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Abstract: When geolocating fish based on archival tag data, a realistic assessment of uncertainty is essential. Here, we de-
scribe an application of a novel Fokker–Planck-based method to geolocate Atlantic cod (Gadus morhua) in the North Sea
area. In this study, the geolocation relies mainly on matching tidal patterns in depth measurements when a fish spends a
prolonged period of time at the seabed with a tidal database. Each day, the method provides a nonparametric probability
distribution of the position of a tagged fish and therefore avoids enforcing a particular distribution, such as a Gaussian dis-
tribution. In addition to the tidal component of the geolocation, the model incoporates two behavioural states, either high
or low activity, estimated directly from the depth data, that affect the diffusivity parameter of the model and improves the
precision and realism of the geolocation significantly. The new method provides access to the probability distribution of
the position of the fish that in turn provides a range of useful descriptive statistics, such as the path of the most probable
movement. We compare the method with existing alternatives and discuss its potential in making population inference
from archival tag data.

Résumé : Lorsqu’on fait la géolocalisation de poissons à partir de données provenant d’étiquettes à archivage, il est essen-
tiel d’obtenir une évaluation réaliste de l’incertitude. Nous décrivons ici l’utilisation d’une méthode nouvelle basée sur
l’équation de Fokker-Planck pour faire la géolocalisation des morues franches (Gadus morhua) dans la région de l’Atlan-
tique Nord. Dans notre étude, la géolocalisation se base principalement sur l’appariement des patrons de marées dans les
mesures de profondeur lorsqu’un poisson passe une période de temps prolongée sur le fond de la mer avec la banque de
données sur les marées. Chaque jour, la méthode fournit une distribution non paramétrique de la position du poisson mar-
qué et ainsi elle évite l’imposition d’une distribution particulière, par exemple la gaussienne. En plus de la composante ti-
dale de la géolocalisation, le modèle incorpore deux états comportementaux, soit une activité forte et une activité faible,
estimés directement à partir des données de profondeur, qui affectent le paramètre de diffusivité du modèle et améliorent
significativement la précision et le réalisme de la géolocalisation. La nouvelle méthode donne accès à la distribution de
probabilité de la position du poisson qui, à son tour, fournit une gamme de données statistiques descriptives utiles, telles
que la piste la plus probable de déplacement. Nous comparons notre méthode avec les méthodes de rechange actuellement
disponibles et discutons de son potentiel pour faire des déductions à partir de données provenant d’étiquettes à archivage.

[Traduit par la Rédaction]

Introduction

The application of advanced statistics when analysing
data for tracking of marine animals has become increasingly
popular during recent years. This trend is closely linked to
the growing deployment of archival tags as data collectors
attached to or within the tagged individual. Tags deliver

highly accurate and oftentimes detailed information of the
immediate environment of the host animal in the form of,
e.g., depth, salinity, temperature, light, or oxygen content.
These data can be used to estimate location of individuals,
and so the introduction of electronic tags to the community
of marine biology has spawned several geolocation studies.
Heuristic methods vary in approach but typically focus on
narrowing down the ensemble of possible locations by com-
parison of observations with outputs from environmental
models (Metcalfe and Arnold 1997; Hunter et al. 2003; Neu-
enfeldt et al. 2007). The heuristic approaches to geolocation
yield reasonable and at times accurate position estimates but
do not fully exploit the autocorrelation of the observations,
which, in turn, may limit the applicability of the methods
when data quality is reduced.

Stochastic geolocation methods, i.e., methods assuming
that the individual moves according to some stochastic pro-
cess, have enabled the development of statistical tools to es-
timate horizontal movement of tagged fish and other animals
(Nielsen 2004). The random walk process is prevalent
within modelling of behavioural ecology (Okubo 1980) and
has proven to be proficient in describing marine animal
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movements (Deriso et al. 1991; Sibert et al. 1999). Geoloca-
tion based on light measurements is commonly used for pe-
lagic animals equipped with light-sensing tags (Welch and
Eveson 1999) but suffers from excessive variation in latitude
at periods of time close to the equinox (Musyl et al. 2001).
To this end, the Kalman filter can be used to exploit the cor-
relation of successive observations (Harvey 1989) and pro-
vide improved estimates of position. Furthermore, in
assessing the uncertainty of each daily position estimate, the
filter incorporates all observations to extract the maximum
amount of information from the available data material (Si-
bert et al. 2003).

The Kalman filter relies on a Gaussian error assumption
and therefore has the great advantage that it suffices to esti-
mate the mean and variance of the position to describe the
probability distribution on a given day. For geolocation of
marine animals in the open ocean, the Kalman filter works
well, but for fish moving close to shores, the parametric
method is inadequate because it is likely to assign nonzero
probability to dry land. A solution is the nonparametric par-
ticle filter method (Ristic et al. 2004), which simulates a
large number of particles (fish) according to behavioural as-
sumptions and environmental limitations, i.e., fish cannot
move onto land, thereby avoiding the problem that the Kal-
man filter has. The framework has for geolocation purposes
been applied to synthetic temperature measurements of the
bluefin tuna (Thunnus thynnus) in the eastern Atlantic Ocean
(Royer et al. 2005) and also Atlantic cod (Gadus morhua) in
the Baltic Sea (Andersen et al. 2007). A drawback of the
method is the enormous computational demands that arise
owing to the number of particles that need to be simulated
to obtain reliable parameter estimates (Andersen et al. 2007).

Methods of geolocation that are not based on light levels
have yielded some of the longest time series of positional
data to date (Hunter et al. 2005). Observations of wave pat-
terns in depth records owing to tidal variations have proven
to yield very accurate geolocations of, e.g., plaice (Pleuro-
nectes platessa) (Metcalfe and Arnold 1997; Hunter et al.
2004), thornback ray (Raja clavata) (Hunter et al. 2005),
and Atlantic cod (Righton et al. 2007; Gröger et al. 2007).
These methods are based on a comparison of the observed
tidal range and phase retrieved from the archival tag data
with predictions from a tidal forecast model. Detection of a
tidal pattern in the depth record from the tag implies an in-
active fish dwelling at or very close to the seabed: the tag is
thus recording the changing depth of the water column as
the tide rises and falls over the fish. At other times, when
fish are more active, tidal patterns are usually absent or dif-
ficult to detect with precision. Information about activity
levels and changes in geographic location is fundamental to
the analysis of behaviour modulation in demersal species
(Righton et al. 2000) and greatly aids with objective classi-
fications and interpretation of temporal and spatial differen-
ces in behaviour of individuals or populations (Hobson et al.
2007). It is at this point evident that, because cod and other
demersal fish exhibit considerable seasonally dependent
shifts in activity level (Turner et al. 2002), geolocating
methods require greater sophistication to allow for time-
varying changes in the behavioural state.

In the present study, we apply a direct Fokker–Planck-
based methodology (FPM) using hidden Markov models to

data from archival depth recorders attached to Atlantic cod
in the North Sea (Pedersen 2007; Thygesen et al. 2008).
The calculations were carried out on a laptop PC with the
HMM geolocation toolbox (available from www.imm.dtu.
dk/~mwp) for Matlab. Our aim was to obtain the most accu-
rate recontruction of the geographic movements of cod and
to describe these in terms of the estimated probability distri-
bution of the position of the fish during its time at liberty
and an estimate of the most likely route of migration. The
geolocation method uses the detectable tidal patterns to par-
tition the observed behaviour of the fish into two activity
states, each with separate movement parameters that are esti-
mated with the maximum likelihood method. Inferences on
foraging–migration behaviour can then be made from the
estimated parameter values, and the significance of the two-
parameter model compared with the usual one-parameter
model can be tested statistically in a likelihood ratio test. Us-
ing this method, we show that the uncertainty involved in
fish tracking can be reduced considerably, enabling the fine-
scale reconstruction of fish movements with a level of detail
and information that could ultimately be used in behaviour-
based models in fisheries assessment and management.

Materials and methods

In short, the geolocation technique applied here follows
the principle of state–space modelling and Kalman filtering
with time and data update steps but with the deviation that
no assumptions are made about linearity or Gaussianity of
the distribution of the states (Harvey 1989; Sibert et al.
2003; Patterson et al. 2008).

We assume that the fish performs a random walk in two-
dimensional space with diffusivity D. We take the random
walk to be isotropic (so that D is a scalar); we have no prior
reason to believe that the fish should have a direction pref-
erence, so we elect to keep the model simple and leave the
question of anisotropy to future studies. At time t, the fish
has position Xt in two dimensions and we represent the esti-
mate of this position explicitly by its probability density
function f(x, t), a function of two-dimensional position x =
(x1, x2) and time t. We discretize space on a quadratic grid
over the North Sea; details will be given in the following
section. In the filter, the time update propagates the proba-
bility density f from the time of one measurement to the
time of the next by solving the Fokker–Planck equation:

@�

@t
ðx; tÞ ¼ D @2�

@x2
1

ðx; tÞ þ @
2�

@x2
2

ðx; tÞ
� �

This equation is solved numerically by finite-differences
using the distribution at the previous time step as the initial
condition. At time t of the next observation, some quantity
Y is measured to have the value y. In this paper, Y will ty-
pically be depth readings over the tidal cycle; details will be
given in the following section. The filter then performs a
data update using Bayes’ formula to modify the probability
distribution according to the information in the observation:

�ðx; tÞ7! 1

�t
�ðx; tÞLðY ¼ yjXt ¼ xÞ

Here, �t is a normalization constant, while L(Y = y|Xt = x)
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is termed the data likelihood and describes the probability
of the observation for each possible position. We shall ela-
borate on this term in the following section.

The two update steps are run recursively in a manner
analogous to the Kalman filter: first forward in time and
then backward to smooth the estimates (Harvey 1989). The
geolocations presented here rely on observations of depth
and tide (Hunter et al. 2003) complemented by the release
and recapture positions. The outcome of such a geolocation
is the probability distribution of the position of the fish at all
time steps throughout its time at liberty. For a mathematical
walk-through of the method, the reader is referred to Peder-
sen (2007) and Thygesen et al. (2008). Given the probability
distribution, it is possible to assess simply the most probable
track that the fish took during its time at liberty, i.e., the
mode of the joint distribution of all positions. To this end,
the Viterbi algorithm (Viterbi 2006) is applied; this recur-
sive algorithm provides the path through the states of a hid-
den Markov model that has the largest overall probability
given the observations.

Data
The archival tags used to collect the data material for this

study were of the type DST-Centi manufactured by Star-
Oddi (www.star-oddi.com) and the slightly larger LTD
1200 manufactured by LOTEK (www.lotek.com). The reso-
lution of depth measurements from the tags is approximately
0.05 m. The tags were programmed to record temperature
and pressure (converted to depth upon download) every
10 min. The temperature records were not used in the
present study. Fish to be tagged were caught by hook and
line and anaesthetized before tagging to minimize the trau-
matization of the individual. The tagging procedure is de-
scribed in greater detail in Righton et al. (2006). Data were
retrieved from the tags after return through the commercial
or recreational fishery.

The quantity and quality of tidal patterns in the resulting
cod depth records show large variation between and within
individuals. For example, the data record of cod No. 2255
(Fig. 1a) contains periods with smooth tidal patterns, periods
with noisy tidal patterns, and periods without tidal patterns,
making the tag well suited for the illustrative purpose of this
paper. The cod was released on 3 April 2001 at 52.448N,
1.788E and recaptured 87 km away on 6 February 2002 at
52.008N, 2.858E, yielding a total time at liberty of
311 days. To show the versatility of the method, a less opti-
mal data set from cod No. 1186 is also geolocated, which
was released on 11 March 2005 at 50.38N, 0.58E and recap-
tured 395 km away on 19 January 2005 at 538N, 48E, yield-
ing a total time at liberty of 315 days.

Tidal prediction model
The tides observed in the North Sea are mainly due to

forcing from the Atlantic Ocean through the English Chan-
nel and north of the British Isles. At a particular location
and time, the tide can be predicted by numerical forecast
models. Such models split the tidal variation into a number
of constituents that represent the characteristic modes of the
system. A superposition of all modes yields the resulting
wave that approximates the one observed in practice. For a
constituent k, the depth variation zk(t, x) at a fixed position,
x, is fully represented by the function

ð1Þ zkðt; xÞ ¼ AkðxÞ cos½!kt � �kðxÞ þ Gk�

where Ak(x) and qk(x) are amplitude and phase, respectively,
associated with this position x, uk is the angular velocity,
and Gk is the phase lag relative to time zero.

A forecast database from the Proudman Oceanographic
Laboratory that included seven constituents (M2, S2, N2,
K2, O1, K1, and M4) was used to predict tidal variations ac-
cording to eq. 1. The database covers an area from 488N to
608N latitude and from 128W to 88E longitude with a reso-

Fig. 1. Example of archival tag data and illustration of the tidal and behaviour classification. (a) Depth record from tag No. 2255. (b) Part
of the depth record for No. 2255 classified with respect to tidal information where the shaded regions mark the detected tidal patterns.
(c) Depth record classified with respect to activity level, where shaded area denotes low activity level, and open area denotes high activity
level. Note that the fish can have a high activity level although a tidal pattern is detected, e.g., around 24 October.
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lution of 1/98 latitude and 1/68 longitude, approximately a
12 km � 12 km grid. The North Sea tidal system is roughly
illustrated by observing its dominant constituent M2, which
has a period of 12.42 h (Fig. 2).

Tidal extraction method
The observed time series was preprocessed to identify

the time intervals in the depth record that contained a tidal
pattern (Fig. 1). The extraction algorithm worked by slid-
ing a 10 h window across the data and successively esti-
mating the best least-squares fit of a sine function to the
observations. The choice of window length is a trade-off:
a shorter window length increases the number of successful
fits but reduces the quality of each fit whereas a longer
window length generates fewer fits but each with more
statistical power. The window length of 10 h was chosen
because it captures most of the dominant 12.4 h tidal cycle
but also allows periods with tidal transport to be extracted.
Of the 144 possible fits within each 24 h interval, the sum-
mary statistics root mean square error (rmse), R2, and
amplitude were extracted and the best fit (lowest rmse)
was used as representative for this day. If the extracted
summary statistics of the best fit fulfilled the criteria that
rmse < 0.42 m, R2 > 0.85, and amplitude > 0.6 m, the cor-
responding observed tidal pattern was stored for use in the
data likelihood computation (see below). These limit values
are hand-tuned parameters that were chosen so that the
quality of extracted tidal signals was optimized. This tidal
extraction technique bears strong resemblance to the meth-
ods applied in Hunter et al. (2003) and Gröger et al.
(2007). If the criteria were not fulfilled, the maximum
depth observation within the 24 h interval was stored to
provide a means to confine the possible positions of the
fish on the given day.

Behaviour classification
Previous studies have shown that the behaviour of cod

tends to be divided into intervals of high and low activity
(Righton et al. 2001). Modelling this dual-state behaviour
with a single constant diffusivity would force the geoloca-
tion model to overestimate the uncertainty of the geoloca-
tion in some parts and underestimate it in other parts. In
addition, if the different periods of high and low activity
are not taken into account in the model, the diffusivity esti-
mate for the entire data set will depend on the quality and
type of the depth data and therefore make comparison of in-
dividuals difficult. As a partial solution to this, we extended
the state–space of the system with a new state variable de-
scribing the activity level of the fish, thus making compari-
sons between individuals much less subjective.

The activity state is a time-dependent indicator function
that, on a daily basis, is classified as either high or low.
The state is, in principle, hidden (not directly observable),
but to preserve the tractability of the problem, we estimated
the activity state directly from the observed depth record be-
fore the actual geolocation step.

For each day in the time at liberty, the activity state of the
fish is determined by testing the following hypotheses: H0:
the fish has a high level of activity (large value of diffusiv-
ity) and H1: the fish has a low level of activity (small value
of diffusivity). Only when H0 is rejected at a sufficiently
high level of significance can the small value of diffusivity
be applied.

Following this thread, we construct a test to determine
whether H0 can be rejected. The test works in a way similar
to the tidal extraction method by fitting a sine wave function
to the observed depth in a 16 h sliding window rather than
the 10 h window required for tidal data fitting. A fit con-

Fig. 2. Amphidromic system of the North Sea here illustrated by the M2 constituent. The thick lines emanating from the amphidromic
points are positions with a constant tidal phase relative to their numbering (hours). Intersecting perpendicular thin lines are positions with
constant tidal range, i.e., difference between high water and low water in metres.

2370 Can. J. Fish. Aquat. Sci. Vol. 65, 2008

# 2008 NRC Canada

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
D

an
m

ar
ks

 T
ek

ni
sk

e 
In

fo
rm

at
io

ns
ce

nt
er

 o
n 

05
/1

5/
14

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



forming to the predefined limit values (see above) of rmse
and R2 rejects H0 and implies a low level of activity in the
current 24 h interval (Fig. 1). If H0 cannot be rejected, a
high level of activity is applied.

The algorithm relies on the assumption that a fish can
only perform a limited migratory movement within a 24 h
interval if it stays at the seabed for a continuous period of
at least 16 h. Often, however, it is the case that the fish
makes minor vertical excursions into the water column re-
sulting in spikes in the tidal pattern. This makes the simple
test fail, which in some cases will reject instances where a
low activity would safely apply. To overcome this, the influ-
ence statistics of the 16 h fit are analysed to spot and ex-
clude these outlying observations that deviate largely from
the tidal pattern. This procedure greatly increases the detect-
able number of intervals with low activity within the time
series and thus improves the uncertainty assessment.

Reconstructing the migration trajectory: building a data
likelihood model

The data likelihood is a value computed for each position
in the discrete grid describing the likelihood of the fish
being in that position given the observation on the current
day. The data likelihood is computed differently depending
on the type of observation, i.e., it is computed either from
the best extracted tidal pattern or from the maximum depth
during that day if no tidal pattern was available.

Using the tidal pattern
The observed tidal pattern, denoted by the vector Yj at

day j, from a demersal fish consists of 60 depth observations
(10 h fit sampled at a 10 min rate) and is assumed to follow
a Gaussian distribution;

Yj � N 60ðbzjðxÞ;�ðxÞÞ
where bzjðxÞ is the predicted tidal pattern from the database
at position x in the domain and S(x) is the covariance ma-
trix that is a sum of four contributions:

�ðxÞ ¼ SE þ S" þ S�ðxÞ þ SeðxÞ

where SE has a white noise structure, S3 has an autoregres-
sive structure of first order, and Sh(x) and Se(x) are the un-
certainty following the discretization of the domain for the
bathymetry and tide, respectively (Fig. 3). The covariance

matrices are estimated from the available data material prior
to maximum likelihood estimation of the movement para-
meters (Pedersen 2007).

The white noise term (Fig. 3a) with a variance of (0.2 m)2

describes the uncertainties invoked by the sensor resolution
of the tag, by noise from environmental influences such as
waves, and by other sources of error that are unknown and
not explicitly modelled. The variance of the white noise
was estimated by comparing observations from moored tags
with the predicted tidal variations on the known location. In
this way, the movement-related uncertainties were elimi-
nated.

For a resident fish and a sample rate of 10 min, succes-
sive observations of depth will be correlated. Uncertainty
owing to small-scale movements around rocks and holes in
the seabed may therefore be modelled as an autoregressive
process, Yi ¼ �Yi�1 þ "i (Fig. 3b). As the statistical estima-
tion of the parameter values, � and the variance of 3i, is not
immediately feasible, we used heuristic estimates based on
the assumption that the small-scale movement of the fish
has decorrelated (reached an autocorrelation of <0.05) after
7 h. This results in � ¼ 0.93. For minor depth variations ow-
ing to small-scale movement, we conservatively set the var-
iance of 3i equal to (0.4 m)2. More work is required to
analyse the small-scale movements to confirm these assump-
tions, but the spatiotemporal dependence of fish movements
makes this exercise complex and is best supported by more
sophisticated observations, e.g., from an accelerometer; this
study is beyond the scope of this paper.

A bottom-dwelling fish is likely to record a mean depth
several metres off the prediction of the bathymetry when
positioned in an area with a large depth gradient. This
bathymetry uncertainty is estimated by comparing the depth
of each grid cell with the maximal depth of its neighbouring
grid cells. The estimated bathymetry variance, Sh(x), accounts
for the large-scale variation by adding a spatial-dependent
but time-constant variance to the observations (Fig. 3c) in
the range from *0 m2 to (750 m)2. A large value of the
bathymetry variance means that the confidence of the ob-
served depth level is reduced and hence that the geoloca-
tion at this position relies only on the tidal pattern if one
is available. Analogous to the bathymetry variance, uncer-
tainty in the tidal predictions is imposed owing to the spa-
tial discretisation. The difference within a grid cell
between tidal predictions of two distinct positions will

Fig. 3. Assumed autocorrelation contributions to the covariance structure of the observed 10 h tidal patterns: (a) white noise (SE); (b) auto-
regressive (S

3
); (c) bathymetry uncertainty (S

h
(x)); (d) tidal prediction uncertainty (Se(x)).
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show a sinusiodal waveform because of slight differences
in amplitude and phase (Fig. 3d). This is accounted for by
computing the variance of the tidal prediction, Se(x), and
including this in S(x). The tidal prediction uncertainty is
computed by comparing neighbouring cells in a way simi-
lar to the bathymetry uncertainty. The range of Se(x) is
from *0 m2 to (0.97 m)2.

The result of a data likelihood computation is an array of
size equal to the discrete domain containing the likelihood
of each position given the observed data (Fig. 4). Owing to
the ambiguity of the amphidromic system, multiple positions
typically appear equally likely although they are spatially
separated. The statistical filter (Thygesen et al. 2008) and in
particular the smoothing step will remove most of this mul-
timodality by conditioning the resulting estimated probabil-
ity distribution on future as well as past observations within
the time at liberty.

The data likelihood at position x is written formally as

LðYj ¼ yjjX ¼ xÞ ¼ 1

ð2�Þ30
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det �ðxÞ

p
�exp � 1

2
yj �bzjðxÞ� �T

�ðxÞ�1½yj �bzjðxÞ�� �
i.e., the probability density function of a 60-dimensional
Gaussian distribution.

Using the maximum depth
In the absence of a tidal pattern in the observations on a

given, day there remains valuable information in the depth
record that can be used for geolocation. Previous studies
have simply excluded positions shallower than the maxi-
mum observed depth in the tag within some uncertainty
bounds (Ådlandsvik et al. 2007). Instead of a threshold, we
assign in the data likelihood a value between 0 and 1 to
each position dependent on its depth and bathymetry var-
iance compared with the observed depth. This provides a

more informative data likelihood than the simple indicator
and exploits the important information in the bathymetry
variance. This is of particular importance, as the variance of
the bathymetry strongly depends on the position in that the
depth of a grid cell on a slope has a high variance compared
with the depth of a grid cell in a flat area.

The data likelihood computation method, inspired by the
one applied in Andersen et al. (2007), assumes that the ob-
served depth at a given position is Gaussian distributed with
mean equal to the depth of the bathymetry, z(x), and var-
iance equal to the estimated bathymetry variance, Sh(x).
The likelihood of a position given a maximum observed
depth (Fig. 5), zj, is found by

ð2Þ LðYj ¼ yjjX ¼ xÞ ¼ �
zj � zðxÞffiffiffiffiffiffiffiffiffiffiffi

S�ðxÞ
p" #

�
�zðxÞffiffiffiffiffiffiffiffiffiffiffi

S�ðxÞ
p" #�1

where F is defined as the cumulated density function of a
standardized Gaussian distribution with the constraint (trun-
cation) zj < 0 and z(x) < 0; hence, the normalization, at
zj ¼ 0, in eq. 2 is required because we cannot observe posi-
tive depths, and therefore, an observed depth of >0 m must
always result in a data likelihood value of 1.

Supplementing with the recapture position
Typically, a recapture position is reported at the retrieval

of the tag. This position may be subject to misreporting or
inaccuracy. Regardless, the recapture position is of particu-
lar importance if tidal information is scarce and will effec-
tively rule out dead ends and narrow down the estimated
probability distribution towards the end of the time at lib-
erty.

We modelled the reported recapture position as an un-
biased measurement, where the error is bivariate Gaussian.
We chose the variance in this distribution subjectively but
conservatively. The choice of a Gaussian distribution is
purely arbitrary owing to a lack of information about this

Fig. 4. Principle of the data likelihood computation when a tidal pattern is present. (a) Observed depth compared with the corresponding
predictions from the tidal model at three distinct positions marked in Fig. 4b. (b) The light grey areas are the 95% confidence areas for the
data likelihood. It is evident that multiple predictions fit the observed tidal signal because of the ambiguous nature of the amphidromic
system. In this particular example, locations 1 and 2 fit well with the observed signal, whereas location 3 clearly does not.
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distribution. One might in some cases consider applying a t
distribution with a small number of degrees of freedom to
increase the probability of extreme deviations between the
actual and the reported recapture.

By conditioning on the position, the depth observations
and the reported recapture position become independent sto-
chastic variables. Therefore, the likelihood contributions
from the two terms are simply multiplied to obtain the data
likelihood function.

Results

Tag No. 2255
The cod was captured, tagged, and released close to Low-

estoft, UK, and, according to the most probable track, imme-
diately began a migration to the north, settling down after a
month at approximately 54.58N, 0.58W (Fig. 6a). Here, it
stayed for another month before relocating a bit farther
north to an area around 558N, 18W, where it stayed for a
prolonged period until late September at a constant depth of
around 90 m (Fig. 6b). Then the activity level gradually in-
creased and eventually a southwards migration brought the
cod to a position at 51.758N, 2.58E, around 9 January and
was recaptured a month later at approximately this position
(Fig. 6c). The cod showed many long periods of inactivity,
particularly during the summer when a continuous smooth
tidal signal was measured spanning more than a month
from late July until early September. The tidal extraction al-

Fig. 5. Principle of the data likelihood computation when a tidal pattern is absent. (a) The maximum depth within the 24 h interval is used
when a tidal pattern is undetectable. (b) Data likelihood computation for a candidate position. To determine the likelihood value, the max-
imum observed depth value is compared with a truncated Gaussian cumulated density function with mean and variance equal to the depth
and bathymetry variance at the given position.

Fig. 6. Most probable track of tag No. 2255; the solid circle is the initial position of partial track and the shaded circle is the end position of
the partial track. (a) The fish was released off Lowestoft on 3 April and migrated north to its summer residence by 30 April. (b) Here, it
stayed until 18 November and performed only minor swimming activity during this period. (c) Then the fish returned to the southern North
Sea and was recaptured close to the English channel on 6 February of the following year.
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gorithm found a total of 198 days with a tidal pattern of suf-
ficient quality out of the 311 days that the fish was at lib-
erty.

The maximum likelihood estimates (MLEs) of the diffusiv-
ities were 17.4 and 149 km2�day–1 for low and high activity,
respectively, with a standard deviation of 2.69 and
28.5 km2�day–1, respectively. The MLEs were found using
the simplex search method. The likelihood surface was
smooth around the optima, which enabled us to estimate the
uncertainty of the MLEs from the Fisher information. For
comparison, we carried out a calculation with only one move-
ment parameter, i.e., one behavioural state. This resulted in a
MLE of the diffusivity of 57.6 km2�day–1 with a standard de-
viation of 6.6 km2�day–1. The statistical difference of the two
parameterizations can be quantified by a likelihood ratio test.
This essentially determines if a two-diffusivity model im-
proves the likelihood of the MLE significantly compared
with a one-diffusivity model, i.e., it determines whether the
fish showed at least two different types of behaviour. The
likelihood ratio test statistic is ZLR ¼ 2½‘ðbDÞ � ‘ðbD0Þ� ¼ 68,
where ‘ðbD0Þ is the log-likelihood value of the MLE in the
one-diffusivity case, and ‘ðbDÞ is the log-likelihood value of
the MLE in the two-diffusivity case. The test statistic ZLR is
c2 distributed with 1 degree of freedom resulting in a p value
for the test of p < 10–15, which is highly significant at all rea-
sonable levels. This result provides evidence that No. 2255
switches its activity level in a way that is well estimated by
the classification algorithm.

The uncertainty of the marginal distributions estimated on
a daily basis depends on the diffusivity estimate and on the
type and quality of data. At times, particularly in the first
half of the data set when the activity level was low, the mar-
ginal distributions were very narrow (Fig. 7a). Often, in this

period, the precision of the geolocation was limited by the
discretisation (12 km � 12 km) of the domain rather than
of the quality of the data. In the latter part of the data set
where activity was high, the estimated marginal distributions
widened owing to the lack of tidal information in the depth
record (Fig. 7b), an unavoidable uncertainty of the position
given the low quality of the information available.

Access to the probability distribution of the position al-
lows us to sample random outcomes of this distribution,
i.e., random tracks that the fish might have swum. By sam-
pling of a batch of tracks, we can estimate the probability of
the fish having visited some specific region, e.g., crossed the
border of a marine protected area or the probability of the
fish having picked one of many possible routes to reach a
destination (Ådlandsvik et al. 2007, their figure 5b). Here,
we sampled 1000 random paths of tag No. 2255 and found
that 54 of the random paths entered ICES area VIId in the
eastern English Channel towards the end of its time at lib-
erty. Crudely, this equates to a 5.4% probability of this
event, although a more robust statistical framework would
be required to evaluate the significance of this result in a
fisheries management context. Nonetheless, it is an indica-
tion that summary statistics of this type may be relevant to
estimate if one wishes to investigate the mixing of popula-
tions and the behaviour of individuals in relation, e.g., to
ICES areas.

Tag No. 1186
The estimated movement of this cod shows a similar type

of periodicity as tag No. 2255 (Fig. 8). The fish was at lib-
erty for 315 days and spent its first 3 months migrating west
from its release position in the eastern English Channel
(Fig. 8a). For 6 months, it resided at the western end of the
English Channel in the Celtic Sea (Fig. 8b) before returning

Fig. 7. Probability distributions of the position of tag No. 2255 on (a) 23 June 2001 and (b) 6 December 2001 estimated in the two-mode
behaviour model. Light shading is the 95% confidence region, dark shading is the 50% confidence region, and the circle is the mode of the
distribution. (a) The distribution off the northern English coast is narrow owing to the high quality of tidal information and low activity
mode of the fish in this time step. (b) Distribution at a time step where the fish was pelagic, i.e., no observed tidal information, thus causing
the distribution to widen. The maximum recorded depth is used to exclude positions on the Dogger Bank, enforcing a hole in the distribu-
tion. This illustrates the ability of the method to estimate distributions that take on arbitrary forms.

2374 Can. J. Fish. Aquat. Sci. Vol. 65, 2008

# 2008 NRC Canada

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
D

an
m

ar
ks

 T
ek

ni
sk

e 
In

fo
rm

at
io

ns
ce

nt
er

 o
n 

05
/1

5/
14

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



east and continuing the migration to the southern North Sea
(Fig. 8c).

The movement away from the English Channel into the
Atlantic Ocean where tidal variation is less pronounced re-
sulted in high values of the diffusivity estimates and with
large variance. In such a case of reduced data quality, it
may be reasonable to use, as prior information, the diffusiv-
ity estimates from a high-quality depth record (such as No.
2255) geolocated in areas with prominent tidal variation to
improve the geolocation. Without applying this correction,
the apparent movement in the residing period (Fig. 8b) may
be due to uncertainty in the tidal forecast model. To correct
for this, it would be required to also consult the estimated
probability distribution that expresses the geolocation uncer-
tainty.

Again, the nature of the track with clear periods of high
and low activity emphasizes the need for at least two re-
gimes in the behaviour model. This matter is well illustrated
by the return migration where a distance of 900 km is cov-
ered in 41 days as compared with the much lower activity in
the middle part of the time at liberty.

Discussion
The geolocation method that we have described, termed a

direct FPM, is a considerable evolution of the tidal geoloca-
tion method (TLM) described in Hunter et al. (2003). We
made two fundamental advances: (i) successive geoloca-
tions, even those separated by many days, were linked to-
gether to create a continuous estimate of geographic
location, and (ii) correlation of position estimates was im-
plemented rather than treating singular positions as inde-
pendent observations. This has the benefit that not only are
reconstructions of migrations more precise, the reconstruc-
tions provide a genuine assessment of certainty that a se-
quence of independently reconstructed geographic locations
can sometimes falsely convey. In addition to these advances,
our method achieved greater accuracy of geolocation by tak-
ing the behaviour of individuals into account.

Accuracy of the FPM
Errors in the FPM can occur at one or more of the stages

of the reconstruction process, and a considerable advantage

of the method is that most of these errors can either be con-
trolled or reported on so that an integrated assessment of the
reliability of the migration reconstructions can be made. The
errors that are most likely to occur are estimation of tidal
parameters in the data record, error in the tidal database it-
self (Hunter et al. 2003), estimation of the (two different)
diffusion coefficients, and error during the filtering process
(Thygesen et al. 2008). For example, the mean positional er-
ror of the TLM varies between 10 and 80 km, depending on
location, with the greatest errors found at locations midway
between amphidromic points.

Overall, however, the errors generated by estimating tidal
parameters and the uncertainty that can arise when suitable
tidal data cannot be extracted are likely to be the greatest
source of uncertainty in reconstructing migration pathways
(Hunter et al. 2003), i.e., fish spend only brief periods of
time close to the seabed and are highly mobile at other
times (Hunter et al. 2006; Righton et al. 2007). In the ab-
sence of a tidal pattern, the FPM only uses the maximum
depth on the given day to give some coarse geolocation.
The FPM therefore addresses the problem of low informa-
tion implicitly by using what knowledge that can be ex-
tracted from the depth record, and the information on prior
and succeeding geolocations, to adjust the uncertainty of the
geolocations. The geolocation of a given day is therefore
conditioned on the information of all days and uncertainty
is reduced even when the data information on the specific
day is weak.

The FPM also addresses the problem that animals tend to
move in irregular patterns with many small movements in-
terspersed with the occasional large movement (Benhamou
2007; Sims et al. 2008). Our method, if necessary, derives
two diffusivity values related to different activity levels of
the fish to directly adjust the uncertainty of geolocation at
different times. At other times, if the observations do not
imply that the fish has two behaviours, the maximum likeli-
hood estimate of the two diffusivity parameters is reduced to
one diffusivity parameter. Our results show that this method
is statistically robust and provides a more accurate measure
of position on any given day than by using a single parame-
ter. The model also shows that multiple activity levels are a
feature of cod behaviour and migration. For data sets in
which the distinction between different behaviours is less

Fig. 8. Most probable track of tag No. 1186; the solid circle is the initial position of partial track and the shaded circle is the end position of
the partial track. (a) The fish was released in the eastern English Channel on 11 March and migrated west through the Hurd Deep area over
a period of 3 months. (b) From 1 June to 5 December, it stayed just west of the English Channel within a relatively limited area. (c) Then it
executed a migration east through the English Channel and into the southern North Sea in a time span of just over a month, being recap-
tured eventually on 19 January of the following year.
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obvious, it should still be possible to include and estimate
the activity level as a hidden state within the hidden Markov
model filter. However, this approach complicates matters
significantly in terms of statistical implementation and com-
putational demands and is far from a trivial task. Addition-
ally, in theory, there is no reason why the model could not
be extended to include several more levels of activity at the
expense of run time, although it would not be likely to add
much more information than the two-parameter model cur-
rently provides and may be very difficult to parameterize
and validate. As it is, the model is already capable of pro-
viding a much more accurate and precise estimate of loca-
tion and movement rate than was previously possible.

Ultimately, it is not trivial to give a single standardized
measure of the accuracy of the FPM in reconstructing the
migrations of cod because of the lack of data against which
to validate the positional estimates. Initial studies showed
that geolocation analyses of moored tags yielded consistent
position estimates that were in correspondence to their true
geographical position (Pedersen 2007). In this sense, the
FPM produces accurate results, even though temperature
data were not used to validate positional estimates. In addi-
tion, the method also produces qualitatively similar results
to reconstructions made with a simulation method (Righton
and Mills 2008) that uses depth and temperature data to es-
timate geoposition and therefore successfully captures the
same overall pattern of movements of individual cod, as
have been described previously (Turner et al. 2002; Righton
et al. 2007). However, the relative simplicity (depth only)
and transparency of the FPM gives it an advantage over the
simulation method because it requires only bathymetry and a
tidal database rather than a temporally and spatially resolved
temperature database.

Application of the FPM
The TLM has been used to describe the migrations of

plaice in the North Sea (Hunter et al. 2004), but the applica-
tion of the method to other species has been limited because
few other species that are large enough to be fitted with elec-
tronic tags spend sufficient time close enough to the seafloor
for similar analyses to be undertaken. In addition, the TLM
can be time intensive and produce multiple estimates of loca-
tion that can be difficult to discriminate between. Together,
these problems can hamper the reconstruction of migration
pathways in cod (or any species that spends significant time
away from the seabed) because suitable algorithms for proc-
essing the uncertainty have not, until now, been available
(Turner et al. 2002; Hunter et al. 2003). Reconstructions of
migrations of, e.g., cod to date have therefore been necessa-
rily simplistic (Righton et al. 2007). Our reconstructions of
cod migrations with the FPM showed that, even though there
may be long periods of time when individuals cannot be lo-
cated using the TLM, the inferential power of the FPM pro-
vides valuable daily estimates of position and the uncertainty
of those estimates. The quality and frequency of the posi-
tional estimates are sufficient enough that it is easy to imag-
ine their use within individual-based models of fish
movement, therefore enabling simulations of the effect of
stock movements or mixing. The nonparametric representa-
tion of the estimated probability distribution also makes the
FPM a source for interesting new applications of archival

tag data. The ability of the method to handle any type of ar-
chival tag data and a free choice of data likelihood computa-
tion technique can make the FPM a building block for more
advanced statistical geolocation such as implementation of
complex behaviour models or incorporation of robustness to-
wards outlying position estimates, e.g., from GPS tags or
from light-based tags that provide raw geolocations as out-
put. In turn, these advances make possible new analyses of
migration mechanisms and behaviours and will help to shed
light on the underlying behavioural processes that govern
habitat selection or foraging behaviour (Sims et al. 2006).

Models of population movement used to delineate the
structure of fish stocks or changes in abundance in space
and time are becoming increasingly sophisticated (Metcalfe
2006; Metcalfe et al. 2008). This has been encouraged by
the requirement for ‘‘evidence-based’’ fisheries policies. A
recurring theme of these policies, considering the difficulty
of characterizing accurately the features of the marine envi-
ronment, is the need for assessments of how reliable the in-
formation is and to attach an estimate of certainty to any
evidence that may be used to define or support policies. At
a basic level, estimating the likelihood that an individual
visits a delineated area is an important first step because
this has an immediate application to identifying stock iden-
tity and the risk of capture as well as to the potential utility
of closed areas. A direct link to population-level models has
yet to be developed for the FPM method, but a crude ap-
proach that simply averages multiple distribution estimates
could be used as a first approach (Andersen et al. 2007).
However, high-quality representative data sets are needed to
create a statistical population model with a large number
(>100) of reconstructed migrations that capture the appropri-
ate spatial and temporal scales (Hunter et al. 2005). This ap-
plies not only at the individual level but also with respect to
the experimental design of the tagging study, i.e., data span-
ning all seasons and possibly stratified spatially as well as
with respect to age and species. One should therefore bear
in mind the application of geolocation techniques when
planning new studies and enhancing existing studies.
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