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Abstract—Evaluation of beta cell function is conducted by a
variety of glucose tolerance tests and evaluated by a number of
different models with less than perfect consistency among results
obtained from different tests. We formulated a new approximation
of the distributed threshold model for insulin secretion in order to
approach a model for quantifying beta cell function, not only for
one, but for several different experiments. Data was obtained from
40 subjects that had both an oral glucose tolerance test (OGTT)
and an intravenous tolerance test IVGTT) performed. Parameter
estimates from the two experimental protocols demonstrate sim-
ilarity, reproducibility, and indications of prognostic relevance.
Useful first phase indexes comprise the steady state amount of
ready releasable insulin Ay and the rate of redistribution &,
where both yield a considerable correlation (both r=0.67) be-
tween IVGTT and OGTT estimates. For the IVGTT, A correlates
well (r=10.96) with the 10 min area under the curve of insulin
above baseline, whereas k,, represents a new and possibly more
fundamental first phase index. For the useful second phase index
y, a correlation of 0.75 was found between IVGTT and OGTT
estimates.

Keywords—Parameter estimation, Pancreatic beta cell, Mixed-
effects, Physiological models.

ABBREVIATIONS

AUC Area under the curve

BG Baseline glucose

BOV Between occasion variability
BSV Between subject variability
Ccv Coefficient of variation

FDR First degree relatives to patients with diabetes
HGC Hyperglycaemic clamp

IVGTT Intravenous tolerance test

MTT Meal tolerance test

OGTT  Oral glucose tolerance test

RRI Ready releasable insulin
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RRP Ready releasable pool
SE Standard error

INTRODUCTION

Type 2 diabetes is a heterogeneous disorder character-
ized by a combination of impaired insulin secretion and
insulin resistance,’ in which either factor can be dominant.
Of these interrelated subjects, the present work deals with
the assessment of beta cell function, which relative to in-
sulin resistance must be impaired for development of type 2
diabetes, and may even represent the primary factor predis-
posing individuals to type 2 diabetes.’ Insulin secretion in
response to an abrupt increase in plasma glucose is known
to be biphasic with a rapid peak at 2—4 min (first-phase),
decrease to nadir at 10—15 min, and then gradually increase
within the next couple of hours (second-phase). Early in-
sulin release after glucose ingestion is a key determining
factor for the subsequent glucose concentration,® indicat-
ing that a reduced first-phase may be responsible for the
development of impaired glucose tolerance.®

Evidently, diagnostic tests for the assessment of insulin
secretion as well as insulin resistance have great value for
epidemiological and clinical studies. The most common
oral administration tests are the oral glucose tolerance test
(OGTT) and the meal tolerance test (MTT), whereas the
most common intravenous (IV) tests are the intravenous
glucose tolerance test (IVGTT) and the hyperglycemic
clamp (HGC). Several descriptive mathematical models
and model based methods have been proposed to calculate
indexes for characterization of beta cell function from the
various tests.>!7-?728 Although useful for the analysis of
a specific experiment type, the models can rarely be used
across different tests, and similar indexes obtained from dif-
ferent experiments are not necessarily in agreement, leading
to the conclusion that further work is needed for these in-
dexes to be routinely used in clinical and epidemiological
studies.”
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Besides descriptive models for characterization, more
comprehensive mathematical models* %" have been used
to communicate and increase the understanding of the
physiological mechanisms behind insulin secretion.!” Of
these, the distributed threshold hypothesis'® has been used
to argue and derive many of the descriptive models.'%%!
However, to our knowledge, descriptive insulin secretion
models up until now all fail to incorporate the fundamen-
tal mechanisms that have enabled the distributed threshold
hypothesis to describe insulin secretion in response to a
long series of glucose challenges, and hereby increase un-
derstanding of the beta cell function. In the present work
we formulate a model that includes threshold distribution,
redistribution, and incretin effects, and investigate the ap-
plicability of this model to data from the IVGTT and the
OGTT. At a longer perspective, the present work is a step
towards a model for characterizing beta cell function, not
only for one, but for many of the glucose tolerance tests;
with parameters that are closer related to the physiology
than those of more empirical models.

Model development and evaluation was performed on
data from 40 individuals,'""'? where each subject had both
an IVGTT and an OGTT performed. Indexes obtained from
the OGTT were compared to those from the IVGTT in
order to demonstrate parameter reproducibility and simi-
larity, giving credit to the applicability of indexes, e.g. in
epidemiological studies. Indication of prognostic relevance
was demonstrated by the extreme parameter values found
for 4 subjects that subsequent to the study have developed
type 2 diabetes, also other such parameters exist.'?

RESEARCH DESIGN AND METHODS

A total of 40 healthy normoglycemic subjects had both
an IVGTT and an OGTT performed; 20 subjects with no
family history of diabetes and 20 first degree relatives
(FDR) to patients with type 2 diabetes of which four sub-
jects have developed type 2 diabetes themselves within 10
years of the initial investigation. The protocols were ap-
proved by the local Ethics Committee and informed written
consents were obtained from all participants before testing
both at the initial testing and at 10 years follow up. Clinical
characteristics of the study populations are given in Table 1.

The OGTT was performed by ingestion of 75 g glucose
in a liquid solution. Blood samples were obtained in the
fasting state (three samples) and for a total of 3 h following
the glucose load (15 samples). The IVGTT was performed,
with an infusion of a 25% solution of glucose (300 mg
of glucose per kg body weight (max 25 g)) being given
over 1 min, immediately followed by a saline flush (50 ml).
Time zero was taken as the start of the glucose bolus and
samples were collected at —30, —20, —10, —1, 2, 3,4, 5,
6, 8, 10, 12, 14, 16, 19, 22, 25, 30, 40, 50, 60, 70, 80, 90,
100, 110, 120, 140, 160 and 180 min, for determination
of plasma glucose and insulin. Plasma glucose concentra-
tion was measured at the bedside by the glucose oxidase

TABLE 1. Physical characteristics of the study subjects at
initial examination.

Relatives Control subjects
N (F/M) 20 (8/12) 20 (8/12)
Age (yr) 294+16 294+17
HbA1c (%) 6.17+0.13 6.12+0.08
BMI (kg/m?) 251+1.0 25.1+0.9
Weight (kg) 76.6+3.3 78.8+4.0
Fasting glucose (mM) 5.41+0.08 5.16+0.08
Fasting insulin (pmol/l) 45.6+3.0 41.4+3.0

Note. Values are mean + SE. HbA1c: glycated haemoglobin (nor-
mal range: 5.4-7.4%); BMI: body mass index.

method with a Glucose Analyzer (Beckman Instruments,
Inc., Fullerton, Calif., USA). Blood samples for plasma
insulin were immediately centrifuged at 4°C at the time
of study and stored at —20°C until analysis and concen-
trations measured by a double antibody radioimmunoassay
in duplicate (Kabi Pharmacia Diagnostics AB, Uppsala,
Sweden).

Model Description
Background

The distributed threshold hypothesis'® successfully ex-
plains the dose dependent first phase insulin release fol-
lowing IV glucose administration with a pool of insulin
stored in packets. According to this hypothesis, different
packets have different thresholds, secreting insulin only
when glucose concentration has exceeded this threshold.
Changes in plasma glucose concentration will alter the dis-
tribution of insulin in the packets, while provision of new
insulin and redistribution of insulin among packets ensures
convergence toward steady state when glucose concentra-
tion is constant. In principle, each packet corresponds to
a compartment, yielding a complicated numerical problem
with a large number of coupled differential equations. The
present simplification lump all active packets together and
all passive packets together to a two-compartment system.
A mathematical analysis of the differences and approxima-
tion between the present model and the distributed threshold
model is given in Appendix A, whereas the following list
summarizes the main differences:

1. Steady state provision was modeled with a sigmoid
Emax function instead of the more complicated para-
metric function used in.'°

2. Incretin effects during the OGTT were implemented for
provision and packet activation.

3. The flow of insulin between passive and active packets
is modeled to be unidirectional, i.e. all ready releasable
insulin is released from an active packet before it is
deactivated.

4. Redistribution was modeled to involve random activa-
tion rather than random change of threshold, see Ap-
pendix A.
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5. All passive packets were approximated to contain the
same amount of insulin.

The central approximation is that all passive packets
contain the same amount of insulin. This will not be influ-
ential during simple glucose challenge tests, where glucose
is single peaked. But for multiple glucose peaks, e.g. for
glucose oscillations, the response of the threshold distribu-
tion hypothesis will be different from that of the present
model.

Model Equations

As illustrated in Fig. 1, the model can be divided into
four components, (1) provision of new insulin, (2) a pool of
ready releasable insulin (RRI), i.e. insulin in passive pack-
ets available for quick release as a consequence of abruptly
increasing glucose concentrations, (3) a pool of insulin in
active packets, which is quickly being released, and (4) a
plasma compartment that represents insulin pharmacoki-
netics.

The provision, P of new insulin is typically written as,

4P =—a(P — P(G, )

P(G, 00) is the glucose dependent steady state provision,
described below. Glucose (G) is implemented as the linear
interpolation between measured concentrations of plasma
glucose, except during the time interval between —1 and
1 min, where the baseline glucose (BG) value was used to
ensure that the interpolated glucose does not rise prior to
glucose administration at time zero.”! When the system is
not at steady state, e.g. due to rapid changes in glucose,
P(r) will be different from P(G, oo). Whereas changes in
P(G, o0) are immediate, the changes in P will be delayed
with time constant «, leading to smooth changes. Note that
this delay is not the only contributing factor to the delay in
the second phase insulin response, see Appendix B.

Oral ingestion of nutrients is known to enhance insulin
secretion, the incretin effect, leading to higher insulin se-
cretion during an OGTT than from an experiment with
matched glucose concentrations obtained by IV infusion of
glucose.'® The incretin effect is mediated by insulinotropic
intestinal hormones, as e.g. glucagon-like peptide-1, which
enhances both first and second phase release, see e.g. the
experiments by Fritsche et al.,} and consequently also the
provision. We have

EnaG" [G — BG]*
P(G,00) = —22 _ | Eporr————
( ) ECh 4+ G 0GTT Ao

where the last term is the incretin effect, modeled with
glucose above BG as a surrogate for incretin hormones,
which are rarely measured in the OGTT. [G — BG]" isthe
maximum of zero and (G — BG), and AUC;_pg is the area
under the curve (AUC) of [G — BG]". ECs is calculated
via the initialization given below. Epgrr is the effect pa-

rameter for the incretin effect in an OGTT, which is zero
for an IVGTT.

The two-compartment model for the passive and active
pool, as derived in Appendix A, can be written:

%Ipassive = (1 - f(G))P - krdlpussive - Phl
j_tla(rtive = f(G)P + krdlpaxsive + Phl - mlactive
SR = mlcrive

f(G) = G"/ (G + FCly)

FCsy = BG (1—FBG/FBG)1/hz

where Ipgsive 18 the total amount of insulin in packets with
thresholds above G, and I,.;,. is the amount in the active
packets contributing to the total secretion rate SR. AG) is
the threshold distribution function, i.e. the fraction of active
packets at a certain glucose concentration. F'Cs is the glu-
cose concentration that activates 50% of the packets, Fgg is
the fraction of packets activated at baseline, and 4, is the hill
coefficient. The phase 1 component, Phy, is the rate of in-
sulin removal from the passive to the active packets caused
by packet activation due to rising glucose concentration.
The assumption that all passive packets contain the same
amount of insulin allow us to calculate Ph; as the amount
of insulin per passive packet I,45iv./N(1 — f(G)) times the
rate of packet activation N-df(G)/dt, where N is the total
number of packets. Ph; is:

. d
1'G)-G
Lpassive =7y for (4G > 0)

0 for(%G < 0)

Ph, =

Ph; is seen to be sensitive to glucose changes, giving us
a first phase insulin release when glucose concentration
increases abruptly. Incretin effects on the first phase re-
lease are explained by increased packet activation with oral
glucose administration, which is implemented through two
different values of %, in the OGTT and the IVGTT, hogrr
and hIVGTT-

Plasma insulin concentration is computed assuming first
order elimination,

j_,]plasma = SR/V - kllplasma

where I,j45mq 1s the plasma concentration of insulin. V is
the apparent volume of distribution for insulin, and &; is the
elimination rate constant. Since V and E .« (and Epgrr) can
be shown not to be simultaneous identifiable, V was fixed
to the plasma volume (3 1), which is slightly higher than
typical estimates of the central volume of distribution.’

Model Implementation

The model was implemented as a non-linear mixed-
effects model in NONMEM V with FOCE.!

Parameters to be estimated: k;, o, Emax, %, Eocrr, Kids
m, Fpg, hivgrr, and hogrr, are described in Table 2. Ep,y,
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FIGURE 1. Model for observed insulin concentration in glucose tolerance tests. The model includes a one compartment model
for insulin pharmacokinetics, two compartments to describe ready releasable insulin in the active and passive packets, and one
differential equation to describe the relationship between glucose and the provision of new insulin. The provision is divided into
the active and passive packets according to the fraction of active packets f(G), which is a function of the glucose concentration.

k.4, and Eogrr exhibit between subject variability (BSV) by
the proportional model, 6 exp(n), and Fpg exhibit BSV via
the logistic function, Fpg = exp(6 + n)/(1 + exp(6 + 1))
to ensure values between zero and one, where 6 is the
fixed effect and n is a Gaussian random effect that varies
between individuals. Data from the OGTT and the IVGTT
were treated as if it was from different individuals, such that
no false correlation is introduced in the parameter estimates
from the two trials.

Observed (y) and predicted insulin plasma concentra-
tions (1,45mq) Were log-transformed for the residuals & to be
Normal distributed, i.e.

1Og(y) = log(]plasma) +¢€

TABLE 2. Description of parameters to be estimated.

kr The elimination rate of insulin

o The rate constant for provision to reach steady state

Emax Maximum value of the incretin independent part of
the steady state provision rate

h Hill coefficient for the incretin independent part of

the steady state provision rate

EoarT Effect parameter for the incretin effect in an OGTT,
which is zero for an IVGTT

Krd Redistribution rate constant from passive to active
packets

m The rate of insulin release from active packets

Fsa The fraction of packets activated at the initial steady
state glucose concentration

hrvarr Hill coefficient for the threshold distribution function
of the IVGTT

hoarT Hill coefficient for the threshold distribution function
of the OGTT

Initialization

The model is initiated in steady state, under the as-
sumption that BG has produced a steady state provision
corresponding to the baseline insulin concentration I,
where BG/Iy is calculated as the average of measured glu-
cose/insulin concentrations prior to glucose administration.
Initialization in steady state allow us to utilize the steady
state equation to calculate ECsy,

E 1/h
ECsy= BG [ — _ 1
0 IV,

Indexes

The amount of RRI in the ready releasable pool (RRP)
is known to change according to the history of glucose
concentration,!® whereas the size of the pool at fasting, i.e.
the initial amount of insulin in the passive compartment A
is suggested as a first phase index. In the presented model,
Ao is not estimated directly, but derived using the following
equation,

1 - Fpg

rd

Ao = IV

It proved useful also to present a derived second phase
index y, which is the slope of the incretin independent part
of the steady state provision with respect to glucose at BG,
similar to indexes of other insulin secretion models.””-?® y
is computed by,

_ EnadhBG"'ECY,
(BG" + ECL)’?
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TABLE 3. Population Parameter Estimates.

SE of CV of
Parameter Unit Estimate estimate parameter

k1 1/min 0.161 0.03 —

o 1/min 0.111 0.045 —

Emax pM/min 103 15 49%

h 1 6.43 0.89 —
Eocrr nmol 8.86 1.78 55%

Krd 1/min 0.00869 0.00124 58%

m 1/min 1.47 0.206 —

Fsa % 27.4 11 90%
hrverr 1 1.96 0.45 —
hocrr 1 5.14 1.76 —
Model Development

Different models were discriminated based on, robust-
ness, likelihood function value, ability to capture individual
insulin profiles, reproducibility, bias of parameter estimates
compared to known physiological values, bias in the pre-
dictions made by the typical set of parameters, and whether
the implementation seemed physiologically reasonable.

Based on the listed criteria for model selection, a num-
ber of incretin effects on the first phase in the OGTT were
attempted and discarded. These attempts include: (1) no
first phase incretin effect, (2) some packets were activated
during the OGTT only, (3) the Pk, input to active packets
was elevated compared to removal from passive packets,
corresponding to recruitment of insulin from packets not
contributing to steady state secretion, (4) glucose above
baseline or transit compartment functions was used to ele-
vate packets activation.

The described implementation of incretin effects for
the second phase was chosen above the following list of
discarded attempts. (1) transit compartments were used to
model an incretin profile, (2) proportional rather than ad-
ditive incretin effects, (3) incretin effects directly on the
provision rather than on the steady state provision, (4) sep-
arate levels of E,x and/or hill coefficient & were used for
the IVGTT and OGTT.

Besides investigations of different structural models,
several combinations of between-subject variation were
tested. BSV on the hill coefficients were judged to run un-
stable, whereas BSV on « and k; worsened the correlation
between IVGTT estimates and OGTT estimates, possibly
because individual values of o and k; cannot be estimated
robustly from the OGTT.

RESULTS

The estimated typical parameter values for the study
population are presented in Table 3, along with the standard
error (SE) of the estimate and the coefficient of variation
(CV) between subjects in the study.

Model Predictions

Two kinds of model predictions are calculated for
this model, (1) individual predictions are based on the
individually estimated parameter values, and (2) population
predictions utilize the typical parameter values to compute
a typical insulin concentration profile for a given glucose
profile. The geometric mean of the individual- and the
population-predictions are compared to data in Fig. 2,
demonstrating ability of the model to capture differences
between insulin response in the OGTT and the IVGTT.

Reproducibility and Similarity of Parameters

Parameter estimates obtained from the IVGTT are plot-
ted against those obtained from the OGTT in Fig. 3, and
the correlation coefficients between estimates are presented
(for parameters plotted on a log-scale the correlation coef-
ficient for the log-transformed parameters are presented).
¥, Ao, k4, exhibit a clear correlation between experiments
(correlation coefficient around 0.7), whereas FCsgy, Fpg,
and E,,, demonstrate an intermediate correlation (correla-
tion coefficient around 0.5). The high degree of correlation
demonstrates parameter reproducibility, in the sense that
subjects characterized with high values in one experiment
are most likely associated with high values in the other ex-
periment. All parameters except FCsg are close to the line
of unity, demonstrating similarity of the parameter values,
giving a hint to a similar physiological origin of parameters
from the different experiments. The bias in FCs is due to
the implemented incretin effect, where a higher hill coeffi-
cient results in a higher fraction of packet activation when
glucose starts to rise, resulting in a decrease in the level of
glucose necessary to activate 50% of the packets.

Prognostic Indexes

The four subjects that subsequent to the study have
developed type 2 diabetes are associated with a low Ay,
a low Fpg, a high FCs, and a high k4, especially k,; for
which all exhibited a high value. For the second phase,
a low E..x seems to indicate diabetes for the OGTT,
but not for the IVGTT, whereas y and ECsy does not
appear to beparticularly predictive. As expected, also
more descriptive indices, such as high BG and high AUC
for glucose above BG, appear to implicate higher risk for
development of type 2 diabetes. Of the four subjects in a
pre-diabetic state, the one with lowest BG was found to
have the lowest Ap among the total study population, see
Fig. 4, indicating that the first phase indexes (Ao, k4, and
Fgc) carry separate prognostic information to that of BG.

DISCUSSION

We have suggested a new approximation of the dis-
tributed threshold hypothesis for parameter estimation that
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FIGURE 2. All observed glucose (top) and insulin (bottom) concentrations (small light colored circles), geometric mean of insulin
and mean of glucose (large black squares), geometric mean of individual predictions (light colored line), and geometric mean of
population predictions (black line), are presented for the IVGTT (left), and the OGTT (right).
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and Ag is compared to BG for the IVGTT(right).

conserves fundamental mechanisms of threshold distribu-
tion, active and passive packets, and redistribution among
packets. Effects of incretin hormones were included on
packet activation and provision of insulin, to allow quan-
tification of beta cell function, both for the IVGTT and
the OGTT. The parameter estimates exhibited similarity
and reproducibility, and several parameters are promising
candidates for an early diagnostic for development of type
2 diabetes. However, in spite of the usefulness, the re-
producibility was less than perfect, which deserves some
discussion.

Reproducibility

Three factors can be named to cause reduced correlation,
as that observed between some of the parameter estimates
in Fig. 3.

1. Between-occasion variability (BOV). For example,
the less then perfect correlation of BG (r = 0.70)
and [, (r=0.76), data not shown, must be caused
by BOV.

2. Suboptimal design, e.g. timing of measurements
and chosen glucose administration. Compared to
the IVGTT, the OGTT exhibit some technical de-
sign problems: (a) inevitably, incretin and plasma
glucose effects occur over the same time period,
making them difficult to separate. (b) Glucose rises
slowly, making separation of first and second phase
difficult. (c) Glucose elevation is lower, making es-
timation of E ., difficult.

3. Lacking physiological precision, in the sense that
parameters in the OGTT and the IVGTT have sep-
arate physiological meanings. However, the simi-
larity in parameter values obtained from the OGTT
and IVGTT indicates that this last point is not a
dominant issue.

Sampling Design

In analogy with other models,” the robustness of the
individual parameter estimates in the OGTT were investi-

gated for different sampling designs, and similar conclu-
sions were obtained, i.e. the accuracy of the first phase
parameter estimates drops significantly when fewer mea-
surements are included around times 0—50 min. The original
design includes sampling at (0, 5, 10, 15, 20, 30, 40, and
50 min). When sustaining the (0, 10, 20, and 30 min) sam-
ples, the first phase indexes (Ap and k,4) are robust, with
high correlation to the original estimates (r ~ 0.95). This
correlation is reduced to (r ~ 0.86), when using only the (0,
20, and 40 min) samples, and to (r ~ 0.77) when using only
the (0 and 30 min) samples. Also the estimates of Eogrr
and E.,,x were sensitive to reduced sampling design.

Second Phase Indexes

y and E..x were highly correlated for the IVGTT
(r=0.85), but less correlated in the OGTT (r=0.52).
Whereas E,x was estimated, the introduction of y was
motivated by (1) y is theoretically similar to previous suc-
cessful second phase indexes,?”?® (2) a simulation study
verified that y is more robustly estimated than E,,, in the
OGTT, which is also seen as a higher correlation in Fig. 3.
Both parameters were well estimated from the IVGTT, in-
dicating design problems with the OGTT. (3) A clear re-
lationship exists between parameter estimates of Ey,,x and
Eogrr, but not between y and Eogrr.

Incretin Effect

For the OGTT, glucose above baseline exhibit simi-
lar dynamics as incretin hormones, see e.g. experiments
by Rask et al.,** and was found the best available surro-
gate for their effect. However, the implementation leads to
suspicion concerning the physiological origin (glucose or
incretin hormones) of Epgrr. Three observations indicate
successful estimation of the incretin effects: (1) the simi-
larity of E,x and y estimates obtained in the IVGTT and
the OGTT. (2) No correlation was found between Eogrr
and AUCs—_gp, which would be expected if glucose alone
was causing what was estimated as incretin effects. (3) A
simulation study confirmed that y and Eogrr can be esti-
mated simultaneously from the OGTT, with a correlation
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between simulated and estimated values of (r =0.9) for y
and (r =0.95) for Eogrr.

First Phase Indexes

The AUC of insulin above [ during the first 10 min after
glucose administration has been used as an index for first
phase secretion.?® This index correlated with Ay (r = 0.96),
kg (r=—0.63), and Fps (r= —0.30), demonstrating a
clear difference between the three indexes, where A clearly
represents the more traditional first phase index.

Insulin response to glucose in the OGTT has previously
been successfully described by a static and a dynamic index
ép,> where ¢ depend on the derivative of glucose, which is
similar to Ph; in the present model. An insulin based calcu-
lation of ¢p demonstrated that ¢p and A obtained from the
OGTT correlates equally well to the 10 min AUC of insulin
above baseline for the IVGTT (r=0.65) and (r=0.67).
However, compared to previous models, the present model
brings new and potentially important indexes to describe
beta cell function.

Does Redistribution Represent a Fundamental Factor
for Beta Cell Dysfunction?

Under the assumption that packets represent beta cells,
as eluded to in other work,?? redistribution would be the
activity of passive cells, e.g. by random activation, so that
fast redistribution will represent a high frequency of cells
releasing their content. Note that the precise formulation
of redistribution has changed slightly compared to the dis-
tributed threshold model, see Appendix A, and that redis-
tribution has not yet been understood in a cell biological
framework. In the whole body system, glucose is known
to have potentiating effects on the first phase release,'” and
redistribution is a likely mechanism for the normalization
of an elevated RRP, making k,; a determining factor for
the steady state RRP. Since provision of insulin to the RRP
is necessary, steady state provision is another likely deter-
mining factor for the steady state RRP. For subjects 14
in Fig. 3, k4 is large and Ay is small, but k,, is more pro-
nounced than Ag, which could indicate that redistribution
is the more fundamental factor for beta cell dysfunction.
This makes sense, since Ag depend upon baseline provision,
which is known to increase during development of insulin
resistance. Hence, Ap may be a composite index, influenced
in opposite directions by beta cell dysfunction and insulin
resistance, whereas k,; may be a more fundamental factor
for beta cell dysfunction.

Provision

The provision of insulin to the RRP is a simple function
of glucose that lump a number of intracellular processes to-
gether, such as the glucokinase, up regulation of proinsulin,
and increased formation of new insulin granules. This clear

approximation of reality means that the rate constant « and
FEnax, may not be valid for other experiments on longer time
horizons.

Threshold Distribution

In the light of the fact that some®>?*?° believe het-
erogeneity in beta cells activation threshold to cause the
biphasic insulin release, this heterogeneity should relate
to the estimated threshold distribution. In fact, under the
assumption that the potential size of the RRP in each beta
cell is identical, the estimated distribution of thresholds
and the measured distribution of activated beta cells should
be identical. Some experiments have found that 53% of
beta cells secreted detectable amounts of insulin at 5.6 mM
glucose,'* which is in the high end of the range of individ-
ual estimates of Fp; between 0.1 and 0.6. Two concerns
for this comparison are that (1) redistribution from passive
cells could also lead to insulin secretion, allowing some
passive cells to be estimated as active, (2) oscillations of
insulin secretion could interfere with the estimated activity
frequency, which is not accounted for in the model.

It is worth noting that redistribution was estimated more
robustly than Fpg, and also that the inclusion of BSV on
redistribution was more important than for Fpg, to explain
variations in the first phase response, possibly indicating
a higher degree of uncertainty in the estimated values for
Fge.

Individual Secretion Profiles

In Fig. 5, individual and population predictions are com-
pared to data for a few selected individuals. For subject 1 to
3, a small RRP was estimated for both experiments, corre-
sponding to a lower than typical first phase for the IVGTT,
and a lower than typical quick increase in plasma insulin
concentration for the OGTT. Both subject 1 to 3 have devel-
oped type 2 diabetes post study, which is in agreement with
the common understanding that a low first phase secretion is
an early diagnostic marker for type 2 diabetes. Also subject
4 has developed type 2 diabetes, but for this individual the
first phase response appears normal, and Ay is among the
highest 50%. Interestingly, this individual was associated
with a relatively low Fps (among the lowest 30%) and a
relatively high k,; (among the highest 30%), which should
indicate a low first phase. The apparent slightly above nor-
mal first phase originates from the provision of new insulin
at baseline glucose, for which the subject 4 had the largest
value among the 40 subjects. Subject 5 and 6 exhibit an
above average amount of RRI, and as expected none of these
have developed diabetes. Subject 6 has an Ey,,x around av-
erage in both experiments and Epgrr was the second largest
in the study, explaining why insulin concentrations during
the later stage of the IVGTT are close to typical, while they
are far above the population predictions in the OGTT.
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FIGURE 5. Observed insulin concentrations (circles), are presented together with individual predictions (light colored line) and
population predictions (black line) for selected individuals. All 6 individuals were healthy at the time of the study, but individuals
with id 1 to 4 have subsequently developed type 2 diabetes, whereas individuals with id 5 and 6 have remained healthy.

Using Insulin vs. C-peptide for Assessment
of Beta Cell Function

Beta cells release an equimolar mixture of insulin and
C-peptide, but C-peptide is cleared slower from plasma and
does not suffer the same first pass effect of the liver, hence
C-peptide has been used in many models and model based
methods to asses beta cell function.”! In the absence of
C-peptide data, the present analysis was performed using
insulin data, so the obtained secretion rate reflects a post
hepatic secretion. One advantage of the higher elimination
rate of insulin is that changes in secretion lead to more
pronounced changes in plasma concentration, which we
believe to produce high estimation accuracy.

Limitations and Potential Future Implementations

The presented method uses data from the IVGTT and
the OGTT simultaneously to find all parameters. In order
to use the model for estimation in a single experiment,
it may be necessary to use Bayesian techniques or to fix
some parameters. In our analysis, we modeled the OGTT
alone by fixing some parameters to the values found by the
simultaneous analysis, while estimating only parameters
with BSV.

The present model is developed from oral and intra-
venous administration of glucose, using data within 3 h
of glucose administration. If one wish to model longer
experiments or use other combinations of nutrients, then
the limitations of the model in its present formulation has
been exceeded. Compared to more empirical beta cell mod-
els, one advantage of the present more mechanistic model
is that it can more naturally be extended and adjusted to
account for new situations. Fruitful model extensions and
adjustments could possibly include: (1) a description of

other experiments such as the HGC, to include new fea-
tures at sustained high glucose challenges (2) model ex-
tensions to include simultaneous models of the MTT and
the OGTT could possibly describe the incretin effects from
various compositions and amounts of nutrients, and possi-
bly link the incretin effect to measured incretin hormones,
(3) model extensions that include a triple meal test could
investigate whether the potentiating effects of insulin re-
lease'® is caused by the RRP, or possibly another pool,
(4) modeling of the modified IVGTT, to test whether the
large tolbutamide driven insulin release can be related to
the RRP included in the model, (5) extensions to include
covariates for characterization of differences between pa-
tient populations, and (6) during development of drugs that
target beta cells, description, understanding, and predic-
tions of results in future trial designs could be aided by the
presented model.

CONCLUSION

A new approximation of the distributed threshold hy-
pothesis has been formulated, and it was verified that it
can be used for parameter estimation of the IVGTT and the
OGTT. With this initiative, we approach a population model
for quantification of beta cell function that can be used for
several of the different tolerance tests available. The present
work focused on similarity, reproducibility, and prognos-
tic relevance of individual parameters estimated from an
IVGTT and an OGTT, for which validation further included
comparison to other indexes, simulation studies, and predic-
tion of individual profiles. First phase indexes comprise the
steady state amount of ready releasable insulin, similar to
traditional first phase indexes, and the rate of redistribution,
which represents a new and possibly more fundamental
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first phase index. The most useful second phase index y
is theoretically similar to the second phase index of other
models, and it is precisely estimated for the IVGTT, and
to some extend believed separable from the incretin effects
of the OGTT. Lack of perfect correlation between param-
eters estimates from the two experiments is likely caused
by between-occasion variability, and by the design of the
OGTT, which yield more imprecise parameter estimates,
but enables estimation also of the incretin effect.

APPENDIX A

In the present appendix we use the original threshold dis-
tribution hypothesis'® to derive the equations for the active
and passive amounts of insulin presented in the main text.
This derivation involves three approximations/alterations to
the original model that can be applied in arbitrary order, for
instance as described below.

The fundamental hypothesis in the original distributed
threshold model is that the readily releasable insulin is
stored in small packets, where the different packets have
different thresholds, secreting insulin into the plasma only
when the glucose concentration has exceeded this thresh-
old. The amount of readily releasable insulin in packets
with threshold between 6 and 6 + d6 is given by §(6, t)d0,
so the threshold density distribution function can be used
to model the total secretion into plasma. The original dis-
tributed threshold model,'° can be written as,

dg@,1)

o —m&@O,)H(G —0) + f'(O)P(G, 1)

- rdé‘(Q,t)+krdf/(9)/§(9’, H)do’
0

G
SR =m/§(9’, 1de’
0

The secretion of insulin into the plasma is realized
through the first term, where H(-) is the Heaviside function.
The second term is the provision of new insulin, and the last
two terms are named redistribution terms corresponding to
arandom change of thresholds of the different packets. Note
that f'(0) = d/d6f(0), is the distribution density function.
In the original analysis glucose started at zero, so that f'(0)
gives the initial insulin distribution density function £ (6,0).

Ipassive and Iyeive can be written as,

0 G
Ipamive = /5(9/1 t)de/; Lactive = /‘%—(9/7 [)de/
G 0

The differential equations for Ipggive and Igerive can be de-
rived analytically,

d
E]passive = (1 - f(G))P - krd(l - f(G))]passive

dG
+krdf(G)1active - S(Gv I)E

d
Elactive = _mlacrive + f(G)P + kl'd(l - f(G))Ipassive

dG
- rdf(G)]active + S(G’ I)E

The first suggested alteration to the distributed threshold
model involves unidirectional flow of insulin from passive
packets to active packets. Note that the beta cell action
potential will either spike or not, where a spike will lead to
exocytosis. It is not possible to stop the spike by a decrease
in glucose and thereby stopping exocytosis of insulin that is
currently being released, motivating a unidirectional flow.
Whereas this change does simplify the model structure, the
rate constant m is so large that it does not alter the results.
We get,

d
E]passive = (1 - f(G))P - krd(l - f(G))]passive
aG aG
—§(G, I)WH (E)
d

_Iactive = _mlacrive + f(G)P + kl'd(l - f(G))Ipassive

dt
dG dG
G,t)—H|—
+EG,D— (m)

In the distributed threshold model, redistribution can
be understood as a random change in the sensitivity to
glucose, where passive packets may change threshold but
still be passive. This formulation is slightly changed. In the
present model, redistribution involves random activation of
packets, in the sense that a passive packet may by a random
mechanism release all insulin in its ready releasable pool,
and then return to the passive state. By this mechanism,
redistribution will not decrease to zero when all packets are
passive. The equations become,

Ly = (1= f(G)P — kralpassive — §(G I)EH 46
dt passive = rd ! passive ’ dt dt

d dG dG
71{16 ive = — Iac ive P kl‘( 1 assive 1 —H| —
7y Lact Mlaciive + f(G)P + kral)p +EG. N (dt )

The two alternative models for redistribution were com-
pared during model development, and the chosen formu-
lation produced superior correlations between OGTT and
IVGTT parameter estimates, superior objective function
value, and was numerically more robust when changing
initial estimates in the estimation.

The central approximation in the present approach is that
all passive packets contain the same amount of insulin, so
that £(G, t) = I passive f(G)/(1 — f(G)). This approxima-
tion will not be influential during simple glucose challenge
tests, where glucose is single peaked. But if a second and
identical peak is seen immediately after the first peak, the
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threshold distribution hypothesis will predict the second
peak to give no first phase, because the passive packets in-
volved are empty, whereas the present approximation will
predict a nonzero first phase, since all passive packets con-
tain the same amount of insulin. This difference may be of
particular relevance for predictions of insulin response to
rapid oscillations in glucose. Following this approximation
we get the equations for the amount of insulin in the passive
and active packets that were presented in the main text,

d Tpassive f(G) dG  (dG
—1 passive = - G))P — kr'( 1 assive ”77[-1 —,
PTG (1= 76» 1pas 1—f(G) di (dt)

d 1 as.\[vef(G) dG dG
*Iau ive = 1114' ive G)P k/‘ 17(1&‘8‘il'£’ —pamres 2 —H|—
i mlacive +J G kealpassive + =70 57, (dr)

APPENDIX B

The present appendix provides the exact solution to the
amount of insulin in the passive and active packets follow-
ing a step increase in glucose from G, to G», at time ¢t =0.
Starting at the steady state solution:

P(07) = P(Gy, 00)

_ PGy, 1-f(G
Ipamive(o ) = ¢ 100])(; f(G1)

Ia(,'t‘ive(o_) = W

For a step increase in glucose, the Ph; contribution can
be computed via a Dirac delta-function,
_ P(Gy,00)(f(G2) — f(G1))(S
N krd

The amount of insulin in the passive packets can be
computed as

Ph )

(1= f(G2))P(Gy, 00)
kra
D(1) = (1 = f(G2))(P(G2, 0) — P(Gy, 00))
o (1 - e’k””) —kyg(1 — ™)
kra(ot — kra)

where the first term reflects the immediate removal of in-
sulin due to packet activation, corresponding to the first
phase release. The second term D(¢) represents the elevation
in the amount of insulin in the passive packets coming from
an elevated provision, i.e. the second phase contribution to
the passive packets. « and k,4 constitute the two timescales
for the second phase contribution. Since « is more than
a factor 10 larger than k4, the main contribution of the
delayed increase of the second phase comes from k.

The amount of insulin in the active packets can be com-
puted as,

t>0

Ipassive(t) = + D(2);

X

P(G1, 00) n P(G1, 00)(f(G2) — f(G1))e_m,
m krd
+Dy(t); t>0

Iaclive =

D (1) = 67””/6"“' (f(G2) (P(G2,00) — P(G1, 00))
0

x (1—e )+ k,ﬁdD(x)) dx

where the first term in [, corresponds to the initial
amount, the second term is the first phase contribution, and
the third term D, gives the second phase contribution. Since
m leads to a rather fast decay compared to the remaining
time scales, it is reasonable to approximate D, () as,

P(G, 00) = PG, )
D ~ 2= EOR 2 <(f(G2)(1_e "
@ (1= ) — g1 — ™)
+ (- fG») kra(ot — krq) )

One part originates from the immediate increase in pro-
vision and another part originates from the steady increase
in passive packets.
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