sent the lower limit of quantification (LLOQ) of 0.05 ng/ml for the testosterone assay.
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above the initial concentration and eventually returns to the baseline.
The turnover model with an intracellular pool did not fully capture the
increase in testosterone concentrations above baseline (see Figs. 4 and
5) but was otherwise adequate at describing the testosterone concentra-
tion-time profile following short time exposure to GnRH antagonist de-
garelix.

Parametric Bootstrapping

NONMEM and NLME were further compared using a parametric
bootstrap procedure [37] to evaluate the bias and precision of the
obtained parameter estimates.

The PK/PD model which was used to analyse the clinical PK/PD
data of degarelix was used for simulating 100 data sets with the same
data design as the original data. The average of the original population
PK/PD parameter estimates from NONMEM and NLME were used for

Fig. 5. Observed versus individual predicted (Left) and population predicted (Right) testos-
terone concentrations plotted on a double-logarithmic scale. NONMEM (Top) and NLME
(Bottom) results. The solid lines are the lines of identity.
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the simulation. The simulated data sets were analysed in NONMEM and
NLME using the same model as was used for the simulation.

The sample mean and relative standard deviation (RSD) estimates of
the 100 parametric bootstrap replicates from NONMEM and NLME are
reported in Table II along with the parameter values used for the simula-
tion. The sample RSD estimates from the parametric bootstrap procedure
were noticeably more alike between the two programs than the asymp-
totic RSE estimates reported in Table I.

To compare the bias of the obtained parameter estimates, the sample
mean bootstrapped parameter estimates are plotted in Fig. 6 together
with a 95% percentile interval (using the non-parametric bootstrap per-
centile method with 10,000 bootstrap replications [37]) and the parameter
values used for the simulation. Three of the 18 parameters from NON-
MEM and 10 of the parameters from NLME are significantly different
from their simulated parameter values on a 5% significance level. There
seems to be a pattern in the parameter estimates of Q1 and V2 which are
larger in NLME compared to NONMEM while the opposite is true for
Q2 and V3.

Table II. Empirical Mean Population PK/PD Parameter Estimates and Relative Standard

Deviation (RSD) Estimates from NONMEM and NLME of 100 Bootstrap Replicates

Parameter Unit Simulated

NONMEM NLME

Mean (RSDa (%)) Mean (RSDa (%))

CL [l/h] 3.29 3.30 (4.54) 3.31 (4.84)

Q1 [l/h] 2.74 2.69 (11.1) 2.91 (12.0)

Q2 [l/h] 10.8 11.1 (13.4) 10.7 (8.56)

V1 [l] 9.71 9.61 (6.88) 9.59 (6.41)

V2 [l] 32.1 31.7 (5.05) 32.9 (5.50)

V3 [l] 8.30 8.56 (8.01) 8.23 (9.38)

kout [1/h] 0.215 0.214 (4.40) 0.214 (4.40)

krel [1/h] 0.00271 0.00261 (43.1) 0.00195 (50.1)

Imax [-] 0.953 0.953 (0.529) 0.951 (0.530)

IC50 [ng/ml] 0.688 0.668 (15.8) 0.725 (15.7)

c [-] 2.67 2.63 (10.0) 2.96 (11.7)

xCL [%] 19.1 19.5 (18.4) 19.8 (18.2)

xQ1
[%] 38.9 38.0 (23.0) 32.5 (20.7)

xV1
[%] 29.6 28.3 (17.8) 26.5 (25.3)

xkout
[%] 18.9 18.3 (21.4) 18.4 (21.1)

xIC50 [%] 54.3 53.9 (18.5) 49.6 (21.4)

rPK [%] 20.0 19.9 (3.86) 20.4 (4.23)

rPD [%] 23.8 23.7 (4.38) 23.8 (4.43)

aRSD of bootstrapped fixed-effects estimates ĥb are calculated by RSDðĥbÞ � SDðlog ĥbÞ:
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The precision of the bootstrapped parameter estimates was finally
investigated by comparing the sample RSD estimates with the mean
asymptotic RSE estimates of the 100 bootstrap replicates (see Fig. 7). The
mean asymptotic RSE estimates seemed to underpredict the sample RSD
estimates for some of the parameters and the discrepancy between the
RSD and RSE estimates was noticeably higher in NLME compared to
NONMEM.

Fig. 6. Comparison of the simulated parameter values and the sample mean parameter esti-
mates of the 100 parametric bootstrap replicates from NONMEM and NLME.
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DISCUSSION

In the present analysis, the main objective was to compare the two
non-linear mixed-effects algorithms implemented in NONMEM and
NLME using clinical PK/PD data of GnRH antagonist degarelix and to
investigate the pro’s and con’s of the two programs.

The estimation of parameters in non-linear mixed-effects models is a
difficult statistical problem where no exact closed-form solution to the

Fig. 7. Comparison of the sample RSD estimates with the mean asymptotic RSE estimates
of the 100 parametric bootstrap replicates.
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population likelihood function exists. We have described and compared
two approximations to the likelihood function, i.e. the FOCE method and
Lindstrom and Bates alternating algorithm as implemented in NONMEM
and NLME, respectively. In [18], it is concluded that the FOCE method
(equivalent to what is called the modified Laplacian method in [18]) is
generally more accurate than Lindstrom and Bates alternating algorithm
since the FOCE method uses an expansion around the estimated random
effects only and not like the LME approximation in NLME which makes
it around both the estimated fixed and random effects. The alternating
algorithm is though supposed to be less computer intensive than the
FOCE method because the PNLS step can be solved for all individuals
simultaneously and since the objective function can be profiled on the
fixed effects [18].

In this particular study, the obtained parameter and relative standard
error estimates for the clinical PK/PD data of degarelix were consistent
between NONMEM and NLME with a few exceptions. Both methods
required approximately the same number of function evaluations but the
computation times were significantly longer using NLME together with
nlmeODE compared to NONMEM. This is most likely due to the imple-
mentation of NLME and nlmeODE in R which is an interpreted language
while NONMEM is written in Fortran which is a compiled language. The
results indicated that the two likelihood approximations in NONMEM
and NLME yield similar parameter estimates when analysing complicated
PK/PD models without closed-form solutions.

The two programs were further compared using a parametric boot-
strap procedure in order to evaluate the bias and precision of the
obtained parameter estimates. The results indicated that the accuracy of
the FOCE method is higher than that of Lindstrom and Bates alternating
algorithm in this specific study. Furthermore, if one wish to obtain reli-
able estimates of the parameter uncertainty, one should consider to use
likelihood profiling or a bootstrapping procedure instead of using the
asymptotic RSE estimates reported in NONMEM and NLME. The 100
parametric bootstrap replicates were found adequate for evaluating the
bias and precision of the two programs taking into account the available
time and computer power. Furthermore, as indicated by the results, the
number of bootstrap replicates was high enough to draw conclusions
regarding bias and precision.

NONMEM is currently the most extensively applied non-linear
mixed-effects program in population PK/PD modelling while NLME has
had limited use since it previously has not been possible to estimate
parameters in models without closed-form solutions. With the nlmeODE
package [10], it is now possible to specify differential equations in NLME
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using a similar syntax as used in NONMEM. The identified advantages
and disadvantages of NLME compared to NONMEM are summarized in
Table III. In general, NONMEM seems to be superior in accuracy, stabil-
ity, flexibility, and speed compared to NLME but when performing
graphical and statistical data analysis, NLME is preferred over NON-
MEM.

In conclusion, this study demonstrated the use of NLME in popu-
lation PK/PD modelling and compared it with NONMEM. The two
non-linear mixed-effects programs were compared using clinical PK/PD
data of GnRH antagonist degarelix. The PK/PD of IV administered
degarelix was modelled using a three-compartment PK model and a
turnover model with plasma degarelix concentrations inhibiting the re-
lease of testosterone from an intracellular pool. The obtained PK and
PD parameter estimates were consistent between the FOCE method in
NONMEM and Lindstrom and Bates alternating algorithm in NLME.
Further comparison of the two algorithms using simulated data illus-
trated that NONMEM was more accurate than NLME for this specific
example. Finally, the strengths and limitations of NLME compared to
NONMEM in PK/PD modelling were identified. The comparison re-
vealed that NLME should not be considered as a replacement for
NONMEM but perhaps more as an alternative.

Table III. Identified Advantages and Disadvantages of NLME Compared to NONMEM

• Advantages

– No data set modification necessary for specifying initial concentrations.

– Possible to obtain predictions at other time points than those used for estimation

without modifying the data set.

– Easy to specify variance and correlation structures in the residual errors using

pre-programmed functions.

– Implemented as part of the free statistical software environment R.

– Tools for graphical analysis of the fitted model available within R.

– Statistical tests for model comparison/validation and parameter distribution are

implemented in NLME.

• Disadvantages

– It is not possible to specify parameter boundaries on fixed-effects parameters.

– Simplified likelihood approximation like the FO method not available.

– The parameterization of the intra-individual variability model cannot be specified using

equations in NLME and it is quite complicated to construct new variance functions.

– Inter-individual variability can only be modelled as additive or exponential.

– NLME is not as well tested in population PK/PD modelling as NONMEM.
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