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a b s t r a c t

The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of
estimation methods for such models are available to ecologists, however it is not always clear, which
is the appropriate method to choose. To this end, three approaches to estimation in the theta logistic
model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare
the estimation performance of three alternative methods using simulated data. The first approach is to
eywords:
D Model Builder
idden Markov model
ixed model

partition the state-space into a finite number of states and formulate the problem as a hidden Markov
model (HMM). The second method uses the mixed effects modeling and fast numerical integration frame-
work of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular
Bayesian framework of BUGS. The study showed that state and parameter estimation performance for all

ly ide
d AD
onte Carlo
heta logistic population model
inBUGS

three methods was large
parameters than HMM an

. Introduction

State-space models (SSMs) have become the favored approach
n modeling time varying ecological phenomena such as population
ynamics (Wang, 2007; Gimenez et al., 2007), animal movement
Patterson et al., 2008) and animal behavior (Morales et al., 2004).
SMs come in a variety of classes depending on the problem type
linear or nonlinear) and the error structure of the data (Gaussian
r non-Gaussian). In the linear and Gaussian case an exact solu-
ion to the SSM can be found using the Kalman filter (KF), which is
he optimal estimator (Madsen, 2008). In case of minor departures
rom linearity, KF variants, such as the extended KF or unscented
F, can be employed. Both methods are reviewed and discussed by
ang (2007). In cases where the state-space equations are highly

onlinear, it is inappropriate to use any KF variant. For ecological
roblems Markov chain Monte Carlo (MCMC) is perhaps the most
ommon approach to accommodate model nonlinearities owing to
ts flexibility and general applicability. In addition, free software
or MCMC analysis is available, for example the widely used Win-
UGS (Gimenez et al., 2008). An example of non-WinBUGS MCMC

opulation modeling is explained by Wang (2007).

We address three powerful methods for the analysis of nonlin-
ar state-space models, two of which have only gained moderate
ttention previously within the field of ecology compared to the
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ntical, however with BUGS providing overall wider credible intervals for
MB confidence intervals.

© 2011 Elsevier B.V. All rights reserved.

third. The idea of the first method we present is to discretize the
continuous state-space and then reformulate the SSM as a hidden
Markov model (HMM) (see Zucchini and MacDonald, 2009). A simi-
lar approach was described by Kitagawa (1987). The second method
we consider is implemented in the open-source software AD Model
Builder (ADMB-project, 2009a). In ADMB the SSM is formulated as
a statistical model with mixed effects. A major advantage of ADMB
is that it makes efficient use of available computer resources by
so-called automatic differentiation. Thirdly, we apply OpenBUGS,
which is the open-source version of WinBUGS (Spiegelhalter et al.,
1996). BUGS is flexible and therefore widely used in modeling eco-
logical systems (Gimenez et al., 2008).

To broaden the perspective of this study we apply the three
methods to simulated data from the theta logistic population
model, which is a nonlinear SSM. The same example was ana-
lyzed by Wang (2007). The performance of the three methods
is summarized with respect to a range of aspects: complexity of
implementation, computing time, estimation accuracy, limiting
assumptions, and algorithmic design. Algorithmic design refers to
the amount of subjective tuning required before actual estimation
can begin. Because of reduced subjective influence, methods with
fewer tuning parameters are often preferable. Finally, we discuss
some differences between Bayesian (BUGS) and frequentist (HMM
and ADMB) methods.
2. Methods

A state-space model describes the dynamics of a latent state (Xt)
and how data (Yt) relate to this state. An important feature of SSMs
is their ability to model random variations in the latent state and in
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ata. For t ∈{1, . . ., N} the general system and observation equations
f the SSM are respectively Xt = g(t, Xt−1, et), and Yt = h(t, Xt, ut),
here et ∼ N(0, Qt) is the system error and ut ∼ N(0, Rt) is the obser-

ation error. Here, “∼N(·)” means Gaussian distributed. Because of
he possible nonlinearity of g and h, advanced filtering and smooth-
ng methods must be employed to gain meaningful estimates of Xt.
n this respect, the extended Kalman filter, the unscented Kalman
lter, and Bayesian filtering e.g. using Markov chain Monte Carlo
MCMC) sampling or BUGS are common approaches. Alternative

ethods for nonlinear state estimation are hidden Markov models
HMMs, Zucchini and MacDonald, 2009) and mixed effects mod-
ls using the software AD Model Builder (ADMB). ADMB is freely
vailable and open-source (ADMB-project, 2009a).

.1. Benchmarking of estimation methods

The log-transformed theta logistic population growth model
Wang, 2007) was used as benchmark example for assessing the
stimation performance of HMM, ADMB and BUGS. The system and
bservation equations for this model are

t = Xt−1 + r0
(

1 −
(

exp(Xt−1)
K

)�)
+ et , (1)

t = Xt + ut , (2)

where et ∼ N(0, Q) and ut ∼ N(0, R).
Following Wang (2007), two different tests of the methods were

arried out:

. State estimation performance with known parameter values, i.e.
the ability of the methods to estimate the population level xt for
all t. Obviously, this test is free of Bayesian prior assumptions on
parameters.

. Estimation of states and all five model parameters, �= (log(�),
log(r0), K, log(Q), log(R)), simultaneously. This situation is
common in practice if model parameters cannot be estimated
from independent data. Notice that parameters that may yield
estimates close to zero are log-transformed to avoid invalid
parameter values.

Specifically for test 1, T = 2000 data replicates were simulated
ith N = 200, K = 1000, Q = 0.01, R = 0.04, and the initial state x0 = 3
sing 12 different sets of the � and r0 parameters (see Table 1). The
erformance of the methods was evaluated using an estimate of

he state estimation error:

MSE = 1
T

T∑
i=1

(
1
N

N∑
t=1

(�xi,t − xt)2

)1/2

, (3)

able 1
erformance of state estimation as defined by Eq. (3) for HMM, ADMB, and BUGS.

Sim. no. r0 � RMSE

HMM ADMB BUGS

1 0.1 0.5 0.100 0.100 0.100
2 0.5 0.5 0.099 0.099 0.100
3 0.75 0.5 0.097 0.097 0.097
4 1.0 0.5 0.095 0.095 0.095
5 0.1 1.0 0.100 0.100 0.100
6 0.5 1.0 0.095 0.095 0.095
7 0.75 1.0 0.091 0.092 0.092
8 1.0 1.0 0.090 0.090 0.090
9 0.1 1.5 0.100 0.100 0.100

10 0.5 1.5 0.092 0.092 0.092
11 0.75 1.5 0.091 0.091 0.091
12 1.0 1.5 0.096 0.096 0.096
Fig. 1. Probability of a jump (transition) from the state˝i to the state˝j in the time
interval from t to t + 1 in a HMM. The shaded area corresponds to the integral in (4).

where �xi,t is the state estimate for replicate i at time t, and xt is the
true state at time t.

Specifically for test 2, two datasets were simulated using
two other sets of parameter values: �1 = (� = 0.5, r0 = 0.1, K = 900,
Q = 0.01, R = 0.04) and �2 = (� = 1.5, r0 = 0.1, K = 900, Q = 0.01,
R = 0.04) with the number of data points N = 200. Parameter esti-
mates for these data using the three methods were found similarly
to the study of Wang (2007). We further used these two parameter
configurations to generate plots of the joint profile likelihood sur-
faces for r0 and �, which were transformed to confidence contours
via a�2-distribution as in Polansky et al. (2009). The simulated data
sets for �1 and �2 are available in the supplementary material to
enable comparison of our results with future estimation methods.
Additionally for test 2 we estimated all five model parameters along
with 95% intervals using T = 200 of the data sets simulated for test
1. Inspired by Lambert et al. (2005), the purpose here was to evalu-
ate the frequentist properties of the intervals provided by the three
estimation methods.

2.2. Hidden Markov model with Matlab

The integrals involved in the prediction, filtering, and smooth-
ing steps for nonlinear SSMs (see e.g. Eq. (2.2, 2.3 and 2.5) in
Kitagawa, 1987) can, in general, not be solved analytically. How-
ever, by partitioning the continuous state-space uniformly into n
parts the solution can be computed using hidden Markov mod-
els (HMMs) (Zucchini and MacDonald, 2009). See de Valpine and
Hastings (2002) for an ecologically motivated study using a similar
method. A state is denoted˝i, where i ∈{1, 2, . . ., n}. The probability
distribution of the state given the observations Yt available by time
t is P(Xt ∈˝i|Yt) = pt(i|Yt) which are collected in the row vector
pt(Yt) = {pt(i|Yt)}. The transition probability of jumping from˝i to
˝j (see Fig. 1) is

pt(i, j) = P(Xt+1 ∈˝j|Xt ∈˝i) =
∫
˝j

fxt+1|xt (xt+1|Xt ∈˝i)dxt+1. (4)

For one-dimensional problems ˝i are intervals on the line, in
two dimensions ˝i are areas, and analogously for higher dimen-
sions. Note that the n × n probability transition matrix Pt ={pt(i, j)}
is not homogeneous, i.e. the transition probabilities may change as
a function of time as indicated by (1). Now, the HMM prediction,
filtering, and smoothing equations are respectively

pt(Yt−1) = pt−1(Yt−1)Pt−1,
pt(Yt) =  −1

t pt(Yt−1) � L(yt),

pt(YN) = pt(Yt) � [{pt+1(YN) � pt+1(Yt)}PTt ]

where ‘�’ and ‘�’ are elementwise matrix multiplication and divi-

sion, respectively. The likelihood of the observations L(yt) is a row
vector with elements pt(yt|i) and t = pt(Yt−1) · L(yt)

T is a normal-
ization constant with ‘·’ denoting dot product. The estimate of the
state given all N observations is simply the mean of the distribution
pt(YN).
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Using the above scheme we can estimate the unknown param-
ters (�) of the SSM by maximizing the likelihood function

(�|YN) = fYN(YN |�) = [L(y1) · 1]
N∏
t=2

 t, (5)

s in Kitagawa (1987), where 1 is a column vector of ones. The
aximum likelihood (ML) estimate of the model parameters

�
� is

ound by optimizing (5) as a function of �. The covariance matrix
f
�
� is approximated by the inverse Hessian of the likelihood func-

ion at the optimum
�
�. This approximation is appropriate because

he ML estimate is asymptotically Gaussian under certain regular-
ty conditions (Cappé et al., 2005). Thus, confidence intervals can
e constructed using the approximated covariance matrix. Under
arameter transformations it is important to construct the confi-
ence intervals in the transformed parameters and then reverse
ransform the computed confidence limits.

When analyzing the theta logistic model we set n = 251. The
ounds of the discrete state-space are chosen such, that the prob-
bility of the true state falling outside the grid is negligible. That is,
e use the observation model (2) to determine bounds that enve-

ope the true latent state with a probability close to 1. This approach
s similar to the one used in de Valpine and Hastings (2002). Details
n grid specification can be found in the supplementary material
ontaining model code.

The HMM code provided in the supplementary material was
ritten in Matlab, but the method is not language specific. Matlab
as chosen because it is widely used and has a syntax which is

elatively easy to understand even for non-Matlab users.

.3. Mixed effects model with AD Model Builder

Hierarchical mixed effects models are an alternative framework
or analyzing nonlinear SSMs. The states are the random effects
f the model and are collectively referred to as X = {x1, . . . ,xN}.
ere, as in Madsen and Thyregod (2010), we specify a model for the
ata conditional on the unobserved random effects, fYN |X(YN |X, �a)
hich corresponds to (2). We also specify a model for the ran-
om effects, fX(X|�b) which corresponds to (1). The joint density
f random effects and observations conditional on the parameters
s

X,YN (X,YN |�) = fX(X|�b)fYN |X(YN |X, �a).

o obtain the marginal likelihood for estimating �={�a, �b} we
ntegrate over the unobserved random effects

(�|YN) = fYN (YN |�) =
∫
RN

fX,YN (X,YN |�)dX. (6)

he N-dimensional integral in (6) is generally challenging to solve,
nd for nonlinear mixed models we must resort to numerical
pproximation methods for estimating the model parameters. An
fficient and widely used method for this is the Laplace approxima-
ion (Wolfinger and Xihong, 1997), which replaces the integrand
ith a second order Taylor expansion around the optimum of the

og-likelihood function. This allows for elimination of the integral,
ecause the second-order Taylor expansion can be formulated as
known constant multiplied by a multivariate Gaussian density,
hich integrates to unity. For nonlinear models the distribution of

he random effect may not be Gaussian. Then the Laplace approx-
mation is not exact. In particular for multi modal distributions

ne should use the Laplace approximation with caution. Still,
hen analyzing nonlinear models with moderately skewed uni-
odal distributions good results can be obtained with the Laplace

pproximation (Vonesh, 1996; Mortensen, 2009). In any case it is
mportant to investigate if the approximation is critically violated
elling 222 (2011) 1394–1400

e.g. by Monte Carlo sampling from the random effects distribution.
Even with the Laplace approximation maximization of the

marginal log-likelihood with respect to � is challenging. A
computationally efficient method is to combine the Laplace
approximation with so-called automatic differentiation (AD Skaug
and Fournier, 2006). AD is a technique for finding the gradient of a
function h (in our case the log-likelihood), provided that h can be
expressed in computed code. Evaluating h using AD gives the func-
tion value along with the gradient of h at the point of evaluation.
The gradient is computed using the chain rule of calculus on every
operation in the code that contributes to the value of h. For effi-
cient maximization of the Laplace approximation of the marginal
log-likelihood with respect to �, up to third order partial deriva-
tives must be found. Skaug and Fournier (2006) show how this can
be accomplished by repeated use of AD.

The above procedure is implemented in AD Model Builder
(ADMB), which we use to analyze the theta logistic model. ADMB
is an open-source software package and programming language
based on C++. It includes a function minimizer for ML parameter
estimation and a random effects module, which utilizes the Laplace
approximation for integration of random effects. Standard devia-
tions for constructing confidence intervals are calculated using the
delta method (Oehlert, 1992) and automatically reported on all esti-
mated quantities. The covariance matrix for all states in an SSM
is a banded matrix (Skaug and Fournier, 2006). ADMB can exploit
this property by using the SEPARABLE FUNCTION construct (ADMB-
project, 2009b) to gain significant speed improvements. Other than
this useful property ADMB has no tuning parameters as such.

2.4. Monte Carlo estimation with BUGS

Finally, we analyze the theta logistic model using the Bayesian
modeling language BUGS, which is an MCMC estimation method
(Spiegelhalter et al., 1996). BUGS is a popular tool in ecological
modeling (e.g. Gimenez et al., 2007; Jonsen et al., 2005; Schofield
et al., 2009). BUGS is best known in the WinBUGS form which
has a graphical user interface. Here, however, we use the open-
source alternative OpenBUGS, yet the BUGS code provided in the
supplementary material is compatible with WinBUGS.

A Bayesian analysis requires that prior distributions are spec-
ified for the model parameters. The type of prior distributions
and parameter values related to these distributions should reflect
the a priori knowledge that is available about the model parame-
ters. BUGS then uses Gibbs sampling (Casella and George, 1992) to
explore the posterior distribution of the parameter and state-space
by incorporating the information specified by the priors, the state-
space model, and the observed data. The Gibbs algorithm exploits
that sampling the posterior is sometimes simpler via its conditional
distributions rather than directly from the joint distribution. This is
the case for state-space models where direct sampling of the poste-
rior for states and parameters is difficult. Instead, sampling model
parameters from priors and then sampling Xt conditional on model
parameters and remaining states (X1, . . ., Xt−1, Xt+1, . . ., XN) for all t is
simple using (1). The ampling algorithm applied by BUGS in specific
cases depends on the form and type of the conditional distribution,
and also on the composition of priors on model parameters (see
Spiegelhalter et al., 1996, 2003, for details).

We consider the common practical situation where a priori
knowledge is unavailable and estimation therefore relies entirely
on information in data. How to specify vague (or uninformative)
priors is a topic of on-going research (Gelman, 2006; Lambert et al.,

2005), which is outside the scope of this study. One suggested vague
prior is a uniform distribution with wide support (Spiegelhalter
et al., 1996). So, we choose a uniform prior for K, and uniform priors
for log � and log r0 that were much wider than the natural biologi-
cal bounds for the parameter values. By log-transforming � and r0
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Table 2
Computing times for HMM, ADMB, BUGS1 (inverse-Gamma prior on variances), and
BUGS2 (uniform prior on log-standard deviations). All times are for a single dataset
run on the same computer.
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HMM ADMB BUGS1 BUGS2

State est. 6.12 s 0.49 s 58 s 58 s
Par. est. 225 s 2.5 s 118 s 614 s

iological meaningful (i.e. positive) parameter values are ensured.
he state-space formulation implies that the variance parameters

and R are non-zero and therefore also require prior distribu-
ions. It is common to assign vague inverse-gamma distributed
riors to variance parameters (Spiegelhalter et al., 2003; Lambert
t al., 2005). Gelman (2006), however, recommends using a uni-
orm prior on the log-transformed standard deviation. Therefore,
o asses the sensitivity of the estimation results to the choice of
rior we perform BUGS estimation in two separate cases: BUGS1
sing an inverse-gamma distribution for Q and R, and BUGS2 using
uniform distribution on the log-transformed standard deviation,

.e. 0.5 log(Q) and 0.5 log(R).
Estimation using BUGS involves a number of tuning parame-

ers: the initial values for the sampling scheme can be found in
he supplementary material online along with the specifics of the
riors. The total number of generated samples was 100,000 with
0,000 used for burn-in. The appropriate number of samples was
ound iteratively by repeated application of Geweke Z score test for
onvergence (Geweke, 1992). The BUGS thinning rate was 50 (for
educing sample autocorrelation, which was apparent for � and r0
t lower thinning rates). With these values of the tuning parame-
ers we get an effective sample size of 1000. For summarizing the
stimation results the maximum a posteriori (MAP) parameter esti-
ates along with 95% credible intervals are reported (where the

ower bound equals the 2.5% quantile and the upper bound equals
he 97.5% quantile of the posterior distribution).

. Results

State estimation results for the three methods using known
arameter values were practically identical (Table 1). ADMB was an
rder of magnitude faster than HMM, which, in turn, was an order

f magnitude faster than BUGS (Table 2). State estimation using
stimated parameter values also gave practically identical results
or all three methods (Fig. 2). Regarding ML parameter estimation
nd confidence intervals (CIs) for �1 and �2, HMM and ADMB per-
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True
HMM
ADMB
BUGS

A

B

ig. 2. State estimation of the theta logistic model with 95% intervals using the
stimated parameter values in Table 3. True states were generated using �2(� = 1.5).
anel A is a zoom of a part of the full time series indicated by the small box in panel B.
learly in this case, HMM, ADMB, and BUGS gave close to identical state estimation
esults.
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formed almost identically (Table 3). Likewise, MAP estimates and
credible intervals provided by BUGS1 and BUGS2 were overall sim-
ilar in the �2 case. In the �1 case, however, BUGS1 MAP estimates
of � and r0 were markedly lower and higher respectively than the
estimates provided by HMM, ADMB, and BUGS2. Perhaps most sur-
prisingly was the upper limit of the credible interval for K seemingly
quite sensitive to the choice of prior employed by BUGS, and in both
cases considerably higher than the HMM and ADMB CI upper limits.
Some notable differences between CIs and credible intervals were
present for �, K, and r0 in the �1 case (Table 3), with BUGS gener-
ally being more conservative and providing wider intervals (in the
log domain). Inspection of the joint profile likelihood surfaces for
� and r0 revealed that contour lines closely approximated elliptical
shapes for �2 (Fig. 4, panel B), thus indicating that the quadratic
approximation used by HMM and ADMB was appropriate. For �1,
on the other hand, the quadratic approximation was only appropri-
ate until the 65% confidence limit where the contour shape started
to diverge from the elliptical shape (Fig. 4, panel A). If comparing
the limits of the intervals provided by all three methods for the
�1 case (Table 3) with the extents of the likelihood surface (Fig. 4,
panel A), it is clear that neither credible intervals nor CIs captured
the actual range of plausible parameter values.

Visualizing the empirical distributions of the T = 200 parame-
ter estimates (Fig. 3) showed largely identical results for all three
methods. For all parameters the average 95% CIs provided by HMM
and ADMB closely approximated the 2.5% and 97.5% quantiles
of the corresponding empirical distribution. Similar results were
observed for BUGS1 and BUGS2 for parameters R and Q. Regard-
ing the three remaining parameters �, K, and r0, on the other hand,
the average credible intervals were markedly wider than the cor-
responding quantiles of their empirical distribution, and therefore
also wider than their CI counterparts. The difference in results
between the two vague priors (BUGS1 and BUGS2) was minimal
except for the credible intervals for K where BUGS2 gave wider
intervals than BUGS1. Since both priors have been regarded in
the literature as vague their influence on the resulting intervals
is surprising. Computing times for parameter estimation showed
that ADMB, again, was significantly faster than HMM and BUGS
(Table 2). Interestingly, BUGS1 was considerably (six times) faster
than BUGS2. This results can most likely be ascribed to BUGS using
different sampling algorithms in the two cases.

4. Discussion

Dynamical processes are prevalent in ecology. State-space mod-
els are commonly used in the analysis of such nonlinear processes
because they join separate models of the ecological system and
the observation process. This paper assessed the performance of
three methods for estimation in nonlinear state-space models: an
approach using hidden Markov models (HMM), the open-source
AD Model Builder framework (ADMB), and the BUGS language.
HMM and ADMB are frequentist (non-Bayesian) methods, while
BUGS is Bayesian. To facilitate a transparent comparison among
available estimation methods we considered the theta logistic
population model, which Wang (2007) analyzed with three other
methods (extended Kalman filter, the unscented Kalman filter and a
Metropolis–Hastings approach). To increase accessibility, the com-
puter code for our three methods can be found in the online
supplementary material.

The state estimation root mean square errors (RMSEs) of HMM,

ADMB, and BUGS (Table 1) were lower than those for the three
methods presented by Wang (2007), his Table 1. The 95% intervals
for the parameter estimates of � provided by our three methods
all included the true values (Table 3). Note that they also included
� = 1, which means that the models could not distinguish between
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Table 3
Parameter values estimated by HMM, ADMB, BUGS1 (inverse-Gamma prior on variances), and BUGS2 (uniform prior on log-standard deviations) with related 95% intervals.
Data were simulated with the listed true parameter values: �1 = (� = 0.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04) and �2 = (� = 1.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04) of the theta
logistic model.

HMM ADMB BUGS1 BUGS2

ML est. 95% conf. intv. ML est. 95% conf. intv. MAP est. 95% cred. intv. MAP est. 95% cred. intv.

�1

� 0.588 0.134–2.588 0.583 0.129–2.640 0.374 0.0210–1.446 0.538 0.020–1.496
K 829.3 643.3-1015 829.5 639.2–1020 860.0 629.2–1900 834.0 638.3–4957
r0 0.116 0.046–0.298 0.117 0.045–0.305 0.135 0.053–1.667 0.118 0.045–1.666
R 0.041 0.032-0.053 0.041 0.032-0.053 0.042 0.031-0.054 0.041 0.031-0.052
Q 0.0092 0.0052–0.016 0.0092 0.0051–0.017 0.011 0.0055–0.017 0.0099 0.0060–0.018

�2

� 1.098 0.412–2.926 1.079 0.402–2.902 1.006 0.043–2.551 1.037 0.043–2.869

a
r
h
i
s

m
e
d
2
a

F
r

K 886.9 792.7–981.0 887.0 790.5–983.5
r0 0.128 0.082–0.201 0.129 0.081–0.203
R 0.043 0.032–0.056 0.043 0.032–0.056
Q 0.0082 0.0038–0.018 0.0081 0.0045–0.015

concave and convex relation between population size and growth
ate. This is in contrast with the credible intervals in Wang (2007),
is Table 2, that excluded � = 1, however three out of six of his cred-

ble intervals also excluded the true parameter value, which is of
ome concern.

Recent studies have indicated that � and r0 of the theta logistic

odel (1) can be difficult to identify for certain data sets (Polansky

t al., 2009). This is the case because given � < 1 similar model
ynamics can be generated for different values of � (Clark et al.,
010). Supporting this, a joint profile likelihood surface for log�
nd logr0 showed that combinations of different values for the two

ig. 3. Violin plots showing the empirical distribution of T = 200 parameter estimates. Dat
0 = 0.1, K = 1000, Q = 0.01, R = 0.04). Crosses indicate the true parameter values, �. Horizo
891.3 769.3–1121 910.0 774.9–1097
0.127 0.078–1.136 0.134 0.074–1.032
0.043 0.031–0.056 0.044 0.032–0.056
0.0094 0.0041–0.018 0.0086 0.0043–0.019

parameters may fit data equally well, i.e. result in practically iden-
tical model likelihoods (Fig. 4, panel A, data generated with � = 0.5).
Still parameters estimated by HMM and AMDB were reasonably
accurate (Table 3, case �1), however the confidence intervals (CIs)
were too narrow when compared to the contours of the confidence
regions in Fig. 4, panel A. This result underlines the importance of

validating the quadratic approximation to the log-likelihood func-
tion employed by HMM and ADMB before using it to construct CIs.
The credible intervals from BUGS were wider and therefore more
realistic than the CIs provided by HMM and ADMB, yet the interval
bounds were narrower than the range of plausible models indi-

a used for estimation were simulated with the parameter configuration �= (� = 1.5,
ntal lines indicate the average limits of the 200 individual 95% intervals.



M.W. Pedersen et al. / Ecological Modelling 222 (2011) 1394–1400 1399

0.4

0.65

0.65

0.8

0.8 0.8

0.8

0.95

0.95 0.95

0.95

lo
g(
θ)

log(r0 ) log(r0 )

A

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

1

0.4

0.4

0.65

0.65

0.8

0.8

0.8

0.95

0.950.95

0.95

0.95

B

−3 −2.5 −2 −1.5 −1 −0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 4. Joint profile likelihood surfaces for two simulated data sets of the theta-logistic model (see also Table 3). Panel A: parameters used for simulation �1 = (� = 0.5, r0 = 0.1,
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ransformed surfaces equivalent to the maximum likelihood (ML) point. Both surfac
pproximation as used by HMM and ADMB is appropriate. While the surface for �2

rom the quadratic shape at the 65% level.

ated by the profile likelihood surface. A possible explanation for
his difference is that a substantial Monte Carlo sample size may
e required to fully explore the posterior distribution when two
arameters are highly correlated (Gamerman, 1997). If complica-
ions with parameter identifiability as illustrated in Fig. 4, panel A,
re encountered in practical situations it is recommended to switch
o a simpler model with fewer parameters e.g. by setting � = 1 (Clark
t al., 2010).

For the data set generated with� = 1.5, the joint profile likelihood
urface for log � and log r0 was well approximated by a quadratic
unction (Fig. 4, panel B). Thus, log-transforming � and r0 in the
heta-logistic model avoids a boomerang-shaped likelihood surface
see e.g. Figure 2 in Polansky et al., 2009), which deviates consid-
rably from a quadratic function. Thus, the CIs computed for HMM
nd ADMB in the log-transformed parameter space (Table 3, case
2) corresponded well to the confidence contours in Fig. 4, panel B.
or BUGS credible intervals the conclusion was the same.

Similarly to Lambert et al. (2005), the frequentist properties of
he three estimation methods were evaluated. To this end we used
o-called violin-plots (Fig. 3), where the empirical distribution of
00 parameter estimates was compared with the average of the
orresponding 200 95% interval bounds. In discussing our results
t is important to stress that CIs provided by frequentist meth-
ds (HMM and ADMB) and credible intervals provided by Bayesian
ethods (BUGS) have fundamentally different interpretations. A

5% CI is an interval which contains the true parameter in 95% of
large number of repeated experiments. Conversely, a 95% credi-
le interval is an interval which has a 95% posterior probability of
ontaining the parameter for the experiment at hand. From Fig. 3
t was evident that the CIs were consistent with corresponding
uantiles of the empirical distributions. This further confirms the
alidity of the quadratic approximation of the log-likelihood func-
ion. The empirical distributions of the BUGS parameter estimates
nder vague prior assumptions were largely identical to their HMM

nd ADMB counterparts. However, Fig. 3 showed that even when
ssigning vague priors it cannot be expected that credible intervals
oincide with frequentist CIs, which by definition do not incorpo-
ate a priori knowledge. In addition, considerable differences in
e elliptically shaped contours in proximity to the ML point in which case a quadratic
l B) is close to quadratic even at the 95% level, the surface for �1 (panel A) departs

credible intervals were present between the two BUGS analyses
using different vague priors (Fig. 3). Thus, it is crucial, when employ-
ing Bayesian methods in the absence of a priori knowledge, to assess
the sensitivity of credible intervals to the choice of distribution for
the vague prior.

ADMB uses automatic differentiation to estimate the states and
parameters of the model, which is the main reason for its computing
time superiority (Table 2). This advantage will only increase further
as models become more complex and the number of parameters
grows. The main disadvantage of ADMB is, that the Laplace approxi-
mation for the density of the random effects (here equivalent to the
latent states) must be reasonable. In our test cases the latent state
estimation of ADMB was close to identical to the HMM and BUGS
results (Fig. 2), which justifies using the Laplace approximation. If
results from alternative methods are not available, the quality of
the approximation can be assessed using the built-in importance
sampling functionality (p. 35, ADMB-project, 2009b). Another pos-
sible complication of ADMB is that some programming experience
in C++ is required. The HMM approach, on the other hand, has the
advantage of being language independent, i.e. the method can be
implemented in any programming language, for which a function
optimizer is available. The programming background of the mod-
eler is therefore of minor concern. The computing speed of the
HMM approach is, at worst, proportional to the number of grid
cells squared, a number which grows rapidly with increasing state
dimension. Thus, HMMs are best suited for one or two-dimensional
problems. BUGS depends less on state dimension because it is
Monte Carlo based and it requires no density approximations nor
differentiability. Consequently, BUGS is flexible and applicable to
the widest variety of problems of the three methods we have exam-
ined. In addition, WinBUGS (Spiegelhalter et al., 2003) can be used
to view and produce BUGS code graphically. This further increases
the accessibility of the method.

BUGS and Monte Carlo based methods in general have tun-

ing parameters that cannot be estimated from data and therefore
require subjective input from the modeler. The tuning parameters
include the number of samples, burn-in time, thinning rate, con-
vergence assessment, and choice of prior distribution, all of which
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nfluence the estimation results significantly. This fact is under-
ined in the BUGS manual (Spiegelhalter et al., 1996, p. 1), and it
s emphasized that the modeler using BUGS must have a sound
nderstanding of the Gibbs sampler. Our results supported this in
hat computing times (Table 2) and interval estimation (Fig. 3) were
ignificantly influenced by the choice of prior. In contrast, ADMB
as no tuning parameters as such, but it does have certain options
hat are more or less relevant depending on the type of problem, for
xample the SEPARABLE FUNCTION construct. HMM has two tuning
arameters: the extent of the grid and the grid resolution. Limiting
he state-space involves a risk of truncating the latent state path. To

inimize this risk the approach of de Valpine and Hastings (2002)
as followed, where bounds are chosen so wide that the proba-

ility of latent path truncation is negligible. Naturally, wider grid
xtents and higher grid resolution entail an increase in computation
ime. Thus, determining the value of these parameters is a trade-
ff between computing speed and accuracy of results. Generally, if
ne is uncertain about the grid specifications, we recommend to
tart with a wide and coarse grid to get preliminary results, and
hen adapt extents and refine the grid accordingly if needed. If the
onclusion is unchanged on the adapted grid there is strong evi-
ence that the latent path is enclosed and properly resolved by the
iscretization.

. Conclusion

In summary, the three methods considered in this paper are all
owerful approaches to nonlinear state-space modeling of ecolog-

cal systems. ADMB is by far the fastest method owing to its use of
he Laplace approximation and automatic differentiation. This lim-
ts ADMB to problems where the state distributions are unimodal,

hich, however, is the case in the majority of practical examples.
n contrast, HMM and BUGS are more general and are able to han-
le arbitrary state distributions. HMM requires specification of a
patial grid and is limited to problems with low state dimensions,
ay below four. BUGS has fewest model restrictions, but requires
pecification of prior information and other subjective input from
he modeler in the form of algorithmic tuning parameters.

State-space methods provide a natural paradigm for ecosystem
odeling. Thus, it is imperative that the ecological community is

lert to progress in other scientific fields where state-space mod-
ls are used and developed. This paper evaluated the performance,
ith respect to estimation accuracy and speed, of three advanced
ethods for state-space analysis. The study showed that state

nd parameter estimation performance for all three methods was
argely identical, however with BUGS providing overall wider cred-
ble intervals for parameters than HMM and ADMB confidence
ntervals.
ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.ecolmodel.2011.01.007.
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