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Abstract

An algorithm for time-adaptive quantile regression is presented. The algorithm is based on the simplex algorithm, and the linear
optimization formulation of the quantile regression problem is given. The observations have been split to allow a direct use of the
simplex algorithm. The simplex method and an updating procedure are combined into a new algorithm for time-adaptive quantile
regression, which generates new solutions on the basis of the old solution, leading to savings in computation time. The suggested
algorithm is tested against a static quantile regression model on a data set with wind power production, where the models combine
splines and quantile regression. The comparison indicates superior performance for the time-adaptive quantile regression in all the
performance parameters considered. !
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The most commonly used statistic is the mean, and least squares methods for estimating the mean are well known.
However, the mean value does not give any information on the random behavior of the data, and more information is
therefore often requested. Pinson et al. (2007c) show that using an advanced prediction tool for wind power prediction
for the Dutch market led to 38% savings in trading cost. If a reliable estimate of the uncertainty of the future wind power
was also available, a further saving of 39% of trading costs could be obtained. In this paper wind power predictions
will be used to demonstrate this method.

One way of obtaining information on the random behavior of the prediction errors is to estimate higher order moments
of the data. If some assumptions are made on the distribution of errors, then a finite number of moments will characterize
the distribution. E.g. if the error is assumed to be Gaussian then the two first moments characterize the distribution
completely.

However, it is often not reasonable to assume a specific, known distribution of the data. In this case quantile regression
is a way of estimating quantiles directly using linear regression techniques. In addition to the distribution of data being
unknown, it is often reasonable to assume that the distribution of data varies over time. For slowly varying non-stationary
systems time-adaptive mean value regression as described by Ljung and Soderstrom (1983) has proven to be effective
in many applications. This article offers an algorithm for time-adaptive quantile regression.
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The loss function for quantile regression is based on a weighting of the absolute values of the residuals. Such
problems can be solved using linear optimization techniques. Portnoy and Koenker (1997) give a nice discussion
of some of the algorithms available for quantile regression. The algorithms discussed in this paper are all available
in the add-on package “quantreg” for “R” (available at http://www.r-project.org/). The paper shows that quantile
regression methods can be very fast, also compared to mean value regression. However, these algorithms do not offer
the possibility to use knowledge about the solution of the system. The aim of this article is to present an algorithm where
knowledge about the solution at time # is used to solve the system at time ¢ + 1, thereby reducing the computational
effort and increasing computation speed.

In this article we present the linear optimization formulations of the quantile regression problem and propose a
solution using the simplex method directly. This enables a formulation suitable for computer implementation. The
implementation of the simplex method is then combined with an updating procedure to update information related to
the actual estimates.

An example of a system that has demonstrated a need for time-adaptive methods for mean value regression, is wind
power predictions (see Madsen, 1996; Madsen et al., 2005). As was explained in the beginning of this section, there
are huge potential economic benefits from good estimates of the uncertainty in wind power predictions. The last part
of this article presents the results from applying the time-adaptive quantile regression methods, combined with splines
basis functions to wind power predictions. In online settings for wind power prediction data often arrive every 15 min
making it possible to update the solutions at each of these time points. The strength of the methods is illustrated in
this example, where the time-adaptive method proves to be superior to corresponding static models. The section also
provides some promising timing examples for the method.

Chambers et al. (2006) present an algorithm for updating univariate quantile estimates. The approach in this paper
is to update empirical quantiles as new data become available. Even though the problem set up is somewhat different
from the one presented here, the article motivates the need for time-adaptive quantile estimation. As a main difference
time-adaptive quantile regression offers the inclusion of regression parameters.

2. Quantile regression

Quantile regression as presented by Koenker and Bassett (1978), is based on a linear model
y=x"B+r=0@x) +r, (1)
which is fitted using an asymmetrical and piecewise linear loss function

Tr, r=0,

p*”:{u—lm r <0, &

The observation equations are written as
y=Xp+r. (€)

X is called the design matrix, ﬁ is the coefficients to be estimated and y is the response from the system. The estimate
of p € RX given N observations is

N
B =argmin 3 pe(r)) = arg min S:(B: ). @

i=1

This is a linear optimization problem. Koenker and Bassett (1978) show that a solution to Eq. (4) is

B = X ()" y(h), (5)

where & is a K element index set from the set Q = {1,2, ..., N}. X(h) refer to rows in X, as this notation is also
used in Koenker (2005) and Koenker and Bassett (1978). Solutions like this are obtained using linear programming
techniques. In general interior point methods are considered superior to the simplex algorithm for large problems, see
Koenker (2005, p. 190). The simplex method is, however, expected to be a reasonable choice, if a good candidate for
ﬁ is available. This is referred to as a “warm start” problem by Nielsen (1999, p. 75).
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This article presents an algorithm for time-adaptive quantile regression. The algorithm is based on the simplex
method. We use the simplex algorithm to update the solution directly as new observations become available. The
structure of the quantile regression problem is exploited to enable an efficient implementation of the simplex
algorithm.

3. The linear optimization formulation

A linear optimization formulation of the quantile regression problem is
min{rlTr+ + (1 — r)lTr_ :Xp +rt—r =y, T r)e [R{(%N, P e [RRK}, (6)

with rl.+ =1(ri 20)r;, r; = —1(r; <0)r;, and 1 a vector of ones. This formulation is also given by Koenker (2005,
p. 181). Koenker (2005) goes on to formulate the dual problem, here we will examine the direct simplex formulation of
Eq. (6). The formulation uses what Chvatal (1983) refer to as the revised simplex method. The close connection to the
dual simplex formulation becomes clear if the results presented in this article are compared with the results presented
by Koenker (2005, p. 182).

In a more compact notation Eq. (6) can be written as

min{c'z: Az=y, ¢, r7) e RV, p e RX}, 7
with
0k B
c= 71 ,oz=|rt |, A=[X,I, -I]. 8)
(1-71 r-

The simplex algorithm moves through vertex solutions, i.e. solutions on the edge of the feasible region in the direction
of better objective functions (c'z). At a vertex the equality constraints in Eq. (7) can be written as

Az =Bzg + Czg =Y, )
where (4, ) is a partition of the index set {1, 2, ...,2N + K}. This index set refers to columns in the matrix A; note

here that X € RV*K and A € RV *@N+K) This partition is such that B = A. 4, A. 4 refer to the columns of A defined
by 4 is a square matrix with an inverse and z¢ = 0.

To give an intuitive interpretation of the simplex algorithm for quantile regression, we write down the observation
equations at a vertex

y=Xp+r=Bzy. (10)

Now let an estimate of f§ be given by an index set & cf. Eq. (9), it is required that rank X = K. It is not demanded that
P is the best estimate. With f written like this, we have

y(h) =X (M)B+r(h) = X)X () ~"y(h) +r(h) =y(h) +r(h), Y

this immediately gives r(h) = 0. The matrices B and C can therefore (using Egs. (10) and (11) and interchanging rows)
be written as

B:|:X(}_l) 0]; C:|:1K —Ig 0]’ (12)
X(h) P o 0 =P

where P = diag(p) is a diagonal matrix with diagonal elements equal to the sign of r(h), ie. p = sign{r(h)},
h = Q\h and Ik is the K x K identity matrix. To emphasize how this is connected to the linear model rewrite
Eq. (10) as

h 2(1: h h
bl =L ] = L2 Lo = Lo )+ L] ®
y(h) o LX®) Pirinl]~ Lxan 1" Lrdiy
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The simplex algorithm moves from vertex to vertex by moving along the edge of the feasible region. Moving along
this edge is the same as moving one of the elements from (%) away from zero, while keeping the rest of these at zero,
until a new vertex is reached, i.e. until one element from (%) reaches zero.

Following Chvétal (1983, p. 103) and Nielsen (1999, p. 68) the inverse of B is needed to perform a simplex step. In
the case of quantile regression this is found by examining Eq. (12), and noting that P = P~! (the diagonal elements
are either 1 or —1), the result is

. X(h)™! 0
B! = [ - » } ) (14)
—PX(HX()~™' P

From an implementation point of view this is very important, since X (k) will be very small compared to B (at least for
the problems considered here). So B is inverted by inverting a small matrix and using simple matrix multiplications.
The first part of the simplex algorithm is to identify if there are directions with negative slopes. The slopes along the
edges of the feasible region are given by

A=cy—C'g; g=B ey (15)

A is the marginal cost of moving a zero element from z¢ away from zero. Since the system is at a vertex these are the
active constraints which should be examined. By straightforward matrix multiplication A can be written as

p(1g) X" T XTPp(p) tlx —g(h)
A=|p=1g) | = | X TWXTPp@p) |=| (1 -0lx +gh) |. (16)
p(=p) —p(P) p(—p) + p(p)

Since p(-) is greater than or equal to zero, this shows that the only possible descent directions are the first 2K directions.
These correspond to moving an element of (%) in either a positive or a negative direction. It is therefore sufficient to
look at the first 2K elements of A, we denote these by A,.

The negative elements in A, determine the directions in which the objective function is improved. This residual is
now increased until one element in z» becomes zero. When this happens, an element from % swaps place with an
element from %, and the algorithm starts over. When a negative element, s, from A, has been chosen, the corresponding
direction can be determined. This direction is denoted d and is given by

d=BC., (a7

The columns of C are vectors with all elements except one are equal to zero, this element is equal to either plus or minus
one. The first 2K columns in C, correspond to moving an element of r(%) in either a positive or negative direction.
These are (as shown in Eq. (16)) the relevant ones in this context. These are equal to the sign of the new residual when
we move in the direction determined by s. Thereby the direction d becomes one of the first K columns from B~! times
the sign of the new residual. The last step is to find the largest « such that

|r(h)] —oad(K +1: N)>0. (18)

The element g of d which limits « determines which element %(q) of 4 has to be swapped with € (s). In our imple-
mentation, d is calculated in each descent direction giving a series of directions d, , . .., dy,, (J < K). o is calculated
for each of these descent directions. The direction that gives the largest improvement in the objective function is
chosen, i.e

s =arg m'in(otsj AS/.). (19)
j .

This concludes one step of the simplex algorithm and the method is ready to start over. The solution is optimal when
A, >0 at which point the algorithm terminates.

The standard simplex strategy for choosing the descent direction is to choose the steepest descent direction. The
strategy presented here gives the largest improvement in the objective function. This is possible because the number of
descent directions is small. The strategy for choosing o is the standard simplex strategy, i.e. moving to the next vertex.
Barrodale and Roberts (1973) present a strategy where more vertices are crossed in one step. This is possible in the
quantile regression formulation because the constraints are somewhat artificial.
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It can be illustrative to consider an analytical development of the quantile regression problem. This is done in
Appendix A, where the conclusions above are reached using directional derivatives.

3.1. Remarks on the implementation

The implementation of the simplex algorithm for quantile regression follows very closely the general algorithms
given in Chvital (1983, p. 103) and Nielsen (1999, p. 68). However, the special structure of the quantile regression
problem as discussed above is exploited to enable efficient implementation. Koenker (2005, pp. 182—184) gives the dual
formulation of the quantile regression problem. A comparison between the formulation given there, and the formulation
suggested here show a close connection between the revised simplex formulation and the dual simplex formulation.
A detailed description of the steps is given in Mgller (2006) and Moller et al. (2006). The first reference concentrates
on the mathematical development, while the second focuses on the implementation aspects. These references also
comment on numerical issues that need to be addressed in the development of the procedure.

4. The time-adaptive method

In this section the simplex method outlined above is extended to enable iteration to the new solution when one
observation is changed as described in the Introduction. It will be assumed that we have the optimal solution at each
time point, and hence the simplex method iterates from the optimal solution at time ¢ to the optimal solution at time
t+1.

To emphasize the role of time we rewrite Eq. (5) as

B () = X (h) 'y, (hy). (20)

In order to estimate h;1, h; is used as a start guess and the simplex algorithm then iterates through vertices to the
optimal solution.

The design matrix is updated by letting one observation leave the design matrix every time a new observation becomes
available. A simple way of doing this is to let the oldest observation leave the design matrix. This and other algorithms
for forgetting old observations have been tested. In general let /; denote the index of the row in X;, which is marked
for deletion at time ¢ + 1. If the row that is marked for deletion is in /;, then it cannot be deleted, since /; is needed to
perform the first simplex step. In this case one simplex step away from this solution is taken. This is essentially done by
setting the cost of the corresponding residual equal to zero, i.e. setting p(r,,,) = 0. This will ensure that the objective
function is improved by taking this step.

The simple strategy for updating the design matrix X, is

sz Yt
X, = Sl o= s 2D
x;r_n Yi—n

where n is a predefined number. This strategy just leaves out the oldest observation as a new observation becomes
available. We will describe a more general strategy in this paper.

The steps of the adaptive procedure are to decide which observation should leave the design matrix. This is then
marked for deletion and the variables needed for the simplex algorithm are updated. Finally the simplex steps needed
to go to the next optimal solution are taken. In summary the general procedure is

(1) Decide which row, x;,. , has to leave the design matrix.

(2) If l;41 € h; takes one simplex step s.t. l;41 & h;.

(3) Update X, y, P, h and c 4.

(4) Perform the simplex steps needed to get to the optimal solution at time ¢ + 1.

The individual steps are described in some detail below.
Step 1: Different procedures can be chosen in this step. The procedure presented here uses an explanatory variable
(not necessarily in the model), associated with the observations to decide which observation has to leave the system.
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Denote the explanatory variable for the forgetting structure by u, andlet {.#1, ..., .7 ,} be a partition of the sample space
of u. Let the maximum number of allowed observations from each bin, .7 ;, be npax. Let further 7, ={1,2, ..., 1},
where 1y is such that
0]
max {Z I(u; € fj)] <Nmax- (22)
N
All observations until time 7 are collected in the matrix X, and the vector ¥, these are given by
x;r Yt
)?l = : ) yl = : . (23)
xf Vi

The design matrices X;, as time goes by, are drawn from this collection of observations (X; = X (#;)). The variable
marked for deletion in each bin is

; {min{iluiefj,ie/t} if Zieftl(u,-efj)znmax,
(+1,j =

@ otherwise
and the index of the leaving variable at time 7 + 1 is

lev1 = {liy1,jlur1 € S5} (25)

This construction checks if the bin of the new observation is full. If this is the case, then the oldest observation from
this bin is marked for deletion. Otherwise no observation is marked for deletion.

There are now two possibilities either l;1 ¢ h; or l;41 € h;. If [;41 ¢ h; then the algorithm goes directly to Step 3.
Otherwise the algorithm goes to Step 2 and changes h; such that [, ¢ h;.

Step 2: If the leaving variable is in /,, then it cannot be removed, since the solution depends on the inverse of X ((hy).
Therefore if [;11 € h; one simplex step is performed with a new objective function, where the loss on r(l;+1) is set
equal to zero. This corresponds to setting c¢ ({/;, /; + K}) = 0. The result is that two elements of the simplex vector
A, are changed. The elements we have to change are the elements corresponding to /;1. Denote these by Alr, we then
have

(24)

AL [—gam)] | o6
g(li11)

It is therefore only necessary to calculate the two elements of Alr corresponding to ;1. This determines the descent
direction and gives us s. If g(/;11) = 0 then this will not be a descent direction. However, we can take one simplex step
away from this; the direction is then not important. With this we can find d and thereby o and ¢, which was the variable
that had to enter /;. Having swapped /,;.1 and ¢ we are ready to update the design matrix and the vectors needed for
the simplex algorithm.

Step 3: The index set that defines the design matrix is now updated by

1 ={I\lr41,t + 1} 27)
The design matrix and responses are changed to

Xes1 = Xen1 (F141)s Yot =Fr1 (Fr40)- (28)
The residuals at time ¢ + 1 are

reet =Y — Xes1 B (0. (29

With this the variables needed for the simplex algorithm can be written as

Diy1 = sign(rr41) 30)
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and

AR 31)

This concludes Step 3.
Step 4: With the updated variables the simplex steps needed to get to the optimal solution are now taken according
to the algorithms given in Section 3.

Remarks. Asis seen from the algorithm, a large part of effort in both the updating procedure and the simplex algorithm
is to keep track of indices. In this presentation the design matrix is drawn from a matrix with all previous observations.
This was done for notational convenience, but it does not mean that we have to store all previous observations. When
an index has left 7, it cannot return. It is therefore only necessary to have access to the observations in X; = X (F) €
RUmaxPIXK § o the storage requirement is 1y, times the number of bins times the number of observations.

The full Matlab implementation is given in Moller et al. (2006), where the implementation is presented line by line.
There is currently ongoing work to implement the algorithms in C 4 +, this work seems very promising.

5. A case study

The example presented here uses data from a wind power plant located at Tung Knob near Samsg in Denmark. The
data is presented in detail in Nielsen et al. (2006) and Mgller (2006).

The data set consists of forecasted power production (pow. fc) from WPPT (Wind Power Prediction Tool, see
Madsen et al., 2005) and prediction error (pow . pe) from WPPT. In addition, meteorological forecasts at the site are
available, and the forecasted power is based on some of these meteorological data. The power forecasts are based on
meteorological forecasts given every morning at 06:00 UTC with a horizon of 18-36 h and a resolution of 15 min. The
data set consists of data from the period January 1-October 31, 2003. The total number of data points is 21,753. The
nominal power for the wind power plant is 5 MW.

In general, the operational setting for such wind power predictions is that data arrive every hour or every quarter-
of-an-hour. The meteorological forecasts are given every morning or possibly every 6 h. WPPT then forecasts future
wind power production based on these forecasts and with a horizon of 1-48 h. There is therefore an opportunity to
update the quantile estimates every hour or every quarter-of-an-hour. In addition, the system will work on several wind
power plants with the data arriving in the same way. The requirement for the algorithm would therefore be to update the
result every hour or quarter-of-an-hour simultaneously for all the wind power plants being monitored and all required
quantiles. We only give the 25% and 75% quantiles here, this, however, will not be sufficient to enable an optimal
trading strategy.

The aim is now to use time-adaptive quantile regression to model quantiles of prediction errors from WPPT. Such
quantiles are expected to be unknown non-linear functions of the forecasted power. Spline basis functions are therefore
used to model the relationship.

The quantile models studied here are given by

K—1

Q(t; pow.pe) = fy (1) + fi(pow.fc, 1) = By, (7) + Z bj(pow.fc)f; ,(7), (32)
Jj=1

where pow . pe is the prediction error from WPPT, pow. fc is the forecasted power, 7 is the required quantile. The
b’s are natural cubic B-spline basis function (see de Boor, 1978), with fixed level such that f(0) =0. This construction
ensures uniqueness if more input variables are added in an additive model (see Nielsen et al., 2006; Hastie and Tibshirani,
1990). K is the number of knots (including boundary knots) used for the spline basis functions.

The model examined here has the knots for the spline basis functions placed in steps of 20% quantiles of forecasted
power on the training set, which is the first 10,000 data points. The considered quantiles are the 25% and the 75%
quantiles. This model is now examined with different updating strategies, i.e. the total number of elements in the design
matrix is changed and the placement of the bins for the updating procedure is changed.

Four different adaptive models and one static model are used to illustrate the strength of the adaptive model. The
models are
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75% quantile d=5
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Fig. 1. The left panel of the figure shows the time evolution of model Adap 4 for the 1st and the 3rd quantiles, the right panel shows two cuts through
the planes to help interpret the figure, the red line is the 75% quantile and the blue line is the 25% quantile. The triangles mark the placement of the
knots for the splines. Units are in MW.

Reference: A static model with the first 10,000 data points used as training set, and the remaining part of the data set
used as test set.

Adap 1: An adaptive model with a gliding window with 10,000 data points.

Adap 2: An adaptive model with a gliding window with 5000 data points.

Adap 3: An adaptive model with bins placed at the knots, i.e. the sequence of borders is {—o0o0, 308 kW, 789 kW,
1465.5kW, 2701 kW, oo}. The number of elements allowed in each bin is 1200.

Adap 4: An adaptive model with the borders of the bins placed at { —oo, 800 kW, 1600 kW, 2400 kW, 3600 kW, oco}.
The number of elements allowed in each bin is 1000.

Fig. 1 shows plots of model Adap 4 (on the test set). The left panel shows the time evolution for two quantiles, while
the right panels show two cuts through these planes. The right panel also helps to interpret the two figures in the left
panels. The figure shows that the model changes over time. This indicates that time-adaptive models should be used,
at least with the explanatory variable chosen here.

The model is updated every 15 min, we will however only use the newest estimate available at 06:00 UTC to evaluate
the quantiles. This corresponds to an operational setting for the presented data.

Quantiles and prediction intervals can be evaluated in many different ways and there is no single generally accepted
protocol for such evaluations. Pinson et al. (2006, 2007a, b) go through some methods for evaluating quantiles and
intervals. We will consider two measures of performance, namely reliability and skill score. Reliability measures the
model’s ability to split the observations as required by the nominal value of the quantile.

Obviously a good model should be able to split an observation set in the required proportions from a global perspective.
This will be denoted as overall reliability and is addressed in Table 1. The model should also be able to split the
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Table 1
The overall reliability for the time-adaptive models and the reference model

Model Reference (%) Adap 1 (%) Adap 2 (%) Adap 3 (%) Adap 4(%)
Below 75% (test) 83.9 78.6 77.2 77.6 77.2
Below 25% (test) 22.6 22.9 25.7 25.1 25.0

The best performer in each row is marked in bold face.

Below 25% Below 75% Between 25% and 75%

-0.2 Adap 2 -0.2
—— Adap 1 — Adap 3 —— Adap 4
0 2000 4000 0 2000 4000 0 2000 4000
pow.fc pow.fc pow.fc

Fig. 2. The figure shows derivation of the local reliability from the required reliability for the models presented above. Units are in kW.

Table 2
The skill score for the time-adaptive models and the reference model

Model Reference Adap 1 Adap 2 Adap 3 Adap 4
P0.75() 260.3 251.3 251.8 251.8 251.4
P0.25(F) 209.6 201.3 199.5 199.6 198.0
P0.75T) + Poos () 469.9 452.6 451.3 4514 449 4

The best performer in each row is marked in bold face.

observations in the required proportions from a local perspective, i.e. the reliability of observation around some specific
value of an explanatory variable. This issue is addressed in Fig. 2. In this paper we use a proportion of the data around
each observation to calculate the local reliability, the precise definitions are given in Moller (2006, p. 68).

Sharpness and resolution of intervals are often used to evaluate intervals. These measures are intuitively appealing
since they award narrow intervals and the ability to distinguish between situations with different uncertainties. However,
there is no guarantee that they will award the best model and therefore they are not considered here.

Gneiting and Raftery (2005) present a skill score which should award reliability, sharpness and resolution and collect
this in one number. This is defined for individual quantiles and for symmetric (around 50%) intervals. This skill score
can be shown (see Pinson et al., 2006) to be equivalent to looking at the loss function for the quantile regression. The
skill score for one quantile is the loss function (defined in Eq. (2)) for this quantile, and the skill score for an interval
is the sum of the loss functions forming the interval. The loss functions are of course also relevant in their own right
when we compare different quantile regression models. The average loss function on the test set is given in Table 2.

The overall reliability for the models presented above is given in Table 1. The table shows improvements in the
overall reliability when adaptive models are used. There are clear improvements in the adaptive models compared to
the static model. It can also be seen that the updating strategy is important for the result. The local reliability is presented
in Fig. 2, the improvements in this picture are very clear. The static model is completely off at the 25% quantile for
low and high forecasted power. For example, for low forecasted power there are no observations below the model.
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Table 3

Mean cpu time (s) used per update of the solution as new observations become available

Model Adap 1 Adap 2 Adap 3 Adap 4
br 0.71/0.33 0.24/0.13 0.30/0.18 0.19/0.16
fn 0.60/0.60 0.29/0.28 0.35/0.34 0.28/0.26
adap 0.15/0.08 0.09/0.06 0.06/0.06 0.07/0.07

The timings are given for the 25% quantile and the 75% quantile separated by “/”.

The time-adaptive models perform much better, even though there is room for improvement in the low regime. For the
75% quantile the main improvements are for the high forecasted power, where the static model produce a empirical
quantile of about 95%, while the adaptive models are only a few percent off.

Table 2 gives the values of the skill score for the models described above. It can be seen that the time-adaptive
models are quite close and that all of these are better than the reference model. This confirms the results from Fig. 2 and
Table 1. Comparing these loss functions is equivalent to comparing the mean square error for different mean value
regression functions.

For time-adaptive models the cpu time used by the algorithm is also a performance parameter. The implementation
of the time-adaptive procedure is done in Matlab. Of course the time-adaptive procedure should use less time than a
procedure where everything is re-estimated at time ¢ 4+ 1 without using knowledge about the solution at time ¢. The
models mentioned above are timed and the results are shown in Table 3. For reference, the timing from the rg-methods
br and £n in “R” (version 2.4.0) are given with the same updating strategies, but without using start guesses. The time-
adaptive procedure is between two and five times faster than implementation with a naive approach, where information
about the solution at time # is not used to estimate the solution at time ¢ + 1.

The results on timing are not directly comparable. It should, however, be stressed that the time-adaptive quantile
regression is not optimized with respect to time and it is implemented directly in Matlab, while the quantile regression
methods in “R” have been optimized and the main part of the algorithm is implemented in Fortran. This means that
in order to do a complete comparison between the algorithms we would need to implement the optimized algorithms
in Fortran and create an interface from “R” to these algorithms. This is out of the scope for this article. We would,
however, expect the potential improvements to be larger than the factor of 2-5 presented here.

6. Discussion and conclusions

This paper describes a new method for time-adaptive quantile regression. The quantile regression problem is a
linear optimization problem, and a formulation which is well suited for a direct solution using the simplex method is
presented. Based on this formulation a time-adaptive method for quantile regression is suggested. The strength of the
suggested method is illustrated by considering the problem of online prediction of wind power production. The linear
optimization formulation presented is well known, but related to the formulation it is shown how the structure of the
quantile regression problem can be exploited in the simplex algorithm. This observation leads to an efficient algorithm.
Koenker (2005) presents a dual simplex formulation of the quantile regression problem, while we use a direct simplex
formulation.

Using the proposed linear optimization formulation, an algorithm for time-adaptive quantile regression is suggested.
The time-adaptive algorithm is presented for a broad class of forgetting structures. This structure depends on both the
time and an explanatory variable, and in this way updating will depend on the rate of data inflow in different regions
of the sample space of the explanatory variable. The best updating procedure depends heavily on the structure of the
sample space, how to choose such a strategy is discussed in greater detail in Moller (2006).

To illustrate the strength of the methods developed, a real-life example is considered in the later part of the article.
This study shows large improvements in the performance parameters, by using the time-adaptive quantile regression
methods instead of static quantile models. Finally, the analysis also shows that the Matlab implementation of the method
is significantly faster than naive re-estimation using a well-proven optimized code.

The method “br” implemented in “R” is a modified version (see Koenker and D’Orey, 1987) of the Barrodale and
Roberts algorithm for /1 regression (see Barrodale and Roberts, 1973). This is a simplex based algorithm, and therefore
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it could be expected that adopting the ideas presented in by Barrodale and Roberts (1973), could lead to improvements
in the time-adaptive algorithm presented in this article.

There are two interior point methods available in “R”, namely “fn” the Frisch—-Newton interior point method and
“pfn” the Frisch—-Newton interior point method with preprocessing. These methods should be used for large problems,
and as was seen in Table 3, the modified Barrodale and Roberts algorithm performs better than the Frisch—-Newton
algorithm for (most of) the problems considered. This is not expected to be the case for problems larger than those
presented in this article. It is however not possible to use “warm start” algorithms for interior point methods. We would
therefore expect our method to perform very well, compared to the Frisch-Newton interior point algorithm, for larger
problems (window sizes) than those examined in this paper. The preprocessed Frisch—-Newton algorithm is well suited
for very large problems. In Portnoy and Koenker (1997) the algorithms are only presented with sample sizes larger
than 20,000, while we used only 5000-10,000 in our case study. Preprocessing also has the drawback that it needs
independent observations. This cannot be expected in the data we have presented here, and preprocessing is therefore
not considered in this paper.

Itis our expectation that the presented algorithm has the potential for very efficient implementation, both by optimizing
the presented algorithm and by exploring the possibility of the “warm start” idea in the Barrodale and Roberts algorithm.
This will facilitate online estimation of multiple quantiles on multiple sites simultaneously, even with fast real time
flow of data through the system. Our case study is wind power prediction, but we expect that the method can be used
in other areas of applications.

Appendix A. An analytic development
The development in Section 3 follows the linear programming formulation and the language developed for this. The

close connection to slopes of the loss function was indicated, but a direct derivation of the slopes would be illustrative.
To this end define the directional derivative of a vector function f : R — R in direction w as

d
Vf,w) = d—tf(x + W)l 0, - (A.1)

Note that the sum of loss functions S; : R€ — R is not differentiable at any point where a residual is zero and these
are the points evaluated during the simplex algorithm. Therefore, we write down the directional derivative of S;:

d
VSe(Bw) = 3 pelyi = (B = w)}lio, (A2)
i
d T
=2 D Pl ] W)lio, (A3)
i
d
= m Z{‘L’ — I(xl-Ttw < 0)}xiTtw + Z(r — l)xiTw + Z rxl-Tw (A4)
ri=0 =0, ri<0 ri>0
= > {t—I&xlw<0)x]w+ Y sign(ri)p,(sign(ri)}x] w. (A.5)
ri=0 i #0

If the observations are in what Koenker (2005, p. 35) calls a general position, then splitting the index set into / and £,
and the splitting in Eq. (A.5) are the same. If we are dealing with continuous random variables then the observations
are in a general position with probability one. If the system is in a general position, then Eq. (A.5) can be written as

VS:(B,w) = Zwai{r - I(xl.Tw <0)} + Zwa,-rip{sign(ri)} (A.6)
ich ich
=wI X))t — I(X(Ww <0)} + w X ()T Pp(p). (A7)

We now identify directions where the directional derivative is less than zero. Because of the linearity of the problem
the only directions to check are directions such that only one zero residual is changed away from zero; there are two



J.K Moller et al. | Computational Statistics & Data Analysis 52 (2008) 12921303 1303

directions for each element in /. These are w = (5X(h)_lej, J=1,...,K and 6 = £1. e; is a vector with the jth
element equal to one and all other elements equal to zero, and é will be the sign of the new residual. Examining these
2K directions gives each of the elements of the vector A, presented in Eq. (16).

When a direction w = §X (h)*lej in terms of B has been chosen, we can find the direction in terms of z4. Recall
that |r(h)| = Pr(h), what we are now looking for is the vector 4(w), such that when o is small enough the result of a
change in f§ by ow, is that z is changed to z5 + a4(w). The directions examined are again w = (3X(h)_1ej, and the
result is

|: :| éSX(h):‘jl »
A(w) = _ | = o = 6B (A.8)
PX(h)w —PX(h)(SX(h):} o

which is equal to d when a direction has been chosen. o and ¢ are now updated as in Eq. (18).
Appendix B. Supplementary data
Supplementary data associated with this article can be found in the online version at 10.1016/j.csda.2007.06.027.
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