Available online at www.sciencedirect.com

Expert Systems

SClenceDI rect with Applications

ELSEVIER Expert Systems with Applications 35 (2008) 2032-2040

www.elsevier.com/locate/eswa

Application of CUSUM charts to detect lameness in a milking robot

Matti Pastell #*, Henrik Madsen °

* Department of Agrotechnology, University of Helsinki, P.O. Box 28, FI-00014, Finland
® Informatics and Mathematical Modelling, Technical University of Denmark, Building 321, DK-2800 Lyngby, Denmark

Abstract

In the year 2006 about 4000 farms worldwide used over 6000 milking robots. With increased automation the time that the cattle kee-
per uses for monitoring animals has decreased. This has created a need for automatic health monitoring systems. Lameness is a crucial
welfare and economic issue in modern dairy husbandry. It causes problems especially in loose housing of cattle. This could be greatly
reduced by early identification and treatment.

A four-balance system for automatically measuring the load on each leg of a cow during milking in a milking robot has been devel-
oped. It has been previously shown that the weight distribution between limbs changes when cow get lame. In this paper we suggest
CUSUM charts to automatically detect lameness based on the measurements. CUSUM charts are statistical based control charts and
are well suited for checking a measuring system in operation for any departure from some target or specified values. The target values
for detecting lameness were calculated from the cow’s own historical data so that each animal had an individual chart.

The method enables objective monitoring of the changes in leg health, which is valuable information in veterinary research because it
provides means for assessing the severity and impact of different causes of lameness and also evaluating the effect of treatment and med-
ication. So far no objective method for calculating these measures has been available and the methodology presented in this paper seems

very promising for the task.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Automatic milking has become a common practice in
dairy husbandry and in the year 2006 about 4000 farms
worldwide used over 6000 milking robots (de Koning,
2006). There is a significant movement with the objective
of fully automating every process from feeding to milking.

Increase in automation is a consequence from increasing
farm sizes, the growth of labour costs, demand for more
profit and more efficient production as well as the need
for free time for the farmers. As the level of automation
increases, time that the cattle keeper uses for monitoring
animals decreases. This has created a need for systems
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for automatically monitoring the health for farm animals.
The popularity of milking robots also offers a new and
unique possibility to monitor animals in a single confined
space up to four times daily.

Lameness is a crucial welfare issue in modern dairy
industry. Limb disorders cause serious welfare, health
and economic problems especially in loose housing of cattle
(Juarez, Robinson, DePeters, & Price, 2003; Klaas, Rous-
ing, Fossing, Hindhede, & Sorensen, 2003). Lameness
causes losses in milk production (Green, Hedges, Schuk-
ken, Blowey, & Packington, 2002; Warnick, Janssen,
Guard, & Grohn, 2001) and leads to early culling of ani-
mals (Enting, Kooij, Dijkhuizen, Huirne, & Noordhui-
zen-Stassen, 1997). These costs could be reduced with
early identification and treatment (Green et al., 2002).

Most common way to assess lameness still today is
visual inspection with locomotion scoring systems (Man-
son & Leaver, 1988; Sprecher, Hostetler, & Kaneene,
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1997). The use of these systems requires expertise and they
have been shown to be subjective (Winckler & Willen,
2001). Studies also show that farmers only recognize 25%
of lame animals (Whay, Main, Green, & Webster, 2003).

A four-balance system for automatically measuring the
load on each leg of a cow during milking in a milking robot
has been developed at the University of Helsinki (Pastell
et al., 2006; Pastell & Kujala, 2007). It has been shown that
the system can be used to detect lameness based on the
weight distribution between limbs and a Probabilistic Neu-
ral Network model to detect lameness cases has been devel-
oped (Pastell & Kujala, 2007). However there is a clear
need to develop a model which can be used to evaluate
the duration and the magnitude of the problem and adapt
its behavior for individual animals.

CUSUM charts are control charts used in the quality
control. They are well suited for checking a measuring sys-
tem in operation for any departure from some target or
specified values. In Quality Assurance (QA) of Automate
Measuring Systems (AMS). CUSUM charts are used for
detecting a drift (of the level) and detecting a change of
the precision of the AMS (CEN-EN 14181, 2004). In both
cases the CUSUM procedure contains methods for esti-
mating the shift such that maintenance can take place.
Agricultural use of CUSUM charts include monitoring
pigs based on their drinking behavior (Madsen & Kristen-
sen, 2005) and detecting oestrus in dairy cows (de Vries &
Conlin, 2003). Also neural network based expert systems
have been developed for animal science applications
(Fernandez, Soria, Martin, & Serrano, 2006).

This paper focuses on the use of CUSUM charts to
detect changes in the measured weight data and the possi-
bilities to use the method in quantifying the duration and
seriousness of the problem. The aim of the article is to pres-
ent the method and evaluate its usage in automated lame-
ness detection.

2. The basic theory of CUSUM charts

CUSUM charts are control charts used in the quality
control. They are well suited for checking a measuring sys-
tem in operation for any departure from some target or
specified values. CUSUM charts are based on the statistical
theory for sequential tests.

At the ordinary sequential test we consider a sequence of
independent random variables X7,X5,...,X,,... and we
want to test Hy : X; has the density f{x;6y) against H; : X;
has the density f{x;0;).

Given the first j observations xy, X, .. .,x; the likelihood
functions are

J

£(600) = [ [/ o: 00) M)

The likelihood ratio test is given by

/lj(xl,xz, e

3)

Hence, small values of /; indicates that H is true, and visa
versa.

Given the real numbers 4 and B (4 < B), the following
rule is introduced to test H, against H; in a sequential
procedure:

(1) 4, < A= Hy is accepted.

(2) 4 = B= H, is rejected.

(3) A <1;<B = —means that we are still not able to dis-
tinguish between the distributions with a reasonable
likelihood, and therefore another X is picked up.
Using (3) the likelihood ratio is updated using the
new observation x;;;, and again the value of 4 is
evaluated.

In practice it is often more convenient to use the logarithm
of ;. Hence (3) is written

J
S (i3 61)

logk; = lo 4
g J ; gf(x” 00) ( )

By introducing

f(xi§ 91)
zZ; = 10 5
& (e O0) (5)

then (4) are written

loghj =z +z4+ -4z (6)

and the above criteria for taking another sample becomes

log4 < log4; < logB (7)

2.1. Values for the limits

Let us introduce « as the probability for rejecting H
given it is true, and f§ as the probability for accepting H,,
given H; is true. Then the following relations between A,
B, o and f exist

1—-p = B (8)
and p<(1—-a)4 9)
Replacing the inequalities above with equalities leads to the
Wald approximations

1-f=B-u (10)
B=(1-2) 4 (1)
In the approximation the exceedence of the limits are ne-
glected. Hence the approximation is best for long runs,
i.e. when A and B are large, which they are for small values
of o and p.

The formulas above are the basis for constructing the
limits used in CUSUM control charts.
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3. Towards the CUSUM chart
3.1. The cumulated sum and the V-mask

By considering the logarithm of A the criteria for contin-
uation for a number of distribution functions can be writ-
ten on the form

J
I+j k<> xi<h+j-k (12)

i=1

where x is the difference between the sample and the target
value, /, h and k for given values of 0, 0,, 4 and B are con-
stants. This will be illustrated in a later section.

It is now seen that the criteria for taking a new measure-
ment becomes the area between two parallel lines in a plot
of the cumulated sum

J
G = in (13)
i=1

against the sample number j. This is illustrated in Fig. 1.
If we simultaneously what to test against some value 0,,
where

0, < 00 < 0, (14)

then the two-sided sequential ratio test is obtained (Fig. 2).

In process control the accept criterion is irrelevant, since
we want a signal only when the process is out of control.
Hence, only the reject area is relevant.

The CUSUM chart corresponds to the sequential ratio
test where the reject limits, which are called the V-mask,
is reversed such that the origin is placed in the most resent
observation. This corresponds to plotting the observations
in a reversed sequence as illustrated in Fig. 3.

3.2. CUSUM X-chart

CUSUM X-charts are used for detecting a drift (of the
level) of a measurement system. The CUSUM procedure

Ci A
Cj=h + j*k

Reject Ho

Cj=l + j*k

Continue

l l |-
T T T 1 T T T T T T T T T ™

Sample Number

J

Accept Ho

Fig. 1. The principle of the sequential ratio test.
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Fig. 2. Two-sided sequential ratio test.

G A

i

Fig. 3. CUSUM control chart.

also contains methods for estimating the amount of drift
objectively.
Let us assume that X; € N(,u,az), i=1,...,/,...and o?is
known. We want to test Hy: u = uo against Hy : p = 1y
Using (3) we obtain

xi—py)?
pon (-3
e (57
V2no 202

— o) + (17 — 15))

z; = log

1

=~ 5,2 ("2l

The logarithm of the sequential likelihood ratio is (see (6))
Joa o . 2
log ; = E(Ho‘%)"‘(#l_#o);xi 4

and the criteria for taking another measurement is ob-
tained using (7) ((¢; > o))
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For the CUSUM chart we are interested in the reject area
only, hence we write

/ c*logB j
X; — < += (- 16
;( Ho) G- 2 (1 — o) (16)

The parameters s and k for the V-mask of CUSUM-X
chart (Fig. 3) then become

2
hoC logB (17)
i — Ho
M= K
k= 1
. (18)

where B is found using (10).
We can normalize the parameters by introducing:

h"=h/o
kK"=k/o

3.3. Onesided CUSUM X -chart

Onesided CUSUM charts are called alternative or com-
putational CUSUM charts. They detect the drift in exactly
same point as traditional charts, but their graphical repre-
sentation is different. Onesided CUSUM charts are well
suited for programming and they have fixed limits shown
on the chart. The drawback of the onesided charts is that
for two sided schemes two charts operating simultaneously
are needed: one for the upper and other for the lower limit.

For the ordinary CUSUM chart we plot the cumulated
sum against the sample number j

J
C=Y x (19)
i=1

where x is the difference between the sample and the target
value. This implies that the control limits (i.e. the V-mask)
must be moved for each new sample.

If we conclude that the process is out of control, then the
following inequality must be satisfied:

I:C,—Cop, Zh+k(n—(n—r))

dr: zn:x,«—ixi =>h+k-r
=1 =1

n

Ir: Z (x;—k) = h
i=n—r+1
where k(=k™ - o) and h(=h" - ) are limits for the chart se-
lected to obtain the required performance as described in
the next section.
It is now clearly seen that for onesided CUSUM charts
we can define for values greater than the target:

S = max[0,x; — k + S ] (20)
S =0 (21)

and for values lesser than the target:

ST =min[0,x; + k + 57 _] (22)
St=0 (23)

and if S} > h or ST < h then we reject the hypothesis Hy
that the measuring system is in control. This implies that
most likely a drift of the measuring system has occurred.

In summary: We plot the accumulated > (x; — k) as long
as the sum is positive. When the accumulated sum becomes
negative we put it equal to zero, and if > (x; — k) > A, then
the process is out of control and similarly for the lower
limit. The procedure is illustrated in Fig. 4.

3.4. The design and performance of CUSUM charts

The performance of the CUSUM-X control chart is
determined by normalized parameters (h*,k") and mea-
sured by the ARL(J)-function, which is the average num-
ber of samples which has to be taken before an “out of
control” signal is obtained given that the true bias is 0.
The average number of samples is also called the Average
Run Length (ARL).

The values (4%, k™) are selected such that the CUSUM-X
chart has a reasonable performance. An optimal CUSUM
chart is one which detect a shift of the size 6"(= /o) as
quickly as possible, while keeping the number of “false
alarms” as low as possible. That is ARL(5") is minimized
while keeping ARL(d) at a constant (high) value. The value
of ARL(J) indicates the number of samples between false
alarms.

The optimal values for 4",k for given 6 and desired
ARL were considered and solved by Bowker and Lieber-
man (1972). Values for one-sided control chart are given
in Table 1.

S; A

] ] ] ] ] ] ] ] ] ] ] ] ] -
T T T T T T T T T T T T T ™

Sample Number
j

Fig. 4. The alternative onesided CUSUM chart.
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Table 1
Design values for the one-sided CUSUM-X chart
5t ARL(9)
100 200 400 600 800 1000
0.25 k* 0.1250 0.1250 0.1250 0.1250 0.1250 0.1250
h* 5.9354 7.8412 9.9977 11.356 12.357 13.150
ARL(6) 30.238 43.429 59.278 69.582 77.274 83.427
0.50 k* 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
h* 4.4182 5.5974 6.8516 7.6103 8.1571 8.5851
ARL(5") 14.845 19.343 24.233 27.222 29.385 31.083
0.75 k* 0.3750 0.3750 0.3750 0.3750 0.3750 0.3750
h* 3.4852 4.3281 5.2028 5.7245 6.0979 6.3889
ARL(5") 8.9859 11.182 13.487 14.868 15.859 16.632
1.00 k* 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
h* 2.8494 3.5020 4.1713 4.5677 4.8506 5.0707
ARL(0%) 6.1078 7.3950 8.7240 9.5137 10.078 10.517
1.50 k* 0.7500 0.7500 0.7500 0.7500 0.7500 0.7500
h* 2.0369 2.4810 2.9332 3.2003 3.3906 3.5384
ARL(0) 3.4426 4.0376 4.6406 4.9959 5.2489 5.4456
2.00 k* 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
h* 1.5316 1.8738 2.2137 2.4129 2.5547 2.6651
ARL(5") 2.2672 2.6099 2.9560 3.1585 3.3020 3.4132
3.5. Estimation of the drift of the measurements. The measuring frequency was set at
10 Hz (Pastell et al., 2006).
Let us define The cows visited the milking robot voluntarily and they
. wore transponders which are used to identify the cow as
N =N 41 if 87 >0 (24) ransp Y
J 7 J usual in such a system. When the cow entered the robot
N% =0 otherwise (25)  she was milked automatically if enough time had elapsed
N =0 (26) from the last visit. The cows visited the milking robot vol-

The quantity Nf’ simply counts the number of samples
since Sfl were 0. Nf is defined analogously.

In the case of the “out of control” signal the drift is esti-
mated using

0= fulk+S}/N]) for S > h (27)
or
& = —fulk + 87 /N%) for ST < h (28)

The factor fj, is less than one (e.g. /3 = 0.7), and is intro-
duced to account for the fact that the estimate of the drift
would otherwise be biased towards too high values.

4. Measurements

Four balances were installed into the floor of a milking
robot in order to measure the weight on each leg of a cow
during milking. Each balance consisted of a balance plat-
form and a single point load cell. The sensors were con-
nected to a four channel carrier frequency amplifier
(Spider8, HBM, Darmstadt, Germany) and the data was
transferred to a personal computer (PC). The Internet
was used for remote control of the system and tracking

untarily from 2 to 4 times daily and typical duration of a
milking was 5-10 min, depending on the milk yield and
flow. The floor of the milking robot used in the experiment
is shown in Fig. 5.

Measurement software was made with TestPoint soft-
ware (Capitol Equipment, Middleboro, MA, USA). The
starting and stopping of the measurements was based on

Fig. 5. The floor of the milking robot used in the experiment. The
balances are located under the rubber carpet.
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Fig. 6. The leg weights and the total weight of a sound cow during
milking. FL = Front left; FR = Front right; HL = Hind left; HR = Hind
right; Total = Total weight.

information obtained from a log file created by a program
provided by the robots manufacturer DeLaval (Tumba,
Sweden). Weight on each leg of a cow was recorded during
milking. Measurement was started when the robot started
milking a cow and ended when the milking stopped. The
data file from every weighing was saved on the computer
(Pastell et al., 2006).

Not all of the measurements were successful mainly due
to cows standing beside the platforms. This cannot be
avoided because of the varying size of the cows; young
and small cows proved to be especially problematic. When
a cow was not standing directly on the balances it resulted
in erroneous values, which were seen as drop in the mea-
sured total weight, and were removed from the data. MAT-
LAB was used for removing erroneous values from the
data with a special algorithm described in Pastell et al.
(2007).

After removing erroneous values from the data the aver-
age weight of each leg, the standard deviation of the weight
of each leg, and the total body weight of the cow was cal-
culated. Raw data from a measurement is shown in Fig. 6.

All cows were observed weekly for lameness during a
normal gait by experienced personnel and lame cows were
further checked with clinical inspection in order to find the
cause of the problem (Pastell & Kujala, 2007).

5. Application of CUSUM charts to detect lameness
5.1. Constructing the charts

This study focused on the use of onesided computa-
tional CUSUM X-charts for detecting lameness in dairy
cows based on the measured leg weight data. We chose
to use onesided charts to detect drift in the leg weight data
because they are well suited for programming and easier to
understand for the end user because the chart shows fixed
limits instead of a moving V-mask.

Charts for detecting the drift in the weight of individual
limbs and the total weight of the cow were designed. All of

the lameness cases identified during the study were in the
hind limbs. In order to detect the change in the weight dis-
tribution between the parallel legs a leg load index (LLI)
for the left hind leg was calculated. It was hypothesized
that problems in the left hind leg can be seen as decrease
in the LLI and problems in the right hind leg as an increase
in the LLI. The need to use a transformation was checked
by using a range-mean plot (Madsen, 2006). It was discov-
ered that no transformation was needed and the untrans-
formed data was used. The data was smoothed using first
order exponential smoothing (Madsen, 2006) calculated
using (30) with forgetting factor 1 =0.9.

_ weight of the left hind leg(kg)
~ total weight of the hind legs(kg)
Sy = (1= )Y+ Sy (30)

LLI

-100% (29)

where n is sample number, S,, is the smoothed value, Y, is
the observed value and 4 is the forgetting factor.

It is shown in Madsen (2006) that S, corresponds to an
adaptive estimation of the mean of Y.

Charts for detecting drift in higher and lower values
were used for smoothed LLI (%), smoothed weight of the
left hind leg (kg), and a chart for detecting lower values
for the smoothed total weight (kg).

We decided that individual values for limits are needed
for each cow since they behave in an individual manner.
Therefore we chose to use the historical data from each
cow to calculate individual target value py and standard
deviation ¢ for the process. The parameters were then
updated for each new sample. Different values of 4", k*
were evaluated to find suitable performance for the appli-
cation based on Table 1.

The target value o and standard deviation ¢ were com-
puted for each sample number j of each cow and chart
from the historical values as follows:

1 m
Mo =— in (31)
n 5D
1 & 2
. ¥ 2
7= 5 2w (32)
where

ifj<20,n=10,m=10,1=1, k=10, h=1

if j>20 and j <40, n=j— 10, m=j — 10, k=j — 10,
I=1,h=1

if j>40 and j< 120, n=20, m=j— 20, /= — 40,
k=j—20,h=1

if j>120, n=20, m=j— 20,
h=j—120

1=j—40, k=100,

A separate scheme is needed for the beginning of the chart
to detect problems early on in the process but the best per-
formance is obviously achieved after j > 40, because only
then enough historical data has been collected to calculate
the target value accurately.



2038 M. Pastell, H. Madsen | Expert Systems with Applications 35 (2008) 2032-2040

It is also notable that the standard deviation o is after
the first 40 samples calculated from a longer time period
than the target value po. This is because the standard devi-
ation is more sensitivity to outliers than the mean. Mini-
mum allowed ¢ was defined for smoothed LLI as ¢ =
max[4,c] and for smoothed total weight as ¢ = max[20, o]
so that the test would not be too sensitive to small changes,
which are normal for all cows.

In a practical application 40 samples means 10-20 days
of measurements, depending on how often the cow visits
the robot and how many of the measurements are success-
ful. It is a reasonable time period because cows are typi-
cally milked with the robot for over 300 days before
moved away to calve. Furthermore the cattle tender should
know that the cows are not lame when moved to the milk-
ing robot.

5.2. Results

Onesided CUSUM charts of S7 (h* = 2.5, kK = 0.75) of
the smoothed LLI of two cows who became lame during
the measurements are shown in Figs 7a and 8a. The LLI,
smoothed LLI, the target value uo, and, the standard devi-
ation ¢ used constructing the charts are shown in Figs. 7b
and 8b. The lameness has started for both cows around the
time when the S begins to drift.

The cow in Fig. 8 becoming lame also caused a drop in
the total body weight of the animal, which was also
detected with the CUSUM chart for body weight. The
CUSUM chart (h*=2.5, k*=0.75) for lower values of
the smoothed body weight is shown in Fig. 9. Lameness
affects the total weight of animal especially in loose housing
systems where animals have to walk to get feed and water

and naturally while lame are less inclined to do so. In this
case the beginning of lameness was seen almost at the same
time point in the CUSUM charts for LLI (Fig. 8) and the
total weight (Fig. 9).

CUSUM charts also provide means for detecting the time
point when the drift has begun and calculating the amount of
drift. This is also very important in lameness research when
the duration of e.g. hoof problems are estimated and the
severity of different ailments are compared. So far no objec-
tive method for this purpose has been available.

The duration and the amount of drift in Fig. 9a was cal-
culated using (25) and (28). At the end of the drift NJL. =17,
S; = =37.6, and, k = 1.88. Using (28) the amount of drift
was calculated as 6 = —0.7(1.88 — 37.6/17) = 2.86. The
measures (Nf,é) can be used when comparing different
lameness cases because they describe the deviation from
the cow’s own normal status. When comparing different
cases the same values of 4" and k™ have to be used.

The effect of k" with A" =3 in the performance of
CUSUM charts of smoothed LLI of a lame cow are shown
in Fig. 10 and a sound cow in Fig. 11. The figures show
that with small k™ the charts are more sensitive in detecting
drift in the data, but using too small value also can result in
false alarms. The lameness case in Fig. 10 was detected with
k* = 0.25, but k" < 0.5 also caused a false alarm for the
cow in Fig. 11. With smaller values the detection of the
actual lameness case also occurred sooner. If only these
two cases were used to choose the proper k¥, then value
of 0.75 would be used.

However choosing the optimal value depends on the
desired sensitivity in the actual application, i.e. how mild
cases of lameness the user wants to detect and what is
the consequence of a false alarm.

a 0 - - - - - I = | L L.

50
&~ —100F

-150 L

S.
—+—" — = —h
—-200 Il Il Il Il
0 50 100 150 200
Sample number j

b

0 50 100
Sample number j

Fig. 7. (a) Onesided CUSUM chart of the smoothed LLI of a cow who became lame during the study and (b) LLI, smoothed LLI, target value uy, and ¢

used for constructing the chart.
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Fig. 8. (a) Onesided CUSUM chart of smoothed LLI of a cow who became lame during the study and (b) LLI, smoothed LLI, target value u, and ¢ used

for constructing the chart.
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Fig. 9. Onesided CUSUM chart of smoothed total weight a cow who became lame.
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Fig. 10. S7 of smoothed LLI of a lame cow with different k™ values.

6. Discussion and conclusions

We have successfully suggested onesided CUSUM X-
charts for detecting lameness based on the leg weights dur-

Sample number j

Fig. 11. 57 of smoothed LLI of a sound cow with different k™ values.

ing automatic milking. The target values are calculated
using historical data of each cows so the each animal has
an individual chart. This makes it possible to objectively
monitor the leg health of the animal.
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The results are in agreement with what has been previ-
ously suggested by Pastell et al. (2006), Pastell et al.
(2007) and Pastell and Kujala (2007). Neveux, Weary,
Rushen, von Keyserlingk, and de Passille (2006) Rushen,
Pombourcq, and Passille (2007) have also shown that leg
problems cause changes in the weight distribution of the
cow when standing still. Neither (Neveux et al., 2006) or
(Rushen et al., 2007) however report timeseries of the mea-
surements. Rajkondawar et al. (2006) have developed a
walktrough system with force sensors for measuring lame-
ness from cow’s gait and they have also developed logistic
regression based models for lameness detection. Their sys-
tem however may not be suitable for farms with milking
robots because they often lack suitable place for gait mea-
surements. Some studies (Magee & Boyle, 2002; Flower,
Sanderson, & Weary, 2005) also suggest that image analy-
sis could be a solution for measuring lameness.

We have shown that lameness can be seen as drift in the
leg weight data and the amount of drift and its duration can
be calculated. This is very valuable information in veteri-
nary research because it provides means for assessing the
severity and impact of different causes of lameness and also
evaluating the effect of treatment and medication. So far no
objective method for calculating these measures has been
available and the methodology presented in this paper seems
like a very promising possibility for the task. Of course the
performance of the system has to be further validated.

The performance of the CUSUM charts in terms of
detection rate and number of false alarms can be adjusted
by selecting appropriate (4", k*)-values. We do not recom-
mend any optimal values, because the appropriate choice
depends on the application and the consequences of missed
problems and false alarms. If the system is used in veteri-
nary research then higher sensitivity for detecting problems
is probably wanted than for on-farm applications.

There were also some cows that cause alarms with the
charts without a known reason. In this study we only
inspected the cows for lameness so we do not know if the
drift is caused by e.g. hoof diseases which do not cause
lameness. Therefore more veterinary research is needed to
determine the accuracy of the system as diagnostics test
for lameness and hoof diseases.

Lameness is one of the biggest welfare and economic
issues in modern dairy production and its impact can be
greatly reduced if the problem is detected and treated on
time. Furthermore it has been suggested that farmers fail
to recognize 75% of the cases (Whay et al., 2003). Automatic
early detection of the problem can thus help to improve the
economic result of farms and the welfare of animals.
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