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We present a process-based approach to estimate residency and behavior from uncertain and temporally correlated move-
ment data collected with electronic tags. The estimation problem is formulated as a hidden Markov model (HMM) on a 
spatial grid in continuous time, which allows straightforward implementation of barriers to movement. Using the grid to 
explicitly resolve space, location estimation can be supplemented by or based entirely on environmental data (e.g. tem-
perature, daylight). The HMM method can therefore analyze any type of electronic tag data. The HMM computes the 
joint posterior probability distribution of location and behavior at each point in time. With this, the behavioral state of 
the animal can be associated to regions in space, thus revealing migration corridors and residence areas. We demonstrate 
the inferential potential of the method by analyzing satellite-linked archival tag data from a southern bluefin tuna Thunnus 
maccoyii where longitudinal coordinates inferred from daylight are supplemented by latitudinal information in recorded 
sea surface temperatures.

Movements of individual animals constitute important and 
highly complex processes which influence the outcome of 
many large-scale ecological processes. For many species, 
individual movements can now be assessed empirically using 
electronic tracking and logging techniques (Cooke et al. 
2004). Such information is increasing our understanding 
of both individual species and ecosystems. However, several 
problems invariably arise in the resulting data which require 
a statistical solution. Namely, the need to correct for location 
uncertainty (Vincent et al. 2002), handle missing or irregu-
lar data (Johnson et al. 2008) and the incorporation of bar-
riers to movement (Ovaskainen 2004).

The most immediate problem facing empirical measure-
ment of movement is noise in the observations of location. 
The noise is mainly a result of two factors: uncertainty inher-
ent in the observation process, and the fact that observa-
tions are a discrete sub-sample of the underlying continuous 
movement process. This error structure necessitates statisti-
cal models that are able to separate the two noise contri-
butions to estimate the most likely location of an animal 
at any point in time. State-space models (SSMs, Patterson  
et al. 2008b) have recently become the favored tool for this 
(Jonsen et al. 2006, Pedersen et al. 2008, Patterson et al. 
2010). As an alternative to SSMs Sumner et al. (2009) sug-
gests a Bayesian approach which merges an unconventional 
underlying movement model with a likelihood model for the 
observed data.

Recently, models have been investigated which incor-
porate different movement modes reflecting shifts in the 

underlying behavioral state of the animal (Morales et al. 
2004). Behavioral states, being unobserved, are often 
vaguely defined. Commonly the labels attached to each 
state reflect predictions from optimal foraging theory. Thus, 
animals should search more intensively in productive habi-
tats and minimize time in other areas. The labels used for 
the different behavior states include ‘migrating’, ‘ballistic’, 
or ‘extensive’ for fast, directed movements and ‘diffusive’, 
‘foraging’ or ‘intensive’ for slow movements with many 
direction changes and increased probability of foraging. 
Such behaviors driving movement are typically hidden to 
the observer and may only be inferred from the movement 
data itself (Patterson et al. 2009).

Data from tracking technology is often non-spatial (e.g. 
data from a temperature logger) yet can be mobilized in a 
spatial context. As demonstrated below, data from a tem-
perature sensor can be used to inform about spatial location 
if synoptic spatial coverage of similar data is available. Fortu-
nately, spatial data (e.g. remote sensing data) is often avail-
able, and can provide exactly this. Such data have been used 
by Nielsen et al. (2006) to improve location estimates from 
an SSM.

Animal movements are often constrained by barriers or 
edges. For example, the sea is a barrier to terrestrial animals, 
as is land for aquatic animals. Such restrictions provide use-
ful information in that certain movement trajectories can  
be ruled out. This is an aspect which has not been included 
in many SSMs, in particular those that rely on linear-
Gaussian models which cannot incorporate hard constraints. 
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With Monte Carlo simulation methods (Sumner et al. 2009) 
it is possible to implement barriers using rejection sampling, 
however this has a tendency to bias the location distribu-
tion near barriers because naively proposed movement paths 
encountering barriers are removed. Methods using reflec-
tive barriers (Pedersen et al. 2011) on the other hand allow 
obstructed movements to be reoriented and remain inside 
the model domain to avoid rejection bias.

This paper presents a method that combines all of the 
above mentioned features in an integrated Bayesian state-
space approach using so-called hidden Markov models 
(HMMs). The aim of any Bayesian state-space analysis is to 
estimate the posterior distribution of the state (in our case 
the state is location and behavior of the animal). Previous 
approaches to Bayesian analyses of tracking data have dis-
regarded the state posterior distribution and restricted their 
attention to reconstructed movement trajectories (typically 
the posterior mean, Jonsen et al. 2005). A track representa-
tion, however, does not express the uncertainty of the esti-
mated locations. The full posterior distribution on the other 
hand, provides this insight and is therefore instrumental in 
assessing which features of the estimated movement that can 
be trusted.

The paper is composed as follows. The next section con-
tains the continuous-time formulation of the SSM compris-
ing location and behavior and explains parameter estimation 
and model selection in the context of HMMs. By simulta-
neously estimating location and behavior we are able to use 
the posterior distribution to link certain behavior types to 
certain locations. In the section following we analyse satellite 
tracking data from a southern bluefin tuna Thunnus mac-
coyii. We demonstrate how the posterior distribution can be 
used to reveal geographical areas of residency and migration 
while accounting for data uncertainty. The final section dis-
cusses the pros and cons of the method and its potential for 
estimation of residency.

Material and methods

Using a state-space model (SSM) the animal tracking prob-
lem is governed by two parts. The system process describes 
the animal movement and behavior, and the observation 
model links the process (i.e. movements) to the data (Harvey 
1992). Inference regarding the unobservable system process 
can then be established via this link using statistical method-
ology (filtering) which updates location and behavior esti-
mates with observed data. Table 1 includes a reference list for 
the mathematical symbols used in the paper.

Model formulation in continuous time

Since animals change their movement patterns through 
time as a response to changing environmental factors, prey 
abundance, habitats etc. (Morales and Ellner 2002), it is 
necessary to regard the system as a hierarchy of two sub-
processes: An underlying behavior process that controls the 
switching between a number of different movement states; 
and a derived process that describes the movement dynamics 
conditional on the behavioral state. Formally we model the 
behavior process as a continuous-time Markov chain, It, with a 

finite state-space, It ∈ {1,2,...,n}, where t denotes time. State 
switching of the behavior process is described by the genera-
tor matrix, Gb (superscript b for behavior), which contains 
the switching rates, lij, of jumping from behavior state i to 
behavior state j (Ibe 2009).

The movement of the animal in continuous time is a 
(biased) brownian motion in the longitudinal (x) and lati-
tudinal (y) direction. Given the current behavior state It 
of the animal, the Brownian motion is decribed by a drift  
uIt  (ux,uy)I

T
t with unit km day–1and a diffusivity matrix  

DIt with unit km2 day–1, where superscript T means trans-
pose. Diffusion processes of this type are well established for 
modeling animal movement, both within analysis of tagging 
data (Sibert et al. 1999, Pedersen et al. 2008) and in ecology 
in general (Okubo 1980).

To proceed with the analysis of the joint process of move-
ment and behavioral shifts, we introduce the probability 
density ϕi(x,y,t) which describes the probability that the ani-
mal at time t is located at (x,y) and at the same time is in 
behavioral state i. In Okubo (1980) it is shown that the time 
evolution of the probability density of a particle performing 
Brownian motion follows a diffusion-advection equation, 
which is a partial differential equation (PDE). Therefore, by 
including behavior switching dynamics the PDE describing 
the time evolution of ϕi is a diffusion-advection equation 
augmented with a term representing the behavior switching 
dynamics of the animal:

∂ϕ
∂

∇  ϕ ∇ϕ λ ϕi
i i
adv.

i i
diffusion j

ji j

behav.

t
(u D ) ∑

sswitch	

(1)

where ∇ is the two-dimensional spatial gradient operator. 
The diffusion and advection terms describe the flow of proba-
bility between regions in space. The behavior switching term is a 
weighted sum over the switching rates that jump into state i, i.e. 
this term represents the net flow of probability into behavioral 
state i. Recall from theory of continuous-time Markov chains 

Table 1. Symbol overview.

Symbol Description

i Behavioral state index
x Longitudinal state index
y Latitudinal state index
n Number of behavioral states
N Number of observations
tk kth sample time
Dk Length of time interval [tk,tk1]
zk Data observed at time k
Zk All observations available by tk
lij Rate of switching from behavior i to j
u Advection parameter, unit: km day–1

D Diffusion parameter, unit: km2 day–1

Gb Generator matrix for behavioral process
Gm

i Generator matrix for movement process in 
behavior state i

Pk Probability transition matrix related to Dk.
ϕi Probability density of the animal's location in 

behavior state i
j Vector containing state probabilities
q Model parameter vector
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(Grimmett and Stirzaker 2001) that lii are always negative 
while lji  0 for j≠i. Thus, in Eq. 1 the term liijj is nega-
tive and represents the probability that the animal jumps 
away from the behavioral state i while the terms ljijj for j≠i 
represents jumps into the behavioral state i. Together, the n 
coupled PDEs in Eq. 1 describe the underlying dynamics 
(movement and behavior) of the system in continuous time 
and continuous space.

To solve Eq. 1 some form of numerical approximation 
is required. Our approach discretizes the continuous spatial 
state–space into a finite, albeit large, number of uniformly 
sized squares (states) (Thygesen et al. 2009). The size of 
a grid cell is denoted dx. On a discrete state-space, j is 
no longer a probability density, but is instead represented  
by a vector j containing the state probabilities ja, where 
the state index a  (x,y,i) is composed of location in x 
and y and the behavior state i. The discretized state–space 
allows us to derive the generator matrices, Gm

i (superscript 
m for movement), related to the movement processes 
i∈{1,2,…,n} (see Supplementary material Appendix 1 for 
derivation of Gm

i ).
It is simple to manipulate Gm

i to explicitly exclude loca-
tions from the state-space that are not accessible to the ani-
mal by setting the rate of jumping to these states to zeros. 
In PDE terminology this is a ‘reflecting’ boundary condi-
tion, which is a simple but natural way to incorporate barri-
ers to movement. The ecological interpretation of reflecting 
boundaries is that animals that encounter barriers reorient 
themselves and move on. Thus, steps into and steps through 
obstacles are avoided.

Observations are assumed to be generated through a 
function h of the true animal location xt and a random per-
turbation or error wt which is related to the uncertainty of 
the measurement process. Formally the observation equation 
is written

zt  h(t, xt, wt)	 (2)

where zt is a vector containing the observations available at t. 
Note that the behavior state i is not part of the observation 
equation and is therefore fully hidden. This formulation does 
not require h to be linear and there are no restrictions on the 
form of the distribution of wt. For example non-Gaussian 
errors on satellite telemetry location estimates (Jonsen et al. 
2005) or animal locations derived from radio-tracking trian-
gulation (Anderson-Sprecher 1994) are often heavy tailed in 
distribution. This necessitates a non-Gaussian distribution 
of wt such as the t-distribution to accommodate outliers and 
stabilize estimation. However, the non-linear form of h may 
also allow for more subtle relations between observations 
and state, e.g. linking observations of daylight intensity to 
location (Nielsen et al. 2006). For marine animals, the lack 
of constraints on h is particularly useful as observations are 
rarely of location itself but rather of light intensity, depth, 
temperature etc. and so h becomes strongly nonlinear 
(Pedersen et al. 2008).

With tracking data we have observations at N points 
in time, i.e. tk is the time point of the kth observation 
and the set of observations available by this time is Zk 
 {zt1,...,ztk}. The length of a sampling interval is Dk   
tk11 –tk. For irregularly sampled data or data sets with 

missing observations these time intervals have different 
lengths. For a given time interval length Dk we can com-
pute the probability transition matrices Pk of the combined 
behavior and movement process using the generator matri-
ces Gm

i and Gb (Supplementary material Appendix 1). Visu-
alizing the structure of a simple transition matrix illustrates 
the hierarchical dependency between the movement and 
the behavior processes (Fig. 1).

Estimation and model selection with HMM

A hidden Markov model (HMM) filter (Zucchini and Mac-
Donald 2009) provides the probability distribution of the 
states forward in time conditional on data, j(tk | Zk) (here-
after termed ‘state estimates’). State estimates are calculated 
successively by alternating between so-called time and data 
updates of the current state. Time updates predict the state at 
the next time given the current state, while data-updates use 
the next observation available to correct the time-updates. 
Similar recursions are well known from other algorithms 
such as the Kalman filter or particle filter (Andersen et al. 
2007) and are generally referred to as filtering recursions. In 
addition to the state estimates, the filter returns a likelihood 
measure which indicates how well the model fits the data. 
Thus, the likelihood function, L, of the unknown param-
eters q (drift, diffusion, switching rates) can be evaluated at, 
say, q0 by running the filter using the parameter values in q0 
(Thygesen et al. 2009). Details of evaluating the likelihood 
function are given in Supplementary material Appendix 2. 
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Figure 1. Probability transition matrix of a one-dimensional move-
ment process with 10 spatial states combined with a two state 
behavior switching process leading to a 20  20 matrix. Darker 
colors represent state transitions with higher probability. The matrix 
consists of four 10  10 sub-matrices: the top two represent move-
ment in behavior state one (e.g. foraging) and the bottom two rep-
resent movement in behavior state two (e.g. migration). The values 
of the sub-matrices are scaled by the probabilities of switching 
between the two behavior states.
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V(x, y, t) (t | Z )
i 1

n

(x,y,i) N


∑ϕ
	 (4)

which is the probability distribution of the location at time t. 
Viewing V(x,y,t) in succession for increasing time t (i.e. as 
an animation) presents an illustrative description of how the 
location of the animal and its uncertainty changes in time 
on a day-to-day basis (see Supplementary material Video 
Appendix for an example). The animation gives particularly 
important insights when observation errors are non-Gauss-
ian or indirect (e.g. of daylight) since in this case the variance 
of the location is no longer sufficient to describe the spatial 
correlation patterns.

It is often of interest to examine the amount of time 
spent by the animal within a spatial region (Walli et al. 
2009). As a necessary simplification, previous approaches 
to calculating the time spent in a region of interest often 
ignore the fact that the observed location of the animal 
is uncertain (Aarts et al. 2008). However, Monte Carlo 
based alternatives incorporating observation uncertainty 
are available (Sumner et al. 2009). Within the HMM 
framework the time spent can be expressed as a statistical 
expectation. At first glance this is not a straightforward 
calculation because the true locations are always observed 
with error and, effectively, hidden. Fortunately, the poste-
rior distribution can be used to give a reasonable estimate 
of the time spent at location (x,y) in the time interval t. 
This time is calculated as the expectation given data and 
is computed as

R(x, y) (t | Z )
l i 1

n

(x,y,i) l N
∈τ

ϕ∑∑ 	 (5)

where l indexes time uniformly. This is to avoid that the pos-
sibly uneven sample intervals given by the index k lead to a 
bias in the expectation. Using l means that ϕ(x,y,i)(tl | ZN) must 
be computed at time points that have no related observa-
tion, however at these times the data-update step is simply 
omitted. So, by summing over the time and behavior indi-
ces of the posterior distribution (which incorporate the data 
induced spatial variability), we get R(x,y) which is a distribu-
tional estimate of residence time.

We prefer to normalize R(x,y) and view its cumulative dis-
tribution where grid cells are assigned a number between 0% 
and 100%, so that the 15% contour line, say, contains the 
smallest region where the animal was expected to spend 15% 
of its time. This ‘residency distribution’ (RD) is conceptually 
similar to the utilization distribution (‘UD: The name given to 
the distribution of an animal’s position in the plane’ cf. Worton 
1989). However, as noted by Royle and Dorazio (2008), this 
and other concepts such as home-ranges (Burt 1943), activ-
ity centers etc. (Dixon and Chapman 1980), are often vaguely 
defined. Despite being notionally similar, the quantity in Eq. 5 
should not be directly interpreted as a UD in the usual sense. 
Nor should it necessarily be related to any sort of home-range, 
which, in any case, would not make sense for the highly migra-
tory animals we consider here (Fig. 3 bottom panel).

In general we may decide to sum over other variables and 
variable ranges of interest to obtain information about the 
movement or behavior over a specific time period or for a 

Maximum likelihood (ML) estimation of model parameters 
is then straight forward:

q̂  arg ma
q

x L(q | ZN)	 (3)

This optimisation problem can be solved by most stan-
dard numerical optimizers which typically also provide an 
approximation to the Hessian matrix (i.e. curvature) of the 
likelihood function from which the uncertainty of q̂ can 
be assessed (Pawitan 2001). For the parameter estimation 
in this work the optimization toolbox included in Matlab 
(Mathworks, Natick, USA) was used. In a Bayesian con-
text it is common to introduce a priori information about 
the parameters through the prior density π(q). The maximum 
a posteriori (MAP) estimate of the parameters is therefore the 
value of q which maximizes the posterior density L(qZN)π(q). 
In practice, however, substantial prior information is rarely 
available (Jonsen et al. 2005) in which case the MAP and 
the ML estimates are close to identical. Furthermore, for 
model selection purposes the maximum value of the like-
lihood function is required and we therefore use the ML 
estimate in this study. Selection among alternative models 
in a Bayesian context would typically employ the Bayesian 
Information criterion (BIC). Unfortunately, calculating the 
BIC involves integrals without analytical solutions which 
therefore must be approximated (Wasserman 2000). The 
assumptions required by this approximation impose restric-
tions on the priors thus reducing the relevance of the BIC in 
context of the present problem. Instead we calculate Akaike’s 
information criterion, AIC–2ℓmax12M where ℓmax is the 
maximum value of the log-likelihood function and M is the 
number of unknown model parameters. The model having 
the lower AIC is more likely and therefore ranked higher.

When parameters have been estimated only one step remains 
which is the so-called HMM smoothing step (Thygesen et al. 
2009). The recursions of the smoothing step work backwards 
in time using the filtered state estimates and all available 
data to determine the smoothed state estimates, j(tk | ZN). 
The smoothed state estimates are more accurate and gener-
ally appear ‘smoother’ than the filtering estimates because 
they exploit the full data set (ZN). When fitting an SSM in a 
Bayesian context the smoothing step provides the posterior 
distribution of the state. By posterior distribution we mean 
the probability distribution of all states at all times given all 
data. Obviously, this distribution has a high dimension and 
is quite complex. For post-processing purposes it is therefore 
common to use time marginals of the posterior distribution 
(i.e. probability distributions of all states at specific times) 
which, in fact, are the state estimates returned from the 
HMM smoothing algorithm.

See Supplementary material Appendix 2 for the math-
ematical and algorithmic details regarding filtering, smooth-
ing, and parameter estimation.

Visualizing results

The posterior distribution obtained from the HMM smooth-
ing procedure allows detailed information about behavior 
and location to be extracted through time. For visualizing 
details of short-term animal movements we sum the poste-
rior distribution over the behavioral state, i.e.
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taken from the temperature sensors on the tag. The PSAT 
was programmed to measure SST and longitude twice per 
day. However, it was not always the case that the SBT vis-
ited the surface in every sample interval. Thus, the returned 
data were sampled irregularly in time which necessitated a 
continuous-time analysis.

For the described observation scheme, Eq. 2 becomes

T
L

h(t, )t

t
t

T

L

æ

è
çççç

ö

ø
÷÷÷÷÷

æ

è
çççç

ö

ø
÷÷÷÷÷

 x
ε
ε

where h is a non-linear function that describes how SST (Tt) 
and longitude (Lt) inferred from daylight intensity vary as 
function of location and time. This relation is expressed by 
hydrographical SST prediction models (six day composite 
images of remotely sensed SST constructed from advanced 
very high resolution radiometer (Armstrong and Vazquez-
Cuervo 2001), CSIRO Marine and Atmospheric Research) 
and astronomical models of sunlight exposure (Hill and 
Braun 2001). Both white noise terms, εT and εL, were 
assumed to be Gaussian distributed with standard deviations 
sT  0.71°C and sL  35 km estimated based on inde-
pendent data sets (Supplementary material Appendix 5) and 
were therefore omitted from parameter estimation. For the 
final results we used a grid size of 111  201 grid cells equat-
ing to square cell size of dx  25.52 km. This grid size was 
limited by computer memory requirements and to keep run 
times at feasible levels (estimation took 10–40 h depending 
on the specific model; see below for model configurations).

We considered four movement-behavior models (Table 2)  
that were different parameter configurations of the SSM and 
analyzed their relative performance using AIC-based model 

specific location. Behavior switching results may be visual-
ized by summing over space

B(i, t) (t | Z )
x,y

(x,y,i) N∑ϕ 	 (6)

to get the probability of each behavioral state at all time 
points (Fig. 3 top panel, green line). Viewing B(i,t) with the 
animation may reveal links between behavior and certain 
spatial regions (Video appendix VA1, top panel). An alterna-
tive approach to relating behavior to space is the expected 
total time spent in a given region and behavioral state, i.e.

M(x, y, i) (t | Z )
l

(x,y,i) l N
∈τ

ϕ∑ 	 (7)

These distributions are useful for identifying e.g. migration 
corridors or residency hot spots while, at the same time, 
quantifying the spatial uncertainty for these different behav-
iors (Fig. 3).

Track estimation is another way to visualize the posterior 
distribution. A track is an outcome of the posterior distribu-
tion and is in the context of this paper defined by a vector  
a  (aT

l,...,aT
N). A track in the sense of a not only contains the 

estimated geographical coordinates of the animal, but also 
the most probable switching sequence through the behavior 
states (Fig. 3 top panel, black line, for an example). Random 
tracks, conditional on data, can be simulated from the pos-
terior distribution as described in Thygesen et al. (2009); 
this is useful for examining a range of possible tracks and  
for estimating statistics such as the probability that the indi-
vidual enters certain regions. Similarly, the most probable 
track is the outcome that returns the highest value of the 
posterior distribution. In technical terms it is a maximum 
a posteriori estimate, i.e. the state sequence that maximizes 
the posterior distribution. The probability distribution 
and the most probable track estimate are different ways of 
decoding the HMM (cf. Zucchini and MacDonald 2009) 
and may deviate at times when data are weak (Fig. 3 at the 
transition from the Tasman Sea to the Southern Ocean).

The algorithm (Viterbi 2006) used to calculate the most 
probable track is detailed in Supplementary material Appen-
dix 3. The performance of the HMM approach with respect 
to state estimation, parameter estimation and model selec-
tion was validated in a simulation study which is in Supple-
mentary material Appendix 4.

Data analysis

To demonstrate the described framework, the model was 
applied to field data from PSATs attached to southern bluefin 
tuna (SBT) Thunnus maccoyii. Complete details of the data 
collection procedure are given in (Patterson et al. 2008a). 
The PSAT (Wildlife Computers PAT-3, Redmond, USA) 
was deployed on a 168 cm/13 year old SBT captured off the 
east coast of Australia in the Tasman Sea in July 2003. The 
known start location was used to initialize the HMM filter. 
The PSAT detached from the SBT 177 days later, south of 
Western Australia in the Southern Ocean. Longitude esti-
mates (Fig. 2, top) were generated from the PSAT data using  
the WC-GPE.1.02.0000 software (Wildlife Computers). Mea-
surements of sea surface temperature (SST, Fig. 2, bottom) were 

Table 2. The four models and their parameter configurations. Model 
acronyms mean D: diffusion, DA: diffusion–advection, SD: switching 
diffusion, SDA: switching diffusion–advection.

Model acronym Model parameters No. of parameters

D D1 1
DA D1, ux, uy 3
SD D1, D2, p11, p22 4
SDA D1, D2, ux, uy, p11, p22 6
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Figure 2. The dataset from the southern bluefin tuna as transmitted 
from the PSAT tag. Top: Longitude as estimated on-board the tag 
from observed daylight intensity. Bottom: Sea surface temperature 
measured by the tag when the tuna visited the surface. Notice that 
data is not sampled uniformly. This is most clear in the final part of 
the dataset (mid January).
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Figure 3 summarizes the movement and behavior 
estimation for the model with the lowest AIC, i.e. the 
SDA model. Initially, the SBT resided in the Tasman Sea, 
east of the Australian continent, for about two months 
after tag deployment before it moved south to a region 
northeast of Tasmania. From October and onwards an 
increased migration probability was apparent (Fig. 3 
top panel) as the fish made a westerly migration into the 
Southern Ocean. The activity level dropped in January 
as the SBT stayed resident off the Western Australian 
coast. The RD highlighted four primary areas of residency  
(Fig. 3 areas A–D). While the RD shown in Fig. 3 is 
only from a single individual, these areas coincide with 
apparent residency areas for large SBT from other studies  
(Patterson et al. 2008a). In the Tasman sea (areas A, B) 
large SBT have long been targeted by Australian domestic 
fisheries (Caton 1991). The RD also highlights an appar-
ent residency phase in an area off the southern coast of 
Australia, to the Northwest of Tasmania (area C). This 
area is known as the ‘Bonnie Upwelling’ (Schahinger 
1987) and has been characterized as a local hotspot for 
a range of predator species, presumably due to the large 
concentrations of prey species.

Discussion

We presented a hidden Markov model (HMM) as an 
advanced and versatile approach to state-space modeling. 
The method provides a unified solution to a number of 
important complications related to the analysis of move-
ment data: the need to explicitly account for movement 
uncertainty and the entanglement of movement and behav-
ior; accounting for barriers to movement; and accommodat-
ing multiple sources of non-spatial and possibly irregular 
data with non-Gaussian error structures. The method can, 
however, also be useful for mapping behavioral modes 
present in accurate location data e.g. as recorded by telem-
etry devices. Output from the model is calculated using 
the posterior distribution of the state of the animal. The 
results therefore have a form that allows detailed biologi-
cal insights to be obtained which have not previously been 
available from tracking data. Additionally, the computa-
tion time and accuracy of the solution can be controlled 
by altering the grid resolution. Thus, coarse results can be 
obtained rapidly in the implementation phase while final 

selection. To maintain focus on the model’s ability to esti-
mate behavior we assume that the x and y components of the 
diffusion terms are uncorrelated. Thus Di  diag{[Di,Di]}.

Parameters were estimated for each of the four models 
listed in Table 2. To ease interpretation we converted the 
behavior switching rates estimated in continuous-time to 
transition probabilities for a fixed time step, Dk  0.5 day 
(12 h). To summarize the movement rate of the SBT we 
calculated the square root of the expected squared distance 
moved in a time period of length dt  1 day (24 h):

S E(X ) E(Y )

2D dt (u dt) 2D dt (u dt)
i t

2
t
2

i xi
2

i yi
2ˆ ˆ ˆ ˆ

which we refer to as the expected movement with unit km 
day–1. This formula comes from the definition of variance, 
i.e. that E(A2)  V(A)  [E(A)]2, where A is a random vari-
able. The quantity Si is a useful gauge of the level of activity 
in behavior state i.

Results

Model selection clearly favored switching models over non-
switching models (AIC values in Table 3), a difference which 
was also highlighted by a 297 km RMS discrepancy between 
estimated trajectory locations of the diffusion–advection model 
(DA) and the switching diffusion–advection model (SDA). 
The estimated values of the advection parameters ux and uy for 
models DA and SDA were of moderate size and their estimated 
variance relatively large indicating a reduced influence of these 
parameters on the tracks and a limited support for these param-
eters by the data. Similarly, pairwise comparison of the AIC for 
the pure diffusion models (D, SD) versus diffusion–advection 
models (DA, SDA) reported only a slight advantage when the 
advection parameters were included. However, the SDA model 
did have the lowest AIC and therefore showed the best fit to 
data. Estimates of the behavior switching transition rates (pre-
sented here as transition probabilities) were almost identical for 
the two switching models, again supporting the conclusion that 
the advection contribution to the migratory behavior state for 
this data was of minor importance. Also the RMS difference in 
trajectories between the two switching models was small (88 
km) and only four locations were classified into different states 
between the two models. Estimated parameter values and asso-
ciated uncertainties are given in Table 3.

Table 3. Results of the data analysis. Maximum likelihood estimates (MLEs) of model parameter values with 95% CI of the four models. Si is 
the expected movement per day. Unit for Di is km2 day–1, unit for ux and uy is km2 day–1and unit for Si is km.

AIC
Model D
2241.32

Model DA
2239.04

Model SD
2183.15

Model SDA
2180.27

Param. 0.025 MLE 0.975 0.025 MLE 0.975 0.025 MLE 0.975 0.025 MLE 0.975

D1 4923 6644 8365 4873 6739 8605 48 275 502 40 277 514
D2 – – – – – – 9519 15439 21360 9391 15577 21763
ux – – – –39.6 –22.2 –4.8 – – – –97.4 –53.3 –9.2
uy – – – –11.8 5.7 23.1 – – – –33.0 9.3 51.6
S1 – 163 – – 166 – – 33 – – 33 –
S2 – – – – – – – 248 – – 255 –
p11 – – – – – – 0.86 0.95 0.98 0.88 0.95 0.98
p22 – – – – – – 0.88 0.95 0.98 0.86 0.95 0.98
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the size of a grid cell is smaller than the uncertainty on the 
estimated position, this limitation is not critical. Also, in 
many situations discretization of space is actually required 
and spatially continuous location estimates would need to 
be discretized post hoc. This applies for example when the 
objective is to determine residency in a reserve, a habitat 
patch, or a management unit.

A cogent point for the data considered here is that the 
precision of an inferred location is much higher than could 

results are computed with high accuracy using a fine grid 
with longer computation times.

Treatments of space and time

A key component of the HMM approach is the need to dis-
cretize space. At some level, this requirement may be seen as 
a limitation since predictions of locations are indeterminate 
at scales smaller than the model’s spatial units. However, if 
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Figure 3. Top panel: the black line is the most probable behavior switching sequence and the green line is smoothed probability of the 
migratory behavioral state. Shaded areas relate the behavior switching to the corresponding spatial regions specified in the distribution plots 
below. Bottom panels: most probable trajectory of the switching diffusion–advection model for the southern bluefin tuna from its release 
29 July 2003 to pop-up 22 January 2004. Shaded circles indicate migrating behavior, blue circles indicate resident behavior, green circle is 
release location and orange square is pop-up location. Underlaid are residency distributions (top: both behaviors, middle: resident, bottom: 
migratory) showing the expected proportion of time spent by the SBT within the contoured regions. Note that the trajectory deviates from 
the residency distribution at the migration from the Tasman Sea to the Southern Ocean (details in Methods and Discussion sections). 
Matlab’s contourf function was used to plot the matrices containing the residency distributions.
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Potentially, model structure issues (such as the inclusion 
of advection terms or not) are important as they may influ-
ence inference of biologically relevant quantities, such as 
estimates of the percentage of time in each behavior mode. 
For instance, an advection-free model may need to place 
more locations in the ‘fast’ movement mode to accommo-
date directed movement phases. A model with advection 
may be more flexible and thus able to move the animal faster 
between locations. However, this did not appear to be a 
significant factor in the data set we examined. The percent-
age of time in the migratory state was only slightly different 
between the model without advection (9.8% of days) and 
the model including advection (9.6% of days). Nonetheless, 
we suspect that further examination of the linkages between 
model structure, estimation, model selection and subsequent 
inference of biological quantities is required.

Alternative movement models

As model for individual movement we used variants of 
Brownian motion, which is the continuous-time equiva-
lent to a random walk model. The correlated random walk 
(CRW) is an alternative model, which is able to capture 
short-term persistence in the animal’s movement direction 
(Codling et al. 2008). Thus, the CRW is expected to provide 
more realistic uncertainty contours for the estimated loca-
tions as compared to the Brownian motion. Yet for relatively 
accurate data an estimated movement path is largely deter-
mined by the observations and relies to a smaller extent on 
the specific model for movement, while for inaccurate data it 
is not possible to reliably estimate small-scale correlations in 
movement. Therefore, for the type of data presented here it is 
unlikely that the estimated overall movement would change 
significantly if estimated using a CRW instead of the advec-
tion-diffusion model. Implementing a CRW in the HMM 
framework is theoretically possible, but requires gridding of 
four state dimensions (two-dimensional space and velocity), 
which entails a substantial total number of states. Even if the 
velocity can be coarsely discretised, memory requirements 
and calculation time of a CRW HMM will be immense and 
possibly impractical.

The Lévy walk (LW, random walk with Lévy distrib-
uted steps) is another movement model which has received 
much attention from ecologists (Sims et al. 2008). It has 
been argued that LWs in certain scenarios represent the 
optimal search strategy for animals (Viswanathan et al. 
1999). However, theoretical studies have shown (Plank and  
Codling 2009) that Lévy type movement patterns may arise by  
sub-sampling of composite random walks (similar to the 
switching model presented here) and vice versa. Similarly, 
theoretical results of another study (Thygesen and Nielsen 
2009) showed that even if the animal does follow a LW, 
estimation based on a simple random walk will give only 
marginally poorer estimation accuracy. Using real data, the 
state-space and model selection framework we have presented 
could in a future study be used to compare the estimation 
performance of switching models versus Lévy models while 
accounting for observation uncertainty. Such an assessment, 
while outside the scope of this study, would provide useful 
insights, for example into the ecological relevance of LWs 
through statistical tests at the individual animal level.

be inferred from the data alone. Conversely, the scale of the 
spatial units in the model is much smaller than the scale of 
migrations made by the animal. Moreover, in this method, 
barriers to movement are easily included simply by setting 
the probability of moving to or through impossible locations 
to zero. Thus any loss of realism stemming from spatial dis-
cretization may be offset by ruling out impossible behaviors 
such as fish crossing land or terrestrial animals crossing large 
bodies of water. Therefore, the utility of this approach is not 
significantly diminished by spatial discretization and in fact 
may offer an integrated approach to aggregating location 
estimates up to larger spatial scales.

The primary factor influencing the computing time of 
the method is the grid resolution. Other important fac-
tors are the number of behavioral states, the number of 
parameters to be estimated, and the values of movement 
parameters. The parameter values are influential because 
they determine the sparsity of the probability transition 
matrices (larger values lead to denser matrices and there-
fore more computations). With the grid used for our final 
results the filter requires about one minute to run for the 
switching model with advection and reasonable parameter 
values. Total time required for estimation of parameters, 
tracks, and residency distributions is about a day. If par-
allel computing facilities are available more models can 
be estimated simultaneously thus avoiding extra comput-
ing time. The switching HMMs presented here operate 
in continuous time. Electronic tag data is often subject 
to regular or irregular gaps in the data stream. As other  
authors have pointed out (Johnson et al. 2008, Patterson 
et al. 2010) continuous-time methods handle this seam-
lessly. Given that PSAT data is actually a regular time series 
(twice daily locations) with gaps, a discrete-time approach 
which handled missing data could equally have been applied. 
However, the continuous-time approach is more general.

Behavior models and model selection

Model selection for switching Brownian motion models is a 
challenging process. The simulation study (Supplementary 
material Appendix 4) confirmed that the correct model was 
selected if it were present in the candidate set. Predictably, 
for the analysis of a real data set the situation was not so 
clear cut. For the SBT track the most complex model (two-
state with advection) was ranked highest. From an ecological 
standpoint, a constant advection term is unlikely to model 
movement behavior consistently. Future work should, there-
fore, consider some of the more advanced models that can 
be formulated within the state-space framework. While this 
excludes mechanistic approaches for which a model likeli-
hood cannot be computed, a viable future step could be to 
incorporate time-varying advection in the Brownian motion 
model. For example, models including constant advection 
can be rejected when directed movements are present, yet do 
not exhibit an overall trend through time. In this case a con-
stant advection term would most likely be estimated close 
to zero. Such a result would not however, entail the absence 
of advective processes in the tuna’s motion but stems from 
positing sub-optimal models. Then, to incorporate the com-
plexity of the observed movement, the diffusivity parameters 
Di, could end up being spuriously large.
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or activity centers, from the model given here, one would 
use the MPT and treat this as a known set of locations with-
out error. Then, kernel smoothing (Breed et al. 2006) or 
some other approach (Gitzen et al. 2006) could be used for 
a given sample of MPTs from multiple animals. However, 
doing this would neglect the uncertainty in the animal’s 
true locations. Instead, specialized methods for calculating 
UD (Benhamou and Cornélis 2010) which also incorporate 
barriers to movement may be considered. In calculating the 
RD, it may also be useful to marginalize over specific peri-
ods of the track. For instance, a researcher may be interested 
in determining spatial residency of tagged animals over a 
particular month. Also, the RD may be calculated with 
respect to specific behavioral states in order to assess which 
areas are most important as either residency areas or migra-
tion corridors (Fig. 3). Finally, by jointly considering the 
RD from multiple animals it is possible to assess the degree 
of overlap in their movement paths while simultaneously 
accounting for uncertainty. These sorts of approaches could 
be used to large tracking data sets and serve as an advanced 
alternative to common kernel density estimation methods 
(Walli et al. 2009).

Conclusion

This paper has demonstrated advances to state-space 
methods for behavioral estimation. The HMM approach 
can simultaneously estimate movement parameters, most 
likely behavioral state, the most-probable track and dem-
onstrates how some basic model selection and inference 
may be carried out. Importantly, the paper provides a 
method for computing an index of residency which explic-
itly accounts for the uncertainty and auto-correlation in 
both location and behavior. This is an important and often 
neglected aspect of studies which examine the distribution 
of animals in space and time using telemetry and elec-
tronic tracking data.
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