
16th European Symposium on Computer Aided Process Engineering 
and 9th International Symposium on Process Systems Engineering 
W. Marquardt, C. Pantelides (Editors) 
© 2006 Published by Elsevier B.V. 

S t o c h a s t i c  G r e y  Box  M o d e l i n g  of t he  e n z y m a t i c  b iochemica l  r e a c t i o n  

n e t w o r k  of E. coli m u t a n t s  

Florin Paul Davidescu ~, Henrik Madsen b, Michael Schiimperli c, Matthias Heinemann ~, 
Sven Panke c and Sten Bay J~rgensen a * 

aCAPEC, Department of Chemical Engineering, Technical University of Denmark, 
Building 227, DK 2800, Kgs, Lyngby, Denmark 

bDepartment of Informatics and Mathematical Modeling, Technical University of 
Denmark, Building 321, DK 2800, Kgs, Lyngby, Denmark 

CInstitute of Process Engineering, Bioprocess Laboratory, ETH Ziirich, Sonneggstr. 5, 
CH 8092, Ziirich, Switzerland 

This paper describes the application of a gray-box stochastic modeling framework for 
developing stochastic state space models for dynamic systems based on combining first 
principle models and experimental data. The framework is used to develop reliable pre- 
dictive models for a biochemical reaction network isolated from E. coli mutants. The 
modeling purpose is to use the model to identify the bottlenecks in the reaction network 
to enable optimizing the production of the desired product through genetic manipulation. 

1. I n t roduc t ion  

There is an increasing interest in producing complex fine chemicals and intermediates 
in the pharmaceutical industry using biochemical synthesis. Up to now, only one or a few 
biotransformation steps are involved in complex synthesis problems in industry, although 
enzymes are widely known as being specific, fast and working under mild conditions. To 
develop a purely enzymatic synthesis for complex molecules from completely different 
substrates, large reaction networks are necessary. One way to construct such a functional 
network is the System of Biotransformations (SBT). The SBT is based on one single or- 
ganism's metabolic network containing the synthesis path including cofactor regeneration 
reactions in an isolated manner. Thereby, the SBT is performed as cell free extract in the 
production phase, combining the easy handling of a viable culture with the advantages 
of in vitro biotransformations [5]. The complexity of such large biochemical reaction net- 
works involves a large number of reaction steps with many metabolites and enzymes, each 
one of them playing different roles as biocatalysts and/or as feed-forward and feed-back 
regulators. The general goal of this study is to identify the limitations and bottlenecks, 
to reduce them and to optimize the productivity of the selected reaction network. The 
workhorse of the de-bottlenecking and optimization process is a model describing the 
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biochemical reaction network with good long term prediction properties. For this partic- 
ular application, the key product is Dihydroxyacetone phosphate (DHAP). DHAP is 
an important precursor for the production of phosphorylated, non natural carbohydrates. 
Thereby, the DHAP-producing SBT contains all the reactions of the glycolysis, leading 
to a system of high dynamic and complexity. Therefore, it is not realistic to develop a 
"perfect model" from first principle engineering methods. For this reason, in this work 
the gray-box stochastic model development framework [1] will be used to develop a sto- 
chastic state space model. The purpose of this paper is to describe the work-flow driving 
application of the gray-box stochastic modeling framework for development of a kinetic 
model for a batch reaction network. 

2. Stochastic gray-box modeling background methodology 

The gray-box stochastic modeling framework, [1] was originally developed for fed-batch 
cultivations but it can be employed for modeling of complex nonlinear dynamic processes 
as well. The framework combines different mathematical and statistical tools and assists 
the model development in a systematic way. First, the model equations are derived 
from first engineering principle and then completed with diffusion terms/functions to 
obtain the Stochastic Differential Equations. The diffusion terms accounts for model 
errors and/or  for the un-modeled effects. Formulating the diffusion terms by only having 
the diagonal terms in the square matrix of the diffusion terms ([1]) it is possible to 
improve the process model in a systematic way. The measurement equations include the 
measurements errors as well, thus in this approach it is possible to make a clear distinction 
between the measurement errors and process noise or model error. In the next step the 
set of unknown parameters together with the diffusion terms and the variances of the 
measurements are estimated from experimental data using a maximum likelihood or a 
maximum a-posteriori method. In the estimation method it will just be mentioned that 
the solution of the stochastic differential equation system and the innovation terms that 
appears in the maximum likelihood function is based on an Extended Kalman Filter. 
The model is un/falsified using different statistic tests. Then the model is reformulated 
and the iterations continued until the model is un-falsified using available data or all the 
information contained in the data with respect to the dynamics is exhausted. A workflow 
diagram of the whole modeling framework is given in figure 1. 

Figure 1. Stochastic gray-box modelling framework, from [1] 
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3. E x p e r i m e n t a l  d a t a  a n d  p r o c e d u r e s  

The experiments have been conducted by ref [5]. In phase I, fed-batch (semi-batch) 
fermentations of E. coli W3110 tpi are conducted until the optical density (OD600) in the 
bioreactor reaches a preset value. The broth is centrifuged and the cells are resuspended 
in SBT-buffer (100 mM HEPES, 0.84 mM KC1, 1 mM ZnSO4 and at pH = 7). The 
cells are disrupted by high-pressure homogenization. The remaining solids are eliminated 
by centrifugation/filtration and the liquid extract is recovered. The total protein con- 
centration is determined Bradford and adjusted to the desired concentration by dilution 
with SBT buffer. The liquid extract contains the enzymes and compounds present in the 
cell at the time when the fermentation was stopped. In phase II, a volume of 5 ml of 
SBT extract is used for each experiment. Defined amounts of Hexokinase, (HK) and 
Lactate-  DH as well as ATP and NAD +, are added. The reactions are initiated by glu- 
cose. Samples are collected according to a previously defined time plan. The experiments 
are terminated after 300 minutes. First, the proteins are removed by precipitation with 
HC1 followed by centrifugation. The samples are analyzed by enzymatic assays. Glucose 
and glucose-6-phosphate (G6P) are determined together by addition of both H K  and 
glucose-6-phosphate-dehydrogenase to form NADPH,  which is determined spectropho- 
tometrically. DHAP is determined by addition of glycerol-3-phosphate-dehydrogenase 
and measuring the N A D H  consumption spectrophotometrically. A series of four experi- 
ments has been used for the model development; three for parameter estimation and one 
for model validation. 

4. M o d e l  d e v e l o p m e n t  for an  S B T  i so la ted  f rom E. coli m u t a n t s  

In the model formulation the first measurement equation was assigned to glucose. The 
first step in the model development is model formulation. In order to formulate a model 
the existing biochemical reaction network in E-coli is presented with focus on the reactions 
around the product of interest (DHAP) considering the genes which are knocked out. The 
simplified biochemical reaction network used for model development is depicted in figure 
2. The reaction between D H A P  and G3P does not take place since the tpi gene i.e. 
responsible for the expression of the enzyme catalyzing the reaction has been knocked- 
out. For the current version of the model all the reactions from glucose to fructose- 
1,6-biphosphate, (F16B) were lumped into a single reaction rl • The second reaction 
considered is the reaction from F16B to G3P and DHAP, r2 catalyzed by aldolase. The 
reactions consuming the G3P down to pyruvate in the central carbon metabolism were 
all lumped into one single reaction r3. The reaction producing lactate from pyruvate was 
included as reaction r4. The reason to include these two reactions is that  it is desirable 
to account for the consumption-production of co-factors ATP and NAD +. The model 
consists of dynamic mass balances for all the species involved in the four reactions plus 
one for each of the two co-factors. The model equations eq. 1-10 have been completed 
with the diffusion terms as mentioned above. 

In this first model formulation it has been considered that  the reaction rates r l -  r4 
are constant and then estimated together with the model parameters and with the initial 
values of the states 
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and the measurement variances Si - $2. 
Glucose I 

2 ATP 

rl dCGL = - - r l  + all  • dw (1) 2 .~P 

I F r u c l ° s e ' l ' 6 -  t dCF16B - -  r l  - -  r 2  + (722 .  d w  ( 2 )  
8iphosphate [ ......................................... I 

, ~  ~ .................................... dCDHAP = re + a33 " dw (3) 
- -  "==: . . . . . . . . . . . . . .  D H A P  I ! G'yo+~'d~h'd~ I -~ dcc3p = T2 - -  r3  n t- 0"44" dw ( 4 )  
l,~...:3:eh.osphat%l 
N~D+ ~ + f  2&DP dCpyR -- r3 -- r4 + 0"55" dw (5) 

:: ~3 dCLAC - -  r4  + (766" dw (6) 

~ 2ATP dCATP = - 2 . r l  + 2 . r3  + a77" dw (7) 

,4 dCNAD = --r3 + ra + ass" dw (8) 
N~D+ 

I Lactate [ Measurements equations: 

Figure 2: Reaction net- 
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The parameters have been estimated using three of the avail- 
able data sets and gray-box stochastic modeling software CTSM [2]. After the estimation 
step, significance tests have been performed for the estimates and the parameters estimate 
correlation matrix has been calculated as well. Several parameters were insignificant or 
highly correlated, therefore some parameters have been fixed and the remaining parame- 
ters reestimated. The fit for one step ahead prediction as well as pure simulation has 
been plotted in figure 3 and the numerical results for the parameters are given in table 
1. The fit for pure simulation data, clearly indicates that the model needs improvement. 
Inspecting the diffusion terms in table 1 shows that the corresponding O'11 - -  0"33 are sig- 
nificant, thus the drift terms of these equations are deficient. Following the methodology 
mentioned above rl and r2 are included in the state vector one at a time. After including 
rl and r2 consecutively, the parameters have been reestimated. 

At this step in the model development it is necessary to see how we should model 
the reaction rate r l .  Before the nonparametric methods are applied, it is necessary to 
reconstruct the states of the model with r l  as extra state. This is done by applying 
the extended Kalman filter (EKF) with the parameter estimates obtained after rl was 
included as a new state. The nonparametric tools e.g. additive models [1,3] are applied 
in order to identify the shape of the kinetic expression for the reaction rate r l .  Analyzing 
the reaction network in figure 2, the reaction rate may be a function of glucose, A T P ,  

F 1 6 B  concentrations. The graphical results (not shown) indicate that the dependence of 
rl versus cCLC appears to be the most significant. In figure 4 this dependence solely, is 
shown. The same steps have been applied for the second reaction rate, r2. In this case r2 
depends of cG3P and CDHAP as shown in figures 5-6, while the dependence of CF16B seems 
to be insignificant (not shown). 

Considering the shape in figure 4 for the functional dependence of rl on glucose, then 
reaction rate rl can be modeled using Monod kinetics (eq. 11). The parameters are re- 
estimated assuming Monod kinetics (eq. 11) for rl. The one-step ahead prediction as well 
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Table 1 
Estimated parameters, standard deviation, t-test, and the in/significance 

Name Estimate Std. dev. t-score signif.? 

CCLCO 1.0072E+01 6.0307E-01 16.7004 yes 

CDHAP 0 8.5785E-02 1.2678E-01 0.6767 no 

C A T P O  1.1619E+01 7.4897E+01 0.1551 no 

rl 6.5923E-02 1.1838E-02 5.5688 yes 

r2 3.9095E-02 2.5091E-03 15.5811 yes 

O-11 4.9197E-01 3.6057E-02 13.6442 yes 

~r22 1.0000E-02 3.4324E-04 29.1343 yes 

0"33 1.0440 E-01 7.4442E- 03 14.0240 yes 
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Figure 3. CCL C and CDHAP 

vs. time, exp. data: x, 
pure simulation: continu- 
ous line, one step ahead 
pred.: dashed 

Figure 4. rl vs. CGLC, exp. 
data: x, local fit: continu- 
ous line and 95% conf. in- 
tervals: dashed 

Figure 5. r2 vs. cG3p, exp. 
data: x, local fit: continu- 
ous line and 95% conf. in- 
tervals: dashed 

as the pure simulation of the model has improved considerably for the first measurement, 
see figure 7. 

CGLC 
rl  - - r l m a x "  (11) 

Ks1 4- CGLC 

After modeling reaction rate rl (eq. 11), reaction rate r2 is included again as a new 
state and the parameters re-estimated. Using the new set of parameters, states estimation 
and nonparametric modeling tools are applied again. The individual dependences of 
r2 on the caaP, CDHAP and CF16B seems to be similar with the data obtained before 
modeling rl Literature references ([4]), mentions that the reaction rate is related to the 
equilibrium constant, thus a dependence of the reaction rate on the difference between 
the forward and the backward reaction was investigated by regressing a dependence on 
the CF16B--Ca3p'CDHAP (not shown). Again, the dependence looks like a Monod term but 



166 U.-U. H a u s  et  aL 

0.05[. 

0.0,1 

0.0O 

~.o2 r 

t'0 t  i0,f 
2 3 4 5 6 M/L] [ 

15 

":100 Timle~)min]" 200 ~ 3~0 

8 [ g6 ..... . .......... : ........... ; ............. 
bt x ....... 

0 5o lOO Timle?min] 2oo 25O 3oo 

" ~ i 0 O  150  2 0 0  250 300 
Time [rain] 

8r 

~ ~ E 4  i,( " ' ' x  

0 50 100 150 2O0 250 3OO 

Figure 6. r2 vs. CDHAP , Figure 7. CGL C and CDHAP Figure 8. CGL C and CDHAP 

exp. data: x, local fit: con- vs. time, exp. data: x, vs. time after modeling 
tinuous line and 95% conf. pure simulation: continu- rl and r2, exp. data: x, 
intervals: dashed ous line, one step ahead pure simulation: continu- 

pred.: dashed ous line, one step ahead 
pred.: dashed 

with this abscissa. The parameters have been reestimated, and the fit has been improved 
for the second measurement as can be seen in figure 8. 

5. C o n c l u s i o n s  

A gray-box stochastic model for a E. coli extract reaction network is under develop- 
ment. The model development is performed by the application of the gray-box stochastic 
modeling framework proposed by Kristensen [1]. The current results looks promising and 
now the focus is in developing and using specific experiments to provide information on 
different reaction kinetics in the metabolic network. Once the complete reaction network 
presented in figure 2 is reasonably modeled, productivity optimization will be investigated. 
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