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a b s t r a c t

A new approach to nonlinear state estimation and object tracking from indirect
observations of a continuous time process is examined. Stochastic differential equations
(SDEs) are employed to model the dynamics of the unobservable state. Tracking problems
in the plane subject to boundaries on the state-space do not in general provide analytical
solutions. A widely used numerical approach is the sequential Monte Carlo (SMC)
method which relies on stochastic simulations to approximate state densities. For off-
line analysis, however, accurate smoothed state density and parameter estimation can
become complicated using SMC because Monte Carlo randomness is introduced. The
finite element (FE) method solves the Kolmogorov equations of the SDE numerically on a
triangular unstructured mesh for which boundary conditions to the state-space are simple
to incorporate. The FE approach to nonlinear state estimation is suited for off-line data
analysis because the computed smoothed state densities, maximum a posteriori parameter
estimates and state sequence are deterministic conditional on the finite element mesh
and the observations. The proposed method is conceptually similar to existing point-mass
filtering methods, but is computationally more advanced and generally applicable. The
performance of the FE estimators in relation to SMC and to the resolution of the spatial
discretization is examined empirically through simulation. A real-data case study involving
fish tracking is also analysed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since the introduction of the Kalman filter (Kalman, 1960), state-space models (SSMs) have been widely used to solve
object tracking problems and have undergone constant development. Initially, tracking problems were mostly related to
radar observations (Pearson and Stear, 1974), but more recent applications now range from animal tracking, based on e.g.
observations of daylight (Sibert et al., 2003), to object tracking in surveillance camera recordings (Comaniciu et al., 2003).
TheKalman filter and its variants are suitable for linear andmildly nonlinear tracking problems owing to their computational
simplicity. However, the majority of the Kalman filter variants build on a parametric representation of the probability
density, thus limiting their use when problems become complex and non-Gaussian. Hence, for highly nonlinear problems,
nonparametric Bayesian filtering techniques must be applied.
A common approach to filtering nonlinear SSMs is the use of simulation methods such as Markov chain Monte Carlo

(Golightly and Wilkinson, 2008) and sequential Monte Carlo (SMC) (Creal, 2008; Ristic et al., 2004). The SMC methodology
is intuitive and applies to virtually all SSMs regardless of order or type. One drawback of the method is that randomness is
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introduced into the filter, which can complicate matters of smoothing and parameter estimation for certain problems. For
example, it can be difficult to obtain maximum likelihood estimates of model parameters because the randomness makes
the likelihood function non-differentiable. Advanced algorithms have been devised to ameliorate this issue, although more
work is still required in this respect (Doucet and Tadić, 2003). SMCmethods are particularly appealing for high-dimensional
problems because they suffer minimally from the curse of dimensionality when evaluating the integrals of Bayesian filters
(Cappé et al., 2005).
Another approach to nonlinear state estimation is to deterministically discretize the continuous state-space and then

solve the governing partial differential equations and related integrals numerically on this discretization (Bucy and Senne,
1971; Kitagawa, 1987). The method is feasible for SSMs with a low-dimensional state-space, up to dimension 3, say. This
paper focuses on the case of a planar (two-dimensional) state-space, but themethod is applicable to scalar and theoretically
also to higher-dimensional situations although the required computational effort in such cases becomes substantial. Planar
problems are common inmany applications, for examplewhen tracking individuals on the surface of the Earth, and therefore
deserve special attention.
The discretized SSM can be solved by the framework of discrete hidden Markov models (HMMs) (Cappé et al., 2005).

Historically, HMMs have been applied in cases where the state-space is discrete by nature, e.g. for digital signals, and
therefore discretized continuous SSMs are rarely labeled as HMMs even though HMM theory applies. Other common names
formethods that operate on the discretized problemare ‘‘point-mass’’ filters or direct Fokker–Planck-basedmethods (FPMs).
Previous studies that have considered discretized SSMs have opted for the simplest and most obvious discretization

approachwhich is a uniform gridding of the state-space (Šimandl et al., 2006; Thygesen et al., 2009). As a result, the solution
to the forward Kolmogorov equation or, synonymously, the Fokker–Planck equation can be obtained by finite differencing.
The finite difference (FD) solution scheme is easy to implement yet gives powerful results. It comes, however, with some
critical drawbacks such as lack of a standard procedure for imposing boundary conditions and non-conformity of the
discretization to curvatures in the boundary geometry beyond one dimension. As a consequence of the rectangular uniform
grid, the computational resources are distributed evenly over the state-space, which is rarely appropriate as some stateswill
have close to zero probability. To this end there have been attempts to focus computer power to the relevant parts of the
state-space by adaptively changing the discrete grid during the filtering process (Šimandl et al., 2006). This improvement
reduces the computational burden, but severely complicates matters of smoothing and state sequence estimation and
consequently limits the application of the method to filtering problems.
In this study we introduce an alternative non-uniform discretization of a continuous SSM and a method suited for

obtaining smoothed state estimates and maximum a posteriori estimates of model parameters on this grid. In the two-
dimensional case the discretization, that remains unchanged during computations, consists of a number of differently sized
triangular shaped elements that are joined at the vertices to form a mesh. The lack of uniformity gives the mesh the ability
to conform to curved boundary geometries that arise in many applications of geographical tracking, which is our primary
focus. Also, the unstructured mesh allows for finer discretization of important parts of the state-space, thereby utilizing
computer resources more efficiently. Within this framework the solutions to the Kolmogorov equations are provided by
the finite element (FE) method, reviewed in Clough (1980). The performance in relation to SMC is illustrated by a simple
Brownian bridge example and numerical properties are assessed through synthetic and real data sets.
The paper is composed such that Section 2 establishes the state-space model. Section 3 presents the details of the

Bayesian filter while Section 4 details the discretization of the state-space. Section 5 examines parameter and state sequence
estimation and Section 6 illustrates the application of themethod through examples. Section 7 provides concluding remarks.

2. The stochastic model

The dynamic system that we are considering is described by a two-dimensional stochastic differential equation
dXt = f (t,Xt)dt + g(t,Xt)dBt , (1)

where Xt ∈ R2 is the state at time t , f : R1+2 → R2, Bt is two-dimensional Brownian motion and g : R1+2 → R2×2. We
assume Xt to be reflected at boundaries according to (10) in the Appendix. We have observations indexed by k ∈ {1, . . . ,N}
with the observation pertaining to the interval [tk−1, tk] denoted by zk ∈ Rp. We will refer to a set of observations as
Zk = (z1, . . . , zk)T . There are no restrictions on the type and nature of zk. The observation equation relates the noisy time-
discrete observations to the continuous process

zk = h(tk,Xk,wk), (2)
where wk ∈ Rq is a random perturbation and Xk is short for Xtk . No assumptions are made about the form of the possibly
nonlinear mapping h : R1+2+q → Rp. The two-dimensional state-space can be written explicitly as Xk = (Xk, Yk)T . The
observation errors,wk, are assumed to be independent and identically distributed and can have any type of distribution.

3. The Bayesian filter and smoother

In this section we describe the filtering and smoothing recursions required for predicting, updating and smoothing the
state estimates given data and the stochastic model. We assume here that the parameters of the model are known; in
Section 5 we address estimation of these parameters.
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3.1. Filtering

We apply a Bayesian filter to estimate the probability density of the state. The density conditional on Zk is given by
φ(t, xt |Zk)dxt = P(Xt ∈ dxt |t,Zk) for t ≥ tk. The filter consists of two steps, the time update and the data update, that
are performed recursively. The time update is related to the system Eq. (1), and has the purpose of predicting the evolution
of φ(t, xt |Zk) throughout the elapsed time between observations. The time evolution of φ(t, xt |Zk) is described by the
Kolmogorov forward equation (or Fokker–Planck equation) (Øksendal, 2007) in two dimensions

φ̇ = −∇ · (uφ − D∇φ), (3)

with φ = φ(t, xt |Zk), φ̇ denoting ∂φ∂t , ∇ =
(
∂
∂x ,

∂
∂y

)
, and where D = 1

2gg
T and u = f − ∇D are the diffusion and advection

parameters respectively. No-flux boundary conditions are imposed to ensure conservation of probability mass within the
domain. The initial condition for (3) is φ(tk, xk|Zk) and the solution, φ(tk+1, xk+1|Zk), is obtained by solving the equation
over the time period [tk, tk+1].
The data update step consists of applying the information in zk to φ(tk, xk|Zk−1) using Bayes’ rule

φ(tk, xk|Zk) = ψ−1k φ(tk, xk|Zk−1)L(zk|xk), (4)

where ψk =
∫
φ(tk, xk|Zk−1)L(zk|xk)dxk, i.e. a normalization constant. The term φ(tk, xk|Zk−1) comes from solving (3) and

the term L(zk|xk) is the likelihood of zk given xk. We will refer to L(zk|xk) as the ‘‘data likelihood’’ to avoid confusion with
the likelihood of model parameters introduced later.
By recursively solving Eqs. (3) and (4) the density φ(tk, xk|Zk) is computed for all k ∈ {1, . . . ,N}. The filter is initialized

by computing φ(t1, x1|z1) from (4) with a prior distribution that reflects information available about the initial state.

3.2. The smoother

The smoothing recursions run in reverse time using the results of the filter and give the smoothed estimates,φ(tk, xk|ZN),
by assuming full knowledge of ZN for all k ∈ {1, . . . ,N}. At tk the unused observations in φ(tk, xk|Zk) are Wk+1 =

(zk+1, . . . , zN)T . The information contained in these observations is given by

Λ(tk+1,Wk+1|xk+1) =
φ(tk+1, xk+1|ZN)
φ(tk+1, xk+1|Zk)

. (5)

Smoothing involves the use of the Kolmogorov backward equation (Øksendal, 2007) which describes the reverse time
evolution ofΛ(t,Wk+1|xk+1) according to

− Λ̇ = u∇Λ+∇ · (D∇Λ), (6)

where Λ = Λ(t,Wk+1|xk+1) and with the Neumann boundary condition n · ∇Λ = 0, where n is a vector normal to the
boundary of the state-space. The result of solving (6) withΛ(tk+1,Wk+1|xk+1) as the terminal condition over the time period
[tk, tk+1] we denote Λ(tk,Wk+1|xk), which can be interpreted as the data likelihood of the observationsWk+1 at tk. This is
perhaps clearer when it is realized that

Λ(tk,Wk|xk) = Λ(tk,Wk+1|xk)L(zk|xk) (7)

and therefore thatΛ(tk,Wk+1|xk) for any k can be calculated from a recursion of (6) and (7). Finally the smoothed estimate
satisfies

φ(tk, xk|ZN) = φ(tk, xk|Zk)Λ(tk,Wk+1|xk).

The smoothing recursions are initialized with the final filter estimate φ(tN , xN |ZN)which is also a smoothed estimate.

4. Discretization of the state-space

The primary computational burden of the smoothing problem is the need to solve (3) and (6). The partial differential
equations can be solved numericallywith the finite element (FE)method. The FEmethod uses an unstructured discretization
of the state-space, referred to as themesh, defined byM <∞ nodes (vertices) with states (locations) x(j) for j ∈ {1, . . . ,M}.
Associated with the nodes are basis functions vj(x) that act as interpolants via

φ(t, x) ≈
M∑
j=1

βj(t)vj(x), (8)

where βj(t) = φ(t, x(j)). The shape and form of the basis function depend on the mesh element type as explained by Cook
et al. (2001). We use a three-node triangular element which is the simplest two-dimensional element. The technical details
of the FE algorithm for this application are reviewed in the Appendix. For amore in depth coverage see e.g. Cook et al. (2001).
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The mesh can be created and modified by importing the geometry of the state-space, e.g. a landscape, into mesh
generating software. We used the open-source meshing tool Triangle (Shewchuk, 1996). The initial mesh should be coarse
with uniformly sized elements to achieve a quick but rough estimate of the posterior distribution. The mesh can then be
refined in important regions and coarsened in unimportant regions according to the posterior distribution. In Section 6.2
we examine empirically how the mesh fineness influences the accuracy of results.
Solving (3) requires T = (tk+1 − tk)/δ FE iterations, where δ is the FE time step. The computational complexity of

(3) is therefore O(TM2) since the solution is obtained by a simple matrix vector multiplication. However, matrix sparsity
algorithms can be employed that significantly reduce computation time and memory requirements. For a band matrix with
bandwidth K the complexity becomesO(TKM)where TK � M . For SMCmethods (e.g. the particle filter of Cappé et al., 2007)
the complexity isO(M∗) for the timeupdate,whereM∗ is the number of particles. The FE smoothing recursion has complexity
O(TKM) as for the filtering recursion. Marginal smoothing for SMC methods requires O(M2

∗
) per recursion (Doucet et al.,

2000); hence for smoothing problems, when accurate density estimation is required, i.e. when M and M∗ become large,
SMC methods suffer from a significant increase in computation time compared to the FE approach.

5. Parameter and state estimation

In Section 3 the parameters of the model were assumed to be known. In practice this assumption rarely holds and
parametersmust therefore be estimated. In this sectionwe describe howmaximum likelihood (ML) ormaximum a posteriori
(MAP) parameter estimates can be obtained and we discuss estimation of the optimal state sequence given the posterior
distribution.

5.1. Parameter estimation

We focus on off-line parameter estimation and let θ denote the parameters that we wish to estimate. In filter-based
likelihood inference the recursions of Section 3.1 executed with a given set of parameters provide the likelihood function
evaluated at those parameters (Ljung, 1997). Specifically, the log-likelihood function of θ is given by the joint density of the
observations

l(θ|ZN) = log

{
φ(z1)

N∏
k=2

φ(zk|Zk−1)

}
.

By storing ψk = φ(zk|Zk−1) given by (4) for all k ∈ {1, . . . ,N} we obtain a log-likelihood value of θ. Assuming that we
have a priori information about θ quantified by the prior density π(θ) the MAP estimate of θ is obtained by maximizing the
posterior density, i.e.

θ̂ = argmax
θ
{l(θ|ZN)π(θ)} . (9)

Note that (9) gives the ML estimate of θ if π(θ) is uninformative. The log-likelihood function is a deterministic function
of θ conditional on ZN and the mesh. In this study we use the fmincon function in the Matlab optimization toolbox to find
θ̂. The optimizer evaluates the gradients numerically which can be computationally cumbersome, so optimization using
analytically derived gradients is an important subject of future research.

5.2. State sequence estimation

For tracking problems we are typically more interested in a state sequence or synonymously a track, supplemented by
the probability density of the state, rather than the density alone. Consider the restricted FE state-space where we have the
discrete states ξk for ξk ∈ {x(1), . . . , x(M)}. We define a track on the mesh nodes4 = (ξ1, . . . , ξN) and express the posterior
mean 4̄ = (ξ̄1, . . . , ξ̄N) by its marginals

ξ̄k =
∑
ξ

ξφ(tk, ξ|ZN).

The posterior mean is a robust and L2 optimal estimator of4 but cannot be guaranteed to lie within the state-space, e.g.
when the state-space is not convex. An alternative is to calculate the posterior mode

4̂ = (̂ξ1, . . . , ξ̂N) = argmax
4
L(4),

where the track likelihood is given by

L(4) = L(z1|ξ1)
N∏
k=2

P(Xk = ξk|Xk−1 = ξk−1)L(zk|ξk).

The Viterbi algorithm (Viterbi, 2006) is an efficient way of computing the posterior mode. For skewed posterior
distributions the mode does not necessarily capture the overall trends in the posterior distribution because it is based on
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Table 1
Metrics describing the quality of the estimates of the Brownian bridge for the FE approach and SMC method respectively. The SMC results are calculated
as the average of 50 runs with the standard deviation in parenthesis. Computing times Tfilt and Tsmoo have the unit of seconds.

t = 0.5 e(x)µ × 10
−4 e(y)µ × 10

−4 e(x)
σ 2
× 10−4 e(y)

σ 2
× 10−4 D(Φ ‖ φ) eL1 × 10

3 Tfilt (s) Tsmoo (s)

FE 3.0 −1.47 −1.45 0.40 103 4.2 3.3 2.3
SMC −13.2 (24.1) 1.72 (19.3) 0.70 (1.81) −0.30 (1.50) 3413 (792) 28.4 (4.3) 0.1 (0.0) 5.3 (0.9)

a single outcome. However, in contrast to the posterior mean case it always holds that ξ̂k ∈ {xk(1), . . . , xk(M)} for all k.
The suitable choice of track depends on the specific application. For the tracking applications considered here we use the
posterior mode to avoid invalid state estimates. We note that is also possible to draw random tracks from the posterior
distribution, using a recursive algorithm similar to that of Thygesen et al. (2009).

6. Examples

In this sectionwe illustrate the properties of the FE approach in comparison to an SMCmethod (Section 6.1), with respect
to numerics (Section 6.2) and a real-data application (Section 6.3).

6.1. Comparison of FE with SMC

We set up a simple smoothing problem for tracking a particle in two state dimensionsX = (X, Y )T . We assume the initial
state at t1 = 0 is known, X1 = (0.6, 0.5)T , and that we have observed the state z2 = (0.4, 0.5)T of the particle without
uncertainty at t2 = 1.We also assume that u = 0, i.e. that themotion of the particle is Brownian. The aim is now to estimate
the state probability density of the particle at t = 0.5 conditional on z2. The smoothing problem, known as a Brownian
bridge, can be solved analytically and has a Gaussian posterior density with mean µx = 0.6− 0.2t , µy = 0.5 and variance
σ 2 = 2Dt(1−t), whereD = 0.01 is the diffusion coefficient of the Brownianmotionwhich is assumed known and isotropic.
The example resembles the situation where one wants to estimate the smoothed density between two observations which
is often the case, in particular when analyzing sparse tracking data.
We compute the smoothed densitywith the FE approach as described in this text and compare it to the density estimated

with an SMC method. Since resampling is not required we let the SMC implementation follow a sequential importance
sampling scheme as in Cappé et al. (2007), their algorithm 2, using the prior kernel as the importance distribution and with
marginal smoothing as proposed by Doucet et al. (2000). We setM∗ = M = 2665, i.e. the number of SMC particles is equal
to the number of nodes in the FE mesh. We construct a uniformly sized triangular FE mesh over the domain x ∈ {0, . . . , 1}2.
We define the FE time step δ = 0.014 to obtain close to equal computation times for the two schemes. Observationswithout
uncertainty are difficult to handle for both methods so the analyses are started at t = 0.01 and ended at t = 0.99 while
adjusting the initial condition and the data likelihood to match the analytically known mean and variance at these times.
We compute a number of metrics that detail the comparison of the two methods. The deviation from the true mean and

variance in the x direction are respectively

e(x)µ = µx − E(X), e(x)
σ 2
= σ 2 − V (X),

and similarly for the y direction we have

e(y)µ = µy − E(Y ), e(y)
σ 2
= σ 2 − V (Y ).

The Kullback–Leibler divergence, which can be regarded as an asymmetric distance between two probability densities,
is

D(Φ ‖ φ) =
∑
x
Φ(t, x|z2) log

Φ(t, x|z2)
φ(t, x|z2)

.

The L1 distance is

eL1 =
∑
x
|Φ(t, x|z2)− φ(t, x|z2)|,

where | · |means absolute value.
For the FE approachwe obtainφ(t, x|z2) by interpolation of the nodal values via the linear basis functions to a rectangular

grid x ∈ {0, . . . , 1}2 with nx = ny = 501 grid points. For the SMC method we used kernel density estimation on the same
gridwith a two-dimensional Gaussian kernel with isotropic variance 0.0005. The kernel bandwidthwas chosen to obtain the
best approximation of the kernel density estimation to the true pdf (i.e. smallest L1 and Kullback–Leibler divergence). The
accuracy of the kernel density estimate is rather sensitive to the choice of bandwidth. It is therefore important in practice
to employ some objective bandwidth selection protocol.
The results with computing times for filtering (Tfilt) and smoothing (Tsmoo) are summarized in Table 1. The SMC results

are values averaged over 50 runs with corresponding empirical standard deviations. The FE solution gave slightly better
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Fig. 1. Left: Coarsely meshed geometry of the artificial cityscape with the ‘‘true’’ simulated track of the test person. The solid circle represents the starting
location; the shaded square represents the end location. White areas represent buildings, i.e. areas that are inaccessible to the test person. Right: Negative
log-likelihood functions for D for meshes of different fineness indicated by α, the average element area, and n, the number of elements. It is noted that the
ML estimates show convergence towards some value that is close to the true value of D.

estimates of the means while the SMCmethod was marginally better at estimating the variances. The density function itself
was significantly better represented by the FE solution (by a factor of 33 for the Kullback–Leibler divergence and a factor
of 7 for the L1 distance). The SMC computing time was largely dominated by the smoothing step whereas the FE approach
spent the time more evenly on the two steps. Owing to the O(M2

∗
) scaling, the computing effort of the SMC smoothing step

may become prohibitively large for the SMC solution to reach a desired density accuracy. In such cases the FE approach is
expected to deliver superior results. In fact, increasing M∗ by a factor of 10 only led to an improvement in D(Φ ‖ φ) by a
factor of 2.5, and an improvement in eL1 by a factor of 1.5 while increasing the total computing time of the SMC method by
a factor of 100.

6.2. Synthetic data example

Now we address the behavior of the estimator in relation to the mesh fineness. For clarity we disregard the advection
term, i.e. u = 0. We estimate the horizontal location Xk of a moving object, e.g. a human, for k ∈ {1, . . . ,N}, N = 100. Data
consist of readings from an attached GPS device with constant time step. We thus have the observation equation

zk = Xk +wk,

where wk ∼ N(0, 0.012I). The movements of the object are Brownian with D = 0.03I and boundary behavior is
implemented by disallowing steps outside of the model domain. Fig. 1 shows the artificial cityscape and the true simulated
trajectory of the object.
We investigate how the posterior mode estimate and the likelihood function of D behave as functions of the fineness of

the mesh quantified by the average element area α. We set θ = D, thus assuming that σ 2w is known, and investigate the
behavior of l(θ|ZN) as a function of α; see Fig. 1. An indication of convergence towards a value close to the true value of D is
observed as the mesh is refined. Furthermore, the likelihood of the parameter increases, an effect arising owing to the fact
that the data likelihood is resolved more accurately. A coarse mesh results in overdispersion of the data likelihood which
leads to a higher parameter estimate and a smaller likelihood value.
For each of the increasingly fine meshes we fix the value of D to the true value and compute the posterior mode. Define

the track error metric

ε = 1/N
N∑
k=1

(̂Xk − Xk)2,

where X̂k is the x coordinate of the posterior mode at tk. The track error metric is computed analogously for the y coordinate.
Fig. 2 shows how ε behaves as a function of α. Linear regression lines in the log–log domain fitted to the sloped part of the
curves show an approximately linear order of convergence with visually estimated cut-offs that lie at α ≈ 0.2 · 10−4. The
analytical variance of the posterior mode at tk for Gaussian infinite domain problems (Thygesen and Nielsen, 2009) is given
by

σ 2MPT = σ
2
w
U(U +

√
U2 + 4)

4+ U(U +
√
U2 + 4)

= 0.997 · 10−4,
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Fig. 2. Convergence plots of the track error metric of the posterior mode as a function of the resolution of the mesh (average element area, α) shown for
the x and y coordinates. The four points highlighted with circles correspond to the likelihood curves in Fig. 1. With coarse grids (α > 2 · 10−4), the track
error is determined by the grid resolution. With fine grids, the error is largely independent of the grid and determined by the randommeasurement errors.

where U =
√
2Dh/σw , with constant time step h and σ 2w being the variance of the Gaussian noise, wk. The posterior

distribution is not resolved accurately on the coarsemesh indicated by the values of ε becoming larger than their analytically
expected value. As the mesh is refined this effect diminishes, as seen in Fig. 2, and ε converges to σ 2MPT .

6.3. Real-data example

Finally we give a real-data application of the FE approach. We consider a geolocation problem which consists of
estimating the large-scale horizontal movements of a fish based on observations from an electronic data storage tag
(DST) attached to the fish while at liberty (Righton et al., 2006). The observations are readings of depth and salinity from
which the horizontal movements of the fish can be inferred by comparing with databases that contain bathymetry and
hydrographically modeled information for the salinity field. Here, a N = 294 data set from a cod in the Baltic Sea is
analyzed. Fig. 3 depicts the FE mesh; note the highly complex boundary geometry which makes the governing partial
equations difficult to solve for other methods. The mesh consists of 12706 elements with a total of 7703 nodes and was
refined recursively through two solutions of the problem. Again, we disregard the drift term, i.e. u = 0.
The data likelihood on a given day is computed by assuming that the observation zk = (sk, dk)T , of salinity and depth

respectively, is given by

zk = h(Xk)+wk,

wherewk is Gaussian distributed with zero mean and covariance matrix

Σw =

[
σ 2s 0
0 σ 2d

]
.

The values of σ 2s and σ
2
d are considered as known and defined on the basis of themeasurement uncertainty in the DST and

the uncertainty within the databases. Including these in the estimation procedure is straightforward, although this leads to
an increase in computation time.
The data likelihood for j ∈ {1, . . . ,M} is

L(zk|x
(j)
k ) =

1
2π
√
detΣw

exp
{
−
1
2
[zk − ẑk(x

(j)
k )]

TΣ−1w [zk − ẑk(x
(j)
k )]

}
,

where ẑk(x
(j)
k ) is the expected observation of salinity and depth at location x

(j)
k given by the databases. In the data likelihood

at t1 and tN we include information about the known release and recapture locations respectively.
MAP estimation of D using a uninformative prior converged at

D̂ =
[
21.1 −2.1
−2.1 48.3

]
km2 day−1,

with sd(̂Dxx) = 8.33 km2 day−1, sd(̂Dyy) = 19.2 km2 day−1 and sd(̂Dxy) = 10.6 km2 day−1 estimated by the inverse Hessian
of the likelihood function, i.e. the observed Fisher information.
The posterior mode is depicted in Fig. 4. Note that the track, most prominently in the final part, at times crosses tounges

of dry land. These steps seem unlikely and result from coarse temporal resolution which allows the fish to move around
narrow tongues of land within the time span of two observations. A simple remedy is to increase the temporal resolution of
the track estimation procedure. Still, the posterior mode gives an overall sensible impression of the movements of the fish.
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Fig. 3. The FE-triangulatedmesh. Refinements to themesh have beenmade in the central part of the Baltic Sea and around Zealand, particularly in Øresund,
the sound between Zealand and Sweden. The mesh consists of 12706 elements with a total of 7703 nodes.

Fig. 4. Fish movements illustrated by the posterior mode estimated with the Viterbi algorithm suggesting that the fish, released at the solid circle at
55°15′N, 15°E and recaptured at the shaded circle at 55°30′N, 11°E, resided in the Baltic Sea at 13°E before migrating around Zealand via a northerly route.

A feature of this problem is that much information is contained in the recapture location at the end of the track, and thus the
filtered locations differ markedly from the smoothed locations. As a result of this feature, an SMC method for this problem
would require a large number of particles for smoothing.
The calculations were conducted on a laptop PC with a 1.4 GHz Centrino CPU and 2 GB RAM. Matlab 7.4 was used as

computing environment leading to computation times on the scale of minutes for the smoothed posterior density, hours for
parameter estimation and days for track estimation.

7. Conclusion

The FE approach to nonlinear state estimation problemspresented is an alternative to existing SMCandpoint-mass filters.
It is a deterministic method for solving the Kolmogorov equations with the ability to refine the numerical discretization at
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complex boundary geometries and in areas where a more accurate solution is required. The discretization remains fixed
throughout the computations, thus simplifying the estimation of smoothed state densities and MAP parameter values. The
FE method differs markedly from SMC in terms of the effort required for implementation. While simple particle filters are
straightforward to implement, greater effort is required for accurate smoothing and parameter estimation, in particular for
problems such as the real-data example of Section 6.3. In contrast, with the FE method, the majority of the effort is spent
at an early stage when implementing the solution scheme for the governing Kolmogorov equations. For some applications,
for example oceanography which motivated this work, discretizing and solving partial differential equations is standard
and optimized code may even be available. This would argue in favour of the FE method. On the other hand, for high state
dimensions, the FE method becomes increasingly complex to implement and expensive to compute and is therefore best
suited for problems on lower-dimensional state-spaces.
The two-dimensional Brownian bridge example showed that the SMC and FE smoothing methods performed equally

well for moment estimation but for density estimation, the FE approach was superior by a factor of 33 with respect to the
Kullback–Leibler divergence and a factor of 7 with respect to the L1 distance for equal computation times. It is expected
that the FE method will be preferable for smoothing problems, in particular when high density accuracy is required. The
synthetic data example illustrated the convergence properties of the FE estimators where an approximately linear relation
was observed for themean square error of the posteriormode in relation to the average element area in the sloped part of the
curve. Unlike SMC methods, the FE approach provides a deterministic likelihood function of the model parameters which,
conditional on the fixed mesh, is simple to optimize numerically. On refining the mesh, the likelihood function converged
towards the true value until plateauing when the optimally resolved density was reached. The real-data example showed
how a simple implementation of the FE approach was used to solve a tracking problem involving complex state-space
boundary geometry, parameter estimation and state density smoothing which would have been challenging to do with
other available methods.
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Appendix

This Appendix summarizes the use of the FEmethod for advection–diffusion partial differential equations (PDEs). To solve
(3) with the FE method, we derive its weak formulation. For transparency we consider only the case where parameters are
homogeneous in time and space. Comprehensive treatment of the FE method can be found in e.g. Cook et al. (2001) and
Reddy and Gartling (2001).
For the PDEs (3) and (6) we assume no-flux boundary conditions, i.e. it holds for u that

(uφ − D∇φ) · n = 0, (10)

at any boundary point where n is a vector normal to the boundary ∂Ω . The weak formulation of (3) is obtained by
constructing the inner product with vi:

〈vi, φ̇〉 = 〈vi,−∇ · (uφ − D∇φ)〉. (11)

This equation is reduced by first considering the LHS of (11) and inserting (8), thereby obtaining after simplifications

〈vi, φ̇〉 =

M∑
j=1

β̇j(t)〈vi, vj〉.

The diffusion part of the RHS becomes

〈vi,∇ · (D∇φ)〉 =
M∑
j=1

βj(t)〈vi,∇ · (D∇vj)〉

=

M∑
j=1

βj(t)
[
−〈∇vi,D∇vj〉 +

∫
∂Ω

viD∇vjdn
]
.
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Due to the no-flux boundary condition, the term
∫
∂Ω
viD∇vjdn vanishes. The advection part of the RHS becomes

〈vi,∇ · (uφ)〉 =
M∑
j=1

βj(t)〈vi,∇ · (uvj)〉

=

M∑
j=1

βj(t)
[
−〈∇vi, uvj〉 +

∫
∂Ω

viuvjdn
]
.

Again, due to the no-flux boundary condition, the term
∫
∂Ω
viuvjdn vanishes. Collecting the above terms we obtain

M∑
j=1

β̇j(t)〈vi, vj〉 =
M∑
j=1

βj(t)
[
〈∇vi, uvj − D∇vj〉

]
, (12)

which is a system of ordinary differential equations that can be solved for βj(t)with standard numerical methods. With

cij = 〈vi, vj〉

and

aij = 〈∇vi,D∇vj − uvj〉,

we can express (12) in matrix notation as

C β̇(t) = −Aβ(t), (13)

with

β(t) =

β1(t)...
βj(t)

 , C =

c11 · · · c1j...
. . .

...
ci1 · · · cij

 , A =

a11 · · · a1j...
. . .

...
ai1 · · · aij

 .
There are various ways of solving (13) numerically. To avoid unstable, oscillating, and possibly negative solutions for the

density, we utilize a simple implicit Euler scheme

1
δ
(βtk+(m+1)δ − βtk+mδ) = −C

−1Aβtk+(m+1)δ m ∈ {0, . . . , T − 1}, (14)

where βt = β(t), δ is the FE time step and Tδ = tk+1 − tk. The choice of δ and the fineness of the mesh determines the
magnitude of the approximation error of the solution as discussed in Cook et al. (2001). The appropriate value of T depends
on the required accuracy of the solution and on the computing speed. Reformulating and simplifying (14) gives

βtk+(m+1)δ = R−1Cβtk+mδ, (15)

whereR = C+δA is called the coefficientmatrix. Thematrices involved are sparse for large systems. It is therefore important
to exploit this in the implementation to save memory and reduce the number of trivial computations.
In order to solve (6), close to identical derivations can be made.
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