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Abstract In this paper two attempts to assess the uncertainty involved with model predictions of copper

loads from stormwater systems are made. In the first attempt, the GLUE methodology is applied to derive

model parameter sets that result in model outputs encompassing a significant number of the measurements.

In the second attempt the conceptual model is reformulated to a grey-box model followed by parameter

estimation. Given data from an extensive measurement campaign, the two methods suggest that the output

of the stormwater pollution model is associated with significant uncertainty. With the proposed model and

input data, the GLUE analysis show that the total sampled copper mass can be predicted within a range of

^50% of the median value (385 g), whereas the grey-box analysis showed a prediction uncertainty of less

than ^30%. Future work will clarify the pros and cons of the two methods and furthermore explore to what

extent the estimation can be improved by modifying the underlying accumulation-washout model.
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Introduction

Mathematical simulation models are increasingly used to calculate pollutant loads to

receiving waters as a basis for engineering decisions. Many approaches to pollutant load

modelling exist, ranging from simple regression models to continuous time process

models accounting for accumulation-washout phenomena, but it is not always easy to

determine if using a more complex models produce results that are worth the effort

required to make them operational (Vaze and Chiew, 2003). Indeed, all models

are associated with a significant amount of prediction uncertainty, which to a large

extent is determined by the availability of data for calibration and verification (Bertrand-

Krajewski, 2007). A further complicating factor lies in the choice of methods for

uncertainty assessment, as different methods exist for estimation the prediction

uncertainty (e.g. Lei, 1996).

In this paper we focus on determining the uncertainty associated with estimating the

copper load from a stormwater system given a conceptual stormwater quality model and

a, in this context, relatively detailed measurement campaign. The motivation for deter-

mining this is to investigate to what extent micro-pollutant loads in stormwater systems

can be estimated. As a reference compound, the heavy metal copper was selected due to

its abundance in building materials, its confirmed presence in dry and wet deposition and

its confirmed aquatic toxicity and accumulation in e.g. river sediments (i.e. Eriksson

et al., 2007). Two attempts to assess the uncertainty involved with predicting pollutant

loads from stormwater systems are made using methods that are increasingly used and

well described in the literature. Both attempts include the application of results from a
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measurement campaign (rainfall, runoff volumes and pollutant masses) and a conceptual

stormwater accumulation-washout model.

In the first attempt, the generalized likelihood uncertainty estimation (GLUE) method-

ology of Beven and Binley (1992) is applied. In this method model structure, input data,

and parameter uncertainty are taken into account by accepting that there is no single cor-

rect optimal parameter set in an environmental modeling calibration study. Instead,

model parameter sets that result in model output distributions encompassing a significant

number of the measurements are derived.

In the second attempt, the conceptual model is re-formulated into a system of stochas-

tic differential Equations (SDEs) by adding an additive noise term to the derivatives of

the deterministic model. This technique is often referred to as grey-box modeling

(i.e. Harremoës and Madsen, 1999). The idea is to take into account model structure

approximations, unrecognized or un-modeled inputs and errors in the input data explicitly

in the model equations. The parameters of the SDE system can then be estimated by

means of maximum-likelihood estimation. By analyzing the estimation results, it is

possible to pin-point model structure deficiencies, to identify insignificant model

parameters and to quantify the uncertainty of the parameter estimates. In this paper initial

results from grey-box modeling of stormwater quality are given.

Material

Site description and field data

All physical data come from the Vasastaden urban catchment in the city of Göteborg,

Sweden. The catchment is densely populated and consists mainly of older residential and

commercial buildings. The catchment has a total impervious area of 4.83 ha and a separ-

ate sewer system. For a detailed description of the case study see Ahlman (2006).

Measurements of rainfall, stormwater flow and stormwater quality were undertaken in

April-May 2002. An ISCO 6700 automatic water sampler was installed in the vicinity of

a manhole to take samples in a 400mm separate storm sewer made out of concrete. A

flow meter forced the sampler to take flow-weighted samples. Rain data was collected

with a tipping bucket rain gauge (type HoBo/MJK), located approximately 60m from the

sampler on the boundary of the catchment.

Thirteen rainfall-runoff events during a period of 30 days were identified for analysis.

The rainfall for these events ranged between 0.8 and 11.7mm with durations from 0.4 to

9.7 hours. The maximum intensities (with a one-minute resolution) ranged between 0.4

and 3.7mm/h. Within 8 hours after each rain event, the collected stormwater samples

were transported to the laboratory where they were analyzed for pH, conductivity, total

suspended solids (TSS), chemical oxygen demand (COD) and heavy metals (copper,

zinc, lead and cadmium); in this paper only copper is in focus. The 13 events included

analyses of 57 copper concentrations, which were representative for 57 runoff volumes.

Model description

We apply a conceptual rainfall-runoff and pollutant accumulation-washout model, similar

to the one of Ahlman (2006) to simulate the load of copper in the stormwater. In the con-

sidered model pollutants are accumulated in dry periods and washed out during rainfall,

processes described with classical build-up and wash-off functions (Overton and

Meadows 1976). The model is illustrated in Figure 1 and explained below.

The effective rain intensity (i.e. the rain remaining after subtraction of initial loss) peff
[m/s], the runoff coefficient f [-], reservoir coefficient K [m3/5·s21] (representative for

the hydrologic delay) and impervious area A [m2] have been calibrated in a previous
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study (Ahlman et al., in prep.). These parameters are considered to be fixed and are not

further analyzed.

The dry deposition load u1 [g s
21m22] is assumed to be constant and represents differ-

ent sources of pollution, e.g. traffic activities, surface corrosion and atmospheric depo-

sition. The concentration of copper in rain water has been neglected since it is low

compared to the contribution from dry deposition. The rate coefficient for pollutant dry

removal u2 [s
21] describes removal by wind and other means, a process which is assumed

to be proportional to the accumulated mass m1 [g]. The wet removal by wash-off is

assumed to be proportional to m1 and peff with a rate constant u3 [m21]. Pollutants are

mixed with rain in a hypothetical reservoir with dynamic storage h [m] to yield the

stormwater pollutant concentration c [g/m3]. The pollution in runoff is then sampled and

summed up to form the accumulated pollutant mass m2 [g]. I is a function indicating

when the flow-proportional samples are taken. The conceptual model is given by the

following ordinary differential Equations (ODEs):

dh

dt
¼ f�peff 2 K�h3=5 ð1Þ

dc

dt
¼

peff

h�A
�ðu3�m1 2 c�f�AÞ ð2Þ

dm1

dt
¼ A�u1 2 ðu2 þ u3�peffÞ�m1 ð3Þ

dm2

dt
¼ A�K�h3=5�c�I ð4Þ

Method

Sampling

The information obtained from the sampling campaign was used to form an observation

vector y, the cumulative masses of copper in the runoff. With xt 5 [h c m1 m2] denoting

the state variables, ut 5 [ peff I ] the input data and u 5 [u1 u2 u3] the parameter vector to

be analyzed, Equations (1)–(4) can be written in the compact from:

dxt

dt
¼ f ðxt;ut; t; uÞ ð5Þ

Figure 1 The conceptual stormwater rainfall-runoff and accumulation-washout model
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with the observation equation:

yk ¼ m2;k þ ek ð6Þ

where ek (k ¼ 1,… ,57) denotes the difference between simulated (m2,k) and observed

(yk) output at sampling instance k.

The Generalized Likelihood Uncertainty Estimation (GLUE) approach

The GLUE analysis in this paper is briefly described below. For a more dense discussion

of the current application see Lindblom et al. (2007).

(1) Define the prior distribution, including information about the parameters before

obtaining the observed data. Here, as well as in most GLUE applications, this is

assumed to be a hypercube distribution.

(2) Draw b ¼ 1,2… ,B parameter sets from the prior distribution and simulate the

residuals with the model in Equations (1)–(4) and (6).

(3) Calculate the associated B likelihoods. Here, likelihood is treated in a less formal

way than in e.g. maximum likelihood theory and is denoted LGLUE. Out of several

likelihood functions used in GLUE studies (e.g. Beven and Freer, 2001), we

applied:

Lglueðyju
bÞ ¼ exp 2

P57
k¼1ðe

b
kÞ

2

T

 !
ð7Þ

where T is a scaling parameter that can be tuned to determine the “wideness” of the

distribution of the generated output.

(4) Normalize the likelihoods so that they sum up to one:

Pb ¼
Lglueðyju

bÞPB
b¼1Lglueðyju

bÞ
ð8Þ

(5) Finally, for each sampling instance k, the accumulated mass predicted by each par-

ameter set is ranked in order of magnitude, and using the weights P b associated

with each set, a distribution function of the prediction is calculated.

The grey-box modelling approach

The ODE model (5) is transformed to a so called Itô stochastic differential Equation

(SDE) model as:

dxt ¼ f ðxt; ut; t;uÞdt þ stdvt ð9Þ

where vt is a standard Wiener process. The observation Equation (Equation 6) remains

unchanged. Compared to the model given by (5), (9) contains additional parameters

inside the matrix st. This paper is strictly focused on the pollutant deposition-washout

process and how it is modeled (Equation 3) and thus we included only one additional par-

ameter (s33) in the third diagonal element of st. The remaining elements in the matrix

consist of zeros.

Parameter estimation in grey-box modeling. We used the software CTSM (Kristensen

and Madsen, 2003) to estimate the parameters in (9). This is done according to maximum

likelihood estimation theory. The basis for this theory is given below. For a more

detailed description see Kristensen et al. (2004). With YN being a vector containing all

the observations up to and including N, the likelihood function is the joint probability
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density of all the observations taken as a function of u:

Lðu;YNÞ ¼
YN
k¼1

pðykjYk21; uÞ

 !
pðy1jy0;uÞ ð10Þ

Since the increments of the Wiener process w(t) are approximately Gaussian, the

conditional densities in (10) can be assumed to be normal. Hence, in order to

parameterize the conditional distribution, the conditional mean and conditional variance

are introduced:

ŷkjk21 ¼ E½ykjYk21;u� ð11Þ

Rkjk21 ¼ V½ykjYk21; u� ð12Þ

It is also convenient to introduce the one-step prediction error:

1k ¼ yk 2 ŷkjk21 ð13Þ

With this notation the likelihood function can be written:

Lðu;YNÞ ¼
YN
k¼1

expð2ð1=2Þ12kRkjk21Þffiffiffiffiffiffiffiffiffiffiffiffi
Rkjk21

p ffiffiffiffiffiffi
2p

p

 !
ð14Þ

CTSM calculates the conditional mean and the conditional variance recursively by

using the extended Kalman filter. The maximum-likelihood estimate (ML-estimate) is

then given by the parameter set û, which maximizes the likelihood function. Note that u

here includes both the three accumulation-washout parameters, as well as s33 and

the residual variance s2
e . The optimization problem is solved numerically by the quasi-

Newton method. In this work CTSM was used to find the parameter estimate û and then

to provide output estimates based only on the inputs, i.e. ŷkj0, along with their standard

deviations S.D. (ŷkj0).

Results and discussion

GLUE analysis

The selected minimum and maximum parameter values defining the prior (hypercube)

distribution are shown in Table 1. First 50,000 simulations according to step (1) and (2)

mentioned above were conducted. Steps (3)–(5) were then iterated with various values of

the scaling parameter T. With T ¼ 4 £ 105, we judged that the uncertainty was ade-

quately described; all 57 data were covered by the 95% bands. The obtained distributions

are shown as box-plots (95% and 50% quantiles) in Figure 2. For k ¼ 3 and k ¼ 26 the

observations show a significant “jump” due to abnormally high observed mass in the

observations, which are not simulated well by the model. This pattern is for k ¼ 3 due to

the so-called “first flush” phenomenon occasionally leading to very high initial runoff

concentrations after long dry spells, which may be better simulated using an exponent in

Table 1 Minimum and maximum parameter values defining the prior distribution in the Glue analysis and

maximum likelihood estimates from the grey-box modeling

Parameter Unit Min Max ML-estimate

u1 (g s21 m22) 1 £ 1029 1 £ 1027 8.9 £ 1029

u2 (s21) 1 £ 1027 1.5 £ 1024 5.7 £ 1026

u3 (m21) 0 1 £ 104 4.2 £ 102

s33 (g/s) – – 8.6 £ 1022

se (g) – – 1.9
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peff in the formulation of the washout process (Equation 3), as originally proposed by

Overton and Meadows (1976). For k ¼ 26 there is no easy explanation; the pattern may

be caused by sample contamination or measurement errors, which means the observation

should be treated as an outlier and not be used in the GLUE process. In this paper we

have not attempted to modify the model to obtain a better fit with data, and all data that

were not rejected in the usual quality assurance were included. Rather, we have focused

on determining the uncertainty given a fixed model and data set by tuning T to practically

cover all observations. This leads to a relatively high uncertainty estimate; the total

copper mass can only be estimated with an uncertainty of ^50% of the median (385 g).

Grey box modeling

In Table 1, the obtained maximum likelihood estimates of the parameters from the grey

box modeling are shown. In Figure 2 the corresponding output estimates are shown (solid

line) together with the 95% confidence bounds (ŷkj0 ^ 1.96·S.D. (ŷkj0)). It is noted that

the three ML parameter estimates u 5 [u1 u2 u3] all are within the limits of the prior

distributions defined for the GLUE analysis.

The ML-estimate of the copper load follows the observations relatively closely in

the whole sequence k ¼ 1,… , 57, and results in a lower uncertainty than the GLUE anal-

ysis; the total copper mass is in this case estimated with an uncertainty of ^30%. The

theory for maximum-likelihood estimation included in CTSM, and also briefly shown

above, relies on the Gaussianity assumptions of the conditional means and variances as

well as on white noise characteristics of the residuals. In this paper, no attempts to ensure

that these assumptions are fulfilled have been made. The residuals do not seem, as shown

in Figure 3, to be uncorrelated, nor to have a mean equal to zero. As pointed out in

Kristensen et al. (2004), the assumptions are not likely to be valid when the model

structure is not perfect, which is often the case in the initial phase of a grey-box modeling

procedure. However, in such cases the estimation results can be used to provide

indications for model improvement. Maximum likelihood estimates of the grey-box

model parameters showed that the parameter s33 was significant, i.e. not zero. Thus it

was pin-pointed that this part of the model must be considered to be uncertain and

perhaps also re-formulated. The results also showed that s33 was significant compared to

the residual variance se, i.e. the deviation between measured and simulated data cannot

be solely explained by measurement errors.

Figure 2 Asterisks: The cumulative sum of the measured copper masses (yk). Boxes: Distributions from the

GLUE-analysis (95% and 50% quantiles). Solid line: ML-estimate of the grey-box model. Dashed lines: 95%

confidence limit for ML-estimate of the grey box model
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The results show that the GLUE and the grey-box method yield very similar results in

terms of the median/mean, but that the GLUE method provides a substantially higher

uncertainty estimate. This difference is perhaps not surprising, since the two methods are

based on different assumptions (e.g. with respect to error structure) and developed for

different purposes (i.e. GLUE to estimate the uncertainty of existing models, grey-box

modeling to improve models especially in a predictive on-line context). The exact causes

are however not clear at this stage. Future work will clarify the pros and cons of the two

methods and furthermore explore to what extent the estimation can be improved by

modifying the underlying accumulation-washout model or accounting for speciation of

the suspended pollutant mass between the solid and dissolved forms. The conclusions are

however expected to depend on the amount and quality of the available data, and perhaps

also on the inherent properties of the studied micropollutants. Therefore, it cannot be

excluded that simpler models, for example event-lumped, based on daily loads or purely

stochastic may be appropriate in some cases.

Conclusions

Given an extensive measurement campaign and an accumulation-washout model

describing dynamic variations in runoff concentrations, it is concluded that the estimation

of micro-pollutants in stormwater is associated with significant uncertainty. With the

proposed model and input data, a GLUE analysis show that the total sampled copper mass

can be predicted within a range of ^50% of the median value (385 g). By reformulating

the deterministic model into a grey-box model followed by a maximum likelihood

estimation of the parameters, the obtained model output uncertainty was determined to be

lower and ^30%. Future work will clarify the pros and cons of the two methods and

furthermore explore to what extent the estimation can be improved by modifying the

underlying accumulation-washout model.
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Figure 3 Residuals from the grey-box simulation
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