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a b s t r a c t

The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic

and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a

number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential

equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1))

(2005) 109–141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson,

Stochastic differential equations in NONMEM: implementation, application, and compari-

son with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247–1258; R.V.

Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with

stochastic differential equations: implementation of an estimation algorithm, J. Pharma-

cokinet. Pharmacodyn. 32 (February(1)) (2005) 85–107; U. Picchini, S. Ditlevsen, A. De Gaetano,

Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of

glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141–155].

PK/PD models are traditionally based ordinary differential equations (ODEs) with an obser-

vation link that incorporates noise. This state-space formulation only allows for observation

noise and not for system noise. Extending to SDEs allows for a Wiener noise component in

the system equations. This additional noise component enables handling of autocorrelated

residuals originating from natural variation or systematic model error. Autocorrelated resid-

uals are often partly ignored in PK/PD modelling although violating the hypothesis for many

standard statistical tests.

This article presents a package for the statistical program R that is able to handle SDEs in
1
a mixed-effects setting. The estimation method implemented is the FOCE approximation

to the population likelihood which is generated from the individual likelihoods that are

approximated using the Extended Kalman Filter’s one-step predictions.

© 2009 Elsevier Ireland Ltd. All rights reserved.

∗ Corresponding author at: DTU Informatics, Technical University of Denmark, Richard Petersens Plads, Building 321, 2800 Kgs. Lyngby,
Denmark. Tel.: +45 4525 3351.

E-mail addresses: SKli@novonordisk.com, skl@imm.dtu.dk (S. Klim).
1 FOCE—First-Order Conditional Estimation.

0169-2607/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2009.02.001

mailto:SKli@novonordisk.com
mailto:skl@imm.dtu.dk
dx.doi.org/10.1016/j.cmpb.2009.02.001


s i n
280 c o m p u t e r m e t h o d s a n d p r o g r a m

1. Introduction

The use of mixed-effects models based on ordinary differ-
ential equations (ODEs) is the standard for pharmacokinetic
and pharmacodynamic (PK/PD) modelling. The use of stochas-
tic differential equations (SDEs) is an emerging field and has
been introduced and motivated in the papers [1–4]. This paper
presents an accessible software package for handling dynamic
models based on SDEs in a mixed-effects setting. The program
is a package for the statistical program R and thereby easy to
install through R’s interface and available for a wide range of
operating systems.

The package implements the (Extended) Kalman Filter for
evaluating the likelihood function in models based on SDEs.
The parameter estimation procedure in the package is maxi-
mum likelihood based with fixed effects estimation based on
the FOCE approximation.

2. Computational methods and theory

The most widely used program to analyze state-space mod-
els in PK/PD-modelling is NONMEM [5], which is focused on
mixed-effects models based on ordinary differential equa-
tions. The use of SDEs in non-linear mixed-effects models
is possible in NONMEM as described in [2]. The trick is an
implementation of the Extended Kalman Filter in the NON-
MEM control file with corresponding adjustments to the data
file. This is a non-trivial task even for rather simple models
and must be repeated for every change in model or data. Sin-
gle subject data can be modelled with stochastic differential
equations in the program CTSM [6]. CTSM is a stand alone
program that works across different platforms.

The matlab framework described in [7] handles SDEs in a
mixed-effect setting. The experiences collected in the devel-
opment of the Matlab framework have now been used to create
an extended and more flexible R-package PSM.

The mathematical basis for the PSM package is also
described in the articles [3,7,8]. It should be noted that there
are notation differences between the articles.

For simplicity this article focuses on the class of linear mod-
els but it must be emphasised that the package also handles
non-linear models.

2.1. Single subject

The modelling of observations for a single subject is based on
a continuous-discrete state-space model. The states represent
the internal hidden states of the system. The states reside in a
continuous time domain and their dynamics are described by
stochastic differential equations. The observations are sam-
pled at discrete time points and hence described by a discrete
time relation.

The class of linear models handled by PSM are time-
invariant models meaning that system matrices do not change

over time. More specifically the linear state-space model can
be stated as

dxt = (A(�i)xt + B(�i)ut) dt + �(�i)dωt (1)
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yik = C(�i)xik + D(�i)uik + eik (2)

where xt ∈RdimX is the vector of states at time t. The dimen-
sion of x is denoted as dimX for simplicity. A, B, C and D are
time-invariant matrices defined as functions of �i with prop-
erties A(·) ∈RdimX×dimX, B(·) ∈RdimX×dimU, C(·) ∈RdimY×dimX and
D(·) ∈RdimY×dimU. �i is the parameter vector for the ith indi-
vidual (see Eq. (9) for further details). The exogenous input
u ∈RdimU can be used to include other measured variables
which influence the time evolution of the states in the model.
The input u is assumed to be constant between observation
points which is often refered to as zero-order hold or piece
wise constant. The component �(�i)dωt is the system noise
consisting of a scaling diffusion term �(·) ∈RdimX×dimX and ωt

which is a dimX-dimensional Wiener process. The subscript
i denotes the ith subject and the subscript k is a short hand
notation for tk. yik is the observation at time tk for the ith sub-
ject. eik is the residual for individual i at time tk and is assumed
to normal distributed N(0, S(�i)) with S(·) ∈RdimY×dimY being the
covariance matrix for the errors.

2.2. Kalman Filter

The deterministic behaviour of ordinary differential equations
can be handled with standard differential equation solvers.
The additional component in the SDE systems requires a more
advanced solution method. As mentioned in the introduction
this package uses the Kalman Filter as solution method for
systems of SDEs.

The Kalman Filter is only briefly explained in this article but
the mathematics behind the Kalman Filter is well described in
the Mathematics guide to CTSM [6] and in the original refer-
ence [9]. Several links and additional material can be found on
the homepage [10].

The assumptions on system noise being driven by a Wiener
process and normally distributed errors will in a linear system
under some regularity conditions [6] result in the conditional
densities for the observations being fully described by their
first- and second-order moments. The Kalman Filter can be
used to determine the optimal internal states in the system
conditioning on prior observations. The Kalman Filter updates
the internal state vector after each observation and during this
process the Kalman Filter needs to weigh the probability of
the residual being due to system noise or measurement noise.
For this purpose the one-step prediction ŷk|k−1 and associated
covariance Rk|k−1 are defined below:

ŷk|k−1 = E[yk|Yk−1, �i] (3)

Rk|k−1 = V[yk|Yk−1, �i] (4)

where Yk−1 denotes all measurements up to time tk−1.
The description of conditional densities based on first- and

second-order moments is only exact for linear models. For
nonlinear models the Extended Kalman Filter can be used
which is based on continous linerazations of the model how-

ever the forming of the conditional densitites will only be
approximate.

The structure of the Kalman Filter is thus an iterative
process with a prediction/updating scheme. The one-step
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Table 1 – The Kalman Filter written in algorithmic form.
Copied from [11].

Algorithm: The Kalman Filter
Given parameters and initial prediction
�i, x̂1|0 and P1|0
For k = 1 to ni do
Output Prediction:
ŷk|k−1 = Cx̂k|k−1 + Duk

Rk|k−1 = C Pk|k−1CT + S

State Update:
Kk = Pk|k−1CTR−1

k|k−1

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1)
Pk|k = Pk|k−1 − KkRk|k−1KT
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dx̂t|k/dt = Ax̂t|k + But

dPt|k/dt = AtPt|k + Pt|kAT + ��T

end for

rediction will be based on the deterministic part of the
odel as the Wiener component has mean zero. The mea-

ured observation should be considered as a result of the
urrent states including accumulated system noise since last
bservation and current observation noise. An updating of the

nternal states based on the residual is weigthed according to
ystem noise and measurement noise. The iterative structure
estarts with a prediction based on the updated states.

The initial conditions for the Kalman Filter are the initial
tates x̂1|0 and initial state covariance matrix P̂1|0. Optimally
he initial conditions and uncertainties are known a priori but
enerally none or only the initial state is known. The initial
tates can be either specified directly or estimated simulta-
eously with the remaining parameters. As the uncertainty is
arely known the package assumes that the initial state uncer-
ainty is equal to the integral of the Wiener noise over a time
nterval equal to the interval between the first two observa-
ions.

0 = Ps

∫ t1

t0

eAs��T(eAs)
T

ds (5)

here Ps is a scaling factor. One solution method for the inte-
ral (5) is shown in [6].

In Table 1 the iterative structure of the Kalman Filter is
hown in algorithmic form.

The Kalman Filter setup requires a specific model structure
s shown in Eqs. (1) and (2). Two requirements that should be
oted are the additive noise in the observations and the state

ndependent Wiener component. The Kalman Filter cannot
andle a multiplicative or full error model in Eq. (2). Using
log transformation of the observations a log normal error
odel can however be dealt with. The limitation with state

ndependent Wiener component can only be surpassed by
ransformation of the system equations or by introducing

ore sophisticated methods such as higher order filters or
arkov Chain Monte Carlo methods.

The residual used in the likelihood function is defined as
k = yk − ŷk|k−1 (6)

The likelihood of the parameters �i based on data can be
alculated using the assumption of normality combined with
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the conditional covariance which is calculated in the Kalman
Filter.

L(�i;Y) =
(

ni∏
k=1

exp(−(1/2)�T
k

R−1
k|k−1�k)√

det(Rk|k−1)(
√

2�)
dimY

)
p(y0|�i) (7)

The negative log likelihood can be derived from Eq. (7)
by conditioning on the initial condition y0. The negative log-
likelihood is the objective function used in the parameter
estimation in the Kalman Filter.

− ln(L(�i;Y|y0)) = 1
2

ni∑
k=1

(ln(det(Rk|k−1)) + �T
k R−1

k|k−1�k)

+ 1
2

(
ni∑

k=1

dimY

)
ln(2�) (8)

2.3. Mixed-effects

The use of non-linear mixed effects models in PK/PD mod-
elling has long been the standard and has been supported
by the functionality in NONMEM. The mixed-effects approach
to model variation in pharmacokinetics was first introduced
by Sheiner in [12]. Mixed-effects modelling is a hierarchical
division of the variation, where the fixed effects describe the
population mean and the random effects describe the inter-
individual variation. This is often described in two stages.
The first stage model describes the intra-individual vari-
ability and the second stage describes the inter-individual
variation.

The first stage model is described in Eqs. (1) and (2) which
are based on the individual parameters. The inter-individual
variation in parameters is covered in the creation of the indi-
vidual parameters in the function h(·) described below:

�i = h(�, �i, Zi) (9)

where � are the fixed effects—also sometimes referred to
as the population parameters. Zi denotes subject covariates
and �i ∈ N(0, ˝) are the random effects. The individual param-
eters can be modelled as either normally or log-normally
distributed by combining the population parameters and the
random effects in either an additive (�i = � + �i) or an expo-
nential transform (�i = � exp(�i)).

The likelihood function for the fixed effects can be stated
as below:

L(�) =
N∏

i=1

∫
p1(Yi|�, �i)p2(�i|˝) d�i =

N∏
i=1

∫
exp(li) d�i (10)

where N is the number of subjects. p1(Yi|�, �i) is the probability
for the first stage model which is proportional to Eq. (7). p2(�i|˝)
is the probability related to the second stage model that relates
the random effects to the inter-individual variation. l is the a

posteriori log-likelihood function for the ith individual. Yi is the
complete sequence of observations for individual i. The pop-
ulation likelihood function in Eq. (10) rarely has a closed form
solution and therefore li is approximated by a second-order
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Taylor expansion, where the expansion is made around the
value �̂i that maximizes li. At this optimum the first derivative
∇li|�̂i

= 0 and the population likelihood function will under
some assumptions reduce to

L(�) ≈
N∏

i=1

∣∣∣−�li
2�

∣∣∣−(1/2)

exp(li)| �̂i
(11)

The approximation of the 2nd derivative �li is done using
the First-Order Conditional Estimation (FOCE) method, which
is defined as

�l∗i ≈ −
ni∑

j=1

(∇�T
ij R

−1
i(j|j−1)∇�ij) − ˝−1, where ∇�ij = ∂

∂�i
�ij|�∗

i

(12)

When the random effects have a non-linear influence on
the likelihood through the first stage model, the combined
model is called a non-linear mixed effects model.

The conditional residual covariance R−1
i(j|j−1) is calculated in

the (Extended) Kalman Filter and the gradient in the residual
with relation to the random effects ∇�ij is typically found by
numerical methods.

2.4. Maximum likelihood estimation

The population likelihood function in (11) is used in max-
imum likelihood estimation of the population parameters.
This optimization becomes a nested optimization as the FOCE
approximation is based on the optimal random effects (�∗

i
).

Each calculation of the population likelihood thus requires N
optimizations of the random effects. This nested optimization
makes the computational effort substantial and highly depen-
dent on the number of subjects, number of observations and
the number of fixed and random effects. The optimization
in the PSM package is performed with the default optimizer
(optim) which is a quasi-Newton based optimizer.

The optimization can be constrained using boundaries
on the population parameters using a logit-transform. It
is assumed that the optimizer works on a unconstrained
parameter space so the logit transform maps the bounded
parameters into an unbounded space. In order to avoid flat gra-
dients in population parameters in the outer parts of the logit
transform a penalty function has been added. The penalty
function is defined as below:

P(�, �, �min, �max) = �

⎛
⎝ p∑ |�min

j
|

� − �min
+

p∑ |�max
j

|
�max − �

⎞
⎠ (13)
j=1
j j j=1 j j

where p is the number of parameters and �min
j

and �max
j

denotes the lower and upper limit for the jth parameter.
The computational effort in the parameter estimation can

as already mentioned be substantial and it is advised to find
good initial estimates for the parameters in advance.
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3. Program description

The framework for handling mixed-effects models based on
SDEs has previously been implemented in Matlab [7]. The R

package PSM presented here is a ported and extended ver-
sion. The switch in platform was motivated by R being an open
source program and its availability on different platforms. The
PSM package was extended from the Matlab framework by
extending the flexibility, improving performance by low level
implementations and enabling capabilities for bolus doses.
The dosing capability is crucial for modelling in drug devel-
opment.

The package is able to handle multivariate observations,
which are useful when performing simultaneous fits of mul-
tivariate data such as insulin and glucose. Another feature is
that it is possible to have input into the model and include
subject covariates. Finally, the package handles missing obser-
vations.

The package is mainly implemented in the R-language
which is closely related to the S-language. Core components of
the code have been implemented in FORTRAN for faster com-
putation.

The current PSM version is 0.8-3. The package has depen-
dencies for three other R packages. MASS is used in the
simulation part to sample from the multivariate normal dis-
tribution. MASS is an integrated part of the R installation. The
package odesolve is used in the non-linear models to solve
systems of differential equations. The package numDeriv is
used to calculate the Hessian which is used in the calculations
of the confidence intervals for the estimated parameters.

The PSM package is available as a standard R package.
Installation can be performed using the R interface or by exe-
cuting the command.

> install.packages(“PSM”)

The package comes with complete documentation and
“get-started” guide. The documentation can be found by exe-
cuting the command help(“PSM”). A more thorough guide to
the package and its usage can be obtained with the command

> vignette(“PSM”)

The package is divided into three parts according to func-
tionality. The three parts are

• Simulation
• Estimation
• Smoothing

Simulation is the creation of observations based on a given
model and model inputs. The Estimation part performs a
maximum likelihood estimation of the population parameters

based on the one-step predictions in the Kalman Filter. The
smoothing functionality creates the optimal state estimates
based on the entire data series and a set of parameters.

All three functions operate on a model object and a data
object. The following sections introduce the model and data
objects before going into detail with the three functions.
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Table 2 – Model specification.

Functions Output

Matrices List with system matrices see Eq. (1)
X0 Matrix with initial state condition(s)
SIG Matrix with diffusion scaling term �

S Matrix with residual covariance

3

T
s
F
m
i
n
h
c
l

m
c
i
i
a
h
t
c
�

3

T
e
s
u
a
n
c
n

Table 3 – Data specification.

PSMnotation Description

Time Vector with dose and observation times
Y Matrix with observations. Multivariate

observations in columns
U Matrix with input
Dose List with Time, Stateand Amount
h Vector with individualized parameters �i

ModelPar List with fixed effects � and inter
individual variation ˝

.1. Model specification

he model specification is divided into components corre-
ponding to the mathematical parts of the state-space model.
or the linear case the state-space model can be stated in
atrix form as seen in Eq. (1), but variance components and

nitial conditions are also needed. Table 2 shows the compo-
ents in the model. The components are collected in a list to
ave a single object that contains the model. The individual
omponents are all functions that return either a matrix or a
ist, if multiple outputs are needed.

Fig. 1 shows the model specification in a diagram with
athematical references displayed. The sequence for these

omponents needs some elaboration. The ModelPar function
s used to split the vector of parameters to be optimized 	

nto the fixed effects vector � and the random effects covari-
nce matrix ˝. The individual parameters are created with the
function that uses the fixed effects, the random effects and

he subject covariates to create the �i vector. The remaining
omponents in the dynamical system can be evaluated using

i and the system input u.

.2. Data specification

he data specification in the simulation procedure is differ-
nt from the specification in the parameter estimation and
moothing. In the simulation part the observations are sim-
lated based on the model. Time points for the observations

nd potentially system input, doses or subject covariates still
eed to be provided. The time points, system input, doses or
ovariates are specified per subject in a list. Names in the list
eed to be according to the PSM specifications as the refer-

Fig. 1 – Model components.
covar Subject covariates

encing in the package is done with names. The naming of the
components can be seen in Table 3. The lists for all subjects are
finally collected in a list which makes the overall data object
a list of lists.

The observations are specified in the element Y which is
a matrix with dimensions [dimY, dimT]. dimT is the length of
the Time vector. As can be seen from the dimensions of Y,
multivariate observations are specified in columns. Missing
observations are indicated using the NA identifier. Y can be
omitted if the data object is used in a simulation.

The Dose component contains the bolus doses informa-
tion. The elements used to describe a bolus dose are the time
of dosing, the amount dosed and the state in the model into
which the bolus is given. The Time vector in Dose contains the
times to which doses are given. It is important that the time
points in the Dose component is a subset of the overall Time

vector otherwise the dose will not be given. The dose is given
post-observation and prediction. This means that predictions
to observations at times where a bolus dose is also given
are formed prior to the “injection” of the dose. The elements
State and Amount specifies in which compartment/state the
dose should be given and what amount is given. Multiple doses
are allowed at the same time point. Infusions can be specified
using the input element u. The covar element contains the
subject covariates (Zi in Eq. (9)) and can be an array or list
however the choice should be consistent with the referencing
in the hfunction in Table 2.

3.3. Package functionality

Each of the three previously mentioned functionality parts is
enclosed in a single function. The three functionality parts
with corresponding functions are described in detail in the
following sections.

3.3.1. Simulation
The function PSM.simulate performs the simulation of the
system using an Euler based scheme. The simulation also
includes inter-individual variation if the ˝ matrix is specified.
The stochastic noise term in the system equation is included
by perturbing the states after each Euler step. The size of the
pertubation is found by randomly sampling from a multivari-
ate normal distribution with covariance proportional to the

time step scaled with the diffusion scaling term. The default
time step in the Euler scheme is 0.1 unless specified differ-
ently. It is upon the user to ensure that the observation times
are a multiple of the time step.

The function arguments to PSM.simulate are as follows:
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Table 4 – Simulation output.

Element Type

Time Vector
X Matrix with the simulated states
Y Matrix with the simulated observations
U Matrix with the input used in the

simulation
Dose Dose list used in the simulation
eta Matrix with the random effects used in

the simulation
longX Matrix with states at all sub-sampled

timepoints

observations based on previous data but in order to determine
the overall most likely profile based on all data smoothing can
be employed. The inclusion of all data allows noise effects
occurring later in the time series to influence the profile earlier

Table 5 – Estimation output.

Element Description

NegLogL Negative log likelihood in the found optimum
THETA Vector of parameters in optimum
CI Confidence intervals based on the Hessian
SD Standard error for the optimal parameters
longY Matrix with observations at all
sub-sampled timepoints

PSM.simulate(Model, Data, THETA, deltaTime,

longX)

where Model and Data are lists as described in previous
sections. Any observations in Data are disregarded as the sim-
ulation returns a set of observations Y. THETA is a vector with
the population parameters to be used. deltaTime is the time
step in the Euler scheme and the longX option is used to indi-
cate whether the output should include all generated data at
all sub-sampled time points or only return observations at
prespecified time points.

The output from the simulation function is a list of lists
where each underlying list contains the data for one subject.
The list contains the elements shown in Table 4.

3.3.2. Estimation
The function PSM.estimate performs maximum likelihood
estimation for the population parameters in the model. The
objective function for the optimization is the negative log
likelihood as defined in Eq. (11). The function calculates the
numerical gradients and determines the optimal random
effects needed in optimization of the likelihood function.

Functionality has been included to allow for constrained
optimization using the logit transformation. A logit parame-
ter transformation is used to convert the bounded parameters
to unbounded parameters. In order to stabilize the opti-
mization with boundaries a penalty function has also been
included. The penalty increases as the parameter estimate
approaches the boundary. The penalty function is introduced
to ensure that the optimization will not get trapped in the flat
regions of the logit transformation. For very large values in
the unbounded parameter domain the transformed param-
eter will be close to the upper boundary. This also means
that changing an extreme value in the unbounded parameter
domain will hardly change the bounded parameter estimate.
The optimizer stops when a change in the unbounded param-
eters does not change the likelihood function. The penalty
function stabilizes this problem.

The currently used optimizer does not allow for NaN to be
returned from the likelihood function. The search path for the

optimization can lead to parameter values that generate NaN

resulting in the search failing. This problem can be solved by
using tighter boundaries and restarting the optimization with
new boundaries in the recently found parameter values.
b i o m e d i c i n e 9 4 ( 2 0 0 9 ) 279–289

The parameter estimation based on the likelihood function
consists of nested optimizations which makes the likelihood
function highly nonlinear in parameters. The optimizer does
not guaranty that the found minimum is the global minimum
so the user should be aware of local minima and the impor-
tance of initial parameter values in the optimization. The user
should preferably start the minimization in different initial
parameter values to eliminate the risk of using parameter
estimates from a local minimum in the modelling onwards.

To evaluate the quality of the parameter estimates the
related uncertainties can be calculated. The uncertainties
are based on the Hessian of the likelihood function. The
parameter confidence bands are returned from the estima-
tion procedure by setting the argument CI=TRUE. The Hessian
is calculated using the numDeriv package.

The argument list for the estimation can be seen below:

PSM.estimate(Model, Data, Par, CI, trace, con-

trol, fast)

where the Model and Data are as previously described. Par

is a list containing the initial parameter value in Init and
optionally the upper and lower boundaries in UB and LB. CI

specifies if the confidence intervals for the parameters should
be calculated. trace is an integer controlling the amount
of output from the optimization. The control argument is
passed directly on to the optimiser—for further details see
the help files for optim. The fast argument specifies whether
the FORTRAN code should be used when possible. This can be
useful for debugging purposes.

The Kalman Filter has been implemented in FORTRAN for
linear models with non-singular system matrix. Non-linear
models and singular linear models are implemented in R-
code. The matrix exponential used for solving linear systems
is also implemented in FORTRAN. Hence linear models with
full matrices are estimated faster than other models. For initial
modelling purposes it can often be extremely helpful to con-
vert a singular model into a non-singular by adding a small
rate constant to the diagonal.

The output from the estimation function can be seen in
Table 5.

3.3.3. Smoothing
The estimation procedure relies on one-step predictions of
COR Correlation matrix for the optimal parameters
sec Optimization time in seconds
opt Messages from the optimizer
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Table 6 – Smooth output.

Element Description

Time Sub-sampled time
Xs, Ps Smoothed states and uncertainty
Ys Predictions based on smoothed states
Xf, Pf Filtered state and uncertainty
Xp, Pp One-step state predictions and uncertainty
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intact insulin secretion. One complication with type II diabetes
is decreasing beta cell mass, i.e. decreasing insulin secre-
tion. To determine if the insulin secretion is intact, stochastic
deconvolution [15] can be used.
Yp, R One-step observation predictions and uncertainty
eta Estimated random effects
NegLogL Negative log likelihood

n. Smoothing constructs the optimal state vector to all time
oints given both prior and future observations as opposed
o filtered states that only depend on prior observations. The
moothed estimate is commonly used in post-processing of
ata as it represents the best fit based on all available data.

The function PSM.smooth performs smoothing of states
sing a Bryson Frazier algorithm [13].

The smoothing function argument list is shown below:

PSM.smooth(Model, Data, THETA, subsample, trace,

etaList)

here Model and Data are as described ealier. THETA is a vec-
or with the population parameters for the evaluation, i.e.
he returned parameter vector from the estimation. subsam-

le is the number of sub-samples in between observations.
ub-sampling can be used to display the system behaviour

n between observations. trace is an integer controlling the
mount of text output. etaList is a matrix, where each col-
mn is the random effects for a subject. If etaList is set to
ULL the random effects will be determined.

The complete listing of output from the smoother is shown
n Table 6.

Several internal functions are used in simulation, estima-
ion and smoothing functions and they can all be found in the
ocumentation. For general use the three described functions
ill form a good base.

In the next section an application of the package is
escribed.

. Application: insulin secretion rates

n the article by Mortensen [7] the insulin secretion rate is
etermined by stochastic deconvolution using a Matlab frame-
ork. The insulin secretion rates are modelled as random
alks and the Kalman Filter is used to determine the trajec-

ory that most likely resulted in the observations. This section
escribes an extension implementing an intervention type
odel as known from Time Series Analysis in order to better

haracterize the insulin secretion.
The challenge in describing the insulin secretion is that

he kinetic system for insulin is potentially non-linear and
artly unknown. This makes insulin itself a poor descriptor

or insulin secretion. During the production of insulin a by-
roduct called connecting peptide (C-peptide) is produced in
quimolar amounts. Insulin and C-peptide are split just as
nsulin is secreted into systemic circulation.
Fig. 2 – C-peptide PK model.

The pharmacokinetic system for C-peptide has been
described in a population model by Van Cauter [14] with
parameters based on subject covariates. The model structure
is a linear two compartment model with elimination from
the central compartment. The well known kinetics and longer
half-life of C-peptide makes it a better descriptor of the actual
insulin secretion even though the determined secretion rates
are C-peptide secretion rates and not insulin secretion rates.

The graphical representation of the C-peptide model can
be seen in Fig. 2. The exchange rate parameters and the elimi-
nation rate are all first order and the mathematical equations
are given in (14)–(16):

dA1

dt
= SR − (k + k12)A1 + k21A2 (14)

dA2

dt
= k12A1 − k21A2 (15)

y = A1

V
+ e (16)

where A1 and A2 are amounts in compartment 1 and 2. S R is
the secretion rate measured as [amount/ min]. k, k12 and k21

are rate constants [min−1]. V is the distribution volume [L].
The data originates from a meal tolerance test where the

test subject is served three standardized meals over a period
of 24 h. The insulin, C-peptide and glucose concentrations are
measured throughout the 24 h and more frequently during
meals. The C-peptide profiles can be seen in Fig. 3. The subjects
are newly diagnosed type II diabetes patients with relatively
Fig. 3 – C-peptide profiles.
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Fig. 4 – Intervention C-peptide model.

In the article [7] the insulin secretion is assumed to be a ran-
dom walk and the most plausible trajectory is determined. The
smoothed estimate is a compromise between the expected
variation in the system and the observed variation in the
observations. The scaling diffusion term � is overestimated
due to the physiological structure of the insulin secretion,
where the secretion can only assume positive values. To rem-
edy this assumption an intervention model is added to aid the
structure of the secretion. The intervention model scheme is
implemented by a step function located at meal time. A two
compartment structure is assumed to allow for some flexibil-
ity in the form of the secretion rate profile. The secretion is
furthermore assumed to have an underlying basal secretion
rate. The basal rate, the rate parameters and the amplification
are now estimated in this underlying structure for the secre-
tion and the random walk is used to determine the deviations
from this structure (Fig. 4).

The states of the system for further use in the equations
are defined as below:

x = [A1, A2, SR, Q]T (17)

The mathematical equations describing the system can
now be written as

dx =

⎛
⎜⎝
⎡
⎢⎣

−(k12 + k10) k21 1 0
k12 −k21 0 0
0 0 −a1 a1

0 0 0 −a2

⎤
⎥⎦x

+

⎡
⎢⎣

0 0
0 0
0 B exp(�2)

a2K exp(�1) 0

⎤
⎥⎦u

⎞
⎟⎠ dt + diag

⎡
⎢⎣

0
0

	SR

0

⎤
⎥⎦ dω

(18)

where kx and ax are rate constants. The input variable ut =
[u1, u2]′ is used to model the baseline level of secretion (u1)
and the impulse effect from a meal (u2). u1 is equal to one
for the entire time series whereas u2 is only equal to one just
after meals (i.e. from meal start and 30 min on). The B param-
eter specifies the baseline level in the secretion compartment

and K specifies the amplitude of the meal impulse. Both B and
K are modelled with an individual random effect (�1, �2). 	SR

is the scaling diffusion term for remaining description of the
secretion rate.
b i o m e d i c i n e 9 4 ( 2 0 0 9 ) 279–289

The observation equation linking the model states to the
C-peptide observations is shown below:

y =
[

1
V

, 0, 0, 0
]

x + e = A1

V
+ e, where e ∈ N(0, S) (19)

This model is a simplification as the secretion responses to
the meals are assumed equal over all three meals. An exten-
sion to make an individual secretion response per meal can be
made by extending the input and the parameter list accord-
ingly. This will however increase the number of parameters
and thereby the estimation time.

Individual random effects have been added to the ampli-
fication of the response and the basal level so that each
individual can have different secretion responses.

The parameters in the model to be estimated are the secre-
tion parameters a1, a2, K, B and the variance parameter 	SR.
The inter-individual variance in ˝ is assumed to be 0.1. The
residual variance is assumed to be (50 pmol/L)2 which was
derived from the plot of the profiles.

4.1. Model specification

The model specification in PSM is described element by ele-
ment in the next section.

Initially the model is setup by creating an empty list. The h

function that translates the population parameters into indi-
vidual parameters is specified. Function arguments that can
be used in the creation of phi are population parameters,
random effects and covariates. It can be seen that four indi-
vidual parameters are extracted from the covariates and the
two population parameters K and B are expanded with random
effects.
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parameters. The optimal parameters and confidence bands
are shown in the Table 7.

Two model fits for C-peptide can be seen in Figs. 5 and 6. The
plots show the observations as circles and the intervention
c o m p u t e r m e t h o d s a n d p r o g r a m s

The first element created here is the time invariant matri-
es. In this example all four matrices need to be specified.
irst the individual parameters are extracted from phi and
atrices are set up in a list named Matrices.

The initial conditions for the states are added to the list
s an element named X0. The initial conditions used here are
teady state conditions calculated using the basal secretion
nd kinetic parameters. The initial conditions are specified as
function with arguments Time, phi and U. The Time argu-
ent is the first time point specified and can be useful if

he subjects start at different time points. The U can contain
xogenous input to the system which enters into the initial
onditions.
Table 7 – Estimated parameters.

Parameter MLE 95% CI

K 1911.2 [1511.5; 2310.9]
B 7.019 [5.0; 9.037]
a1 0.029 [0.022; 0.036]
a2 0.011 [0.0089; 0.014]
SIG33 30.3 [26.05; 34.55]
Fig. 5 – Fitted C-peptide concentrations for subject 11.

The diffusion scaling term and the residual variance are
specified using the elements SIG and S. Both are specified as
functions of phi. It can be seen that SIG is a 4 × 4 matrix with
only an element at position [3, 3]. S is specified as a matrix
even though it is one-dimensional.

The final element in the model is the function that splits
the parameter vector containing parameters to be optimized
into population parameters and inter individual covariance
matrix ˝.

The list Cpep.Model now contains all the elements
required in the model specification and the model can now be
used to estimate parameters and create the smoothed profiles.

4.2. Results

The parameters in the C-peptide intervention model are
estimated using PSM.estimate with constraints on the
Fig. 6 – Fitted C-peptide concentrations for subject 12.
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Fig. 7 – Secretion for subject 11.

model fit is shown in blue. The dashed line represents the
deterministic model fit where the diffusion scale term has
been fixed to zero in the intervention model in order to mimic
an ODE model like in NONMEM. The dashed line is thus equal
to a simulation with the intervention model.

The failure of the assumption of equal responses to all
meals is obvious in the fit between the dashed red line and
the observations. Large peaks are underestimated and small
peaks overestimated. This is clear as the model describes the
average response after a meal. The solution could be to extend
the model so that every meal has it’s own amplification.

As the model is used for deconvolution purposes the actual
fit to the observations is of less importance, but more interest-
ing is the secretion rate profile and the split between the model
and the Wiener component.

The two corresponding secretion rate profiles to the C-
peptide fits are found in Figs. 7 and 8. The full line is the
optimal secretion rate determined by the Kalman Filter and
the dashed line represents the deterministic part of the model.
The secretion model captures the overall trends but the com-
promise with the equal response assumption is clear.

The deconvoluted insulin secretion rates have some jumps
which seem unphysiological. The solution could be to use
an integrated random walk as driver for insulin secretion.
This would make the deconvoluted insulin secretion rate less
erratic.
This section has shown a simple application of the PSM

package for modelling purposes. Classic log likelihood ratio
testing can also be applied in the model development as well
as visual predictive checks of the model fits.

Fig. 8 – Secretion for subject 12.

r

b i o m e d i c i n e 9 4 ( 2 0 0 9 ) 279–289

5. Discussion and conclusion

The PSM package provides a new general framework for
handling dynamic models based on stochastic differential
equations in a population setting. The package is available
in R to ease availability, ease installation and enable a sin-
gle working environment for data handling, modelling and
visualization.

The package is an extension to the Matlab framework of
the same name. The package functionality is a combination
of the functionality available in CTSM and NONMEM. CTSM
and NONMEM have also been used to validate the package as
described further on the homepage [16].

The package enables the feature of dosing capabilities
which makes the package useful in PK/PD model development.
This is further supported by the ability to handle multidi-
mensional observations which aids in modelling work with
observations from both PK and PD.

The package includes functionality for modelling tasks
such as simulation, parameter estimation and smoothing.
The stochastic deconvolution example with an underlying
secretion model in this article showed an application of the
package.

The computational effort in working with larger models is
substantial and the use of parallelization could decrease the
time considerably in the modelling. It is currently being inves-
tigated how to implement parallelization in a general manner
in R. Parallelization is an obvious solution due to the fact that
future computer systems will be massive multicore systems.

The package is a promising tool to get started with stochas-
tic differential equations or the inclusion of mixed-effects in
continuous-discrete state-space models.

More information can be found on the webpage http://
www.imm.dtu.dk/psm.
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