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a b s t r a c t

The use of stochastic differential equations (SDEs) for the simulation of aquatic ecosystems has attracted
increasing attention in recent years. The SDE setting also provides the opportunity for statistical esti-
mation of ecosystem parameters. We present an estimation procedure, based on Kalman filtering and
likelihood estimation, which has proven useful in other fields of application. The estimation procedure
vailable online 12 April 2011
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is presented and the development from ordinary differential equations (ODEs) to SDEs is discussed with
emphasis on autocorrelated residuals, commonly encountered with ODEs. The estimation procedure is
applied to a simple nitrogen-phytoplankton model, with data from a Danish estuary (1988–2006). The
resulting SDE is simple enough to have a well-known stationary distribution and this distribution is
presented and compared with observed phytoplankton data.
xtended Kalman filter
aximum likelihood estimation

. Introduction

Ecosystems, and marine ecosystems in particular, are com-
lex mosaics of interconnected processes, with many known and
nknown drivers affecting the systems. Marine ecosystems have
raditionally been modelled by means of Ordinary Differential
quations (ODEs) that have gradually evolved from simple descrip-
ions of the nutrient–phytoplankton interaction (NP models) to
nclude an increasing number of components, e.g. zooplankton
NPZ models), detritus (NPZD models), benthic fauna and vegeta-
ion, as well as fish. Moreover, nutrients and organisms have also
radually been partitioned into different constituents and species
roups, often in response to inadequate description of observed
ynamics. The consequence of employing such a detailed mecha-
istic approach is increasing model complexity with an escalating
umber of unknown parameters that are calibrated using values
btained from the literature or tuned to mimic observations. In
ddition these observations are often aggregates of several states,

ccording to the modeller’s subjective assessment. For example,
asham et al. (1990) considered a relatively simple NPZD model
ith 7 states (3 different nitrogen pools, phytoplankton, zooplank-

on, detritus and bacteria) and 25 parameters, whereas Bartell et al.
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(1999) introduced a flexible, though complex, modelling frame-
work and applied it to Canadian lakes using 44 states for the
biological components. Ecological models seem to have grown in
size and complexity as computational constraints have been alle-
viated and understanding of sub-processes have grown over time.
Matear (1995) employs a more objective stochastic optimisation
(simulated annealing), but the underlying system is still determin-
istic.

Scientists have come to realise that even the most complex
ecosystem model will not be able to capture all mechanisms and
drivers of the real ecosystem, Dowd (2006, 2007) presents NPD
models with differential random forcing, the formulation of the
noise does however not allow a stochastic differential equation
formulation (Øksendal, 2003).

Drivers that are unobservable or not accounted for in a model
will lead to systematic deviations from the model in the form of
autocorrelated residuals between observations and short term pre-
dictions. This kind of autocorrelation is actually also evident in the
results presented by Fasham et al. (1990, Figures 4 and 5 in the
reference). In fact, these residuals can be modelled as stochastic
perturbations working within the model. In this case, ODE mod-
els with stochastic input of internal randomness are referred to as
stochastic differential equations (SDEs) (e.g. Øksendal, 2003). This

internal stochastic perturbation will also, to some extent, be able
to indirectly capture drivers of the system not implicitly contained
in the model formulation.

SDEs are an emerging field and the use of SDEs in mathemati-
cal finance and option pricing (e.g. Black and Scholes models (see

dx.doi.org/10.1016/j.ecolmodel.2011.03.025
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:jkm@imm.dtu.dk
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viously. A key advantage of the methodology is that the method is
implemented in the easily accessible open source software CTSM1
794 J.K. Møller et al. / Ecological

.g. Øksendal, 2003) is the standard example in many text books
e.g. Øksendal, 2003). Early applications of SDEs in other fields
an be found in Madsen et al. (1987) (climatology), Madsen and
olst (1995) (engineering), and Jacobsen and Madsen (1996) (oxy-
en level in a stream). More recently SDEs have been applied to
harmaceutical problems, e.g. Tornøe et al. (2004). Modelling of
otion patterns for larger animals has also been the subject of SDE-
odelling in recent years, e.g. Brillinger et al. (2002) and Pedersen

t al. (2008).
The use of stochastic differential equations (SDEs) to intro-

uce stochastic forcing in NP-like ecosystem models has attracted
ncreasing attention over recent years. Carpenter and Brock (2006)
nd Guttal and Jayaprakash (2008) are examples, where SDEs are
sed in analysis of non-linear stochastic systems with emphasis
n regime shifts, i.e. these studies analyse known deterministic
egime shift models with stochastic forcing. These studies are, how-
ver, pure simulation studies of how random behaviour affects the
ynamics of regime shift models. Stollenwerk et al. (2001) present
stimation, of phytoplankton in an SDE-based model, based on sta-
ionary distribution and consequently on data from the growth
eason only. The present study use data and SDEs for NP modelling
nd parameter estimation based on 19 years of data including the
inter period. The aim is to provide a simple example to illustrate

he usefulness of SDEs for modelling of phytoplankton.
The paper is organised in the following way: Section 2 gives a

hort introduction to SDEs, focusing on the development from ODEs
o SDEs, and introduces the statistical method used for parameter
nd state estimation in SDEs, Section 3 provides a small simulation
xample to illustrate the presented theory, and Section 4 presents
n example of a simple NP-SDE model with data from an estuary
n the northern Denmark. The SDE model includes phytoplankton
s the state with water column nitrogen and global radiation (total
i.e. direct and diffuse) incoming solar radiation) as drivers.

. Stochastic differential equations and ordinary
ifferential equations

As a general rule it is only possible to observe continuous time
rocesses in discrete time. Let xt ∈X ⊂ Rn be the continuous time
tate variable which is observed through an observation equation
n discrete time, and let yk ∈Y ⊂ Rl denotes the observation at time
k (k ∈ {0, . . ., N}), let the observation equation be given by

k = h(xk,uk, tk, �, ek), (1)

here xk and uk ∈U ⊂ Rr is the state variable and the inputs (forcing
r control variables) at time t = tk, ek ∈Rl is the random observa-
ion error, � ∈� ⊂ Rp is a set of parameters to be estimated and
(·) ∈Rl is the function that links the states to the observations.
imple forms of h( · ) include the identity link (h(·) = xtk + ek) and
he loglink (h(·) = log(xtk ) + ek (if xt > 0)), with ek ∼ N(0, Sk) and N( · )
s the normal distribution.

.1. Ordinary differential equation representation

In the ordinary differential equation setting the evolution in
ime of the state variable is given by the deterministic system equa-
ion

xt = f (xt ,ut , t, �)dt, (2)

here t ∈R is time (the structure of) f (·) ∈Rn is deduced from phys-

cal (or biological) knowledge of the system, and ut and � are similar
o the input and parameters presented in the observation Eq. (1).

If ek takes a simple form (i.e. additive and Gaussian) and xt

ollows the deterministic formulation (2), then the maximum like-
ihood estimate �̂ of � is equivalent to minimising the weighted sum
lling 222 (2011) 1793–1799

of squared observation errors (eT
k
S−1
k ek), where Sk is the observation

covariance matrix for the kth observation.

2.2. Stochastic differential equation representation

Natural systems are subject to random perturbation, such as
random variation of the input (specified by ut) or non-specified ran-
dom forcing, e.g. processes not specified in the model description,
working within the system. Such perturbations create autocorre-
lated noise in the observations (yk), which cannot be captured by
Eqs. (1) and (2), since observation noise is present only. Further,
when the parameters, � in Eq. (2), have been estimated then the
uncertainty of a forecast will be independent of the forecast hori-
zon, which is somewhat counterintuitive.

SDEs can be formulated by introducing a noise term, perturbing
the differential of xt (Øksendal, 2003)

dxt
dt

= f (xt ,ut , t, �) + �(xt ,ut , t, �)wt , (3)

where wt ∈Rm is an m-dimensional standard Wiener process and
�(·) ∈Rn×m is a matrix function (Øksendal, 2003). Multiplying with
dt gives the standard SDE formulation

dxt = f (xt ,ut , t, �)dt + �(xt ,ut , t, �)dwt , (4)

�(xt, ut, t, �) is referred to as the diffusion term, and f(xt, ut, t, �)
is referred to as the drift term. The solution to (4) is a stochastic
process with transition probabilities given by the Fokker–Planck
equation (e.g. Klebaner, 2005). Furthermore, one path of the solu-
tion is an autocorrelated stochastic process, which can be realised
by considering Eq. (3) where the increments of xt are subject to
random perturbations.

2.3. Parameter estimation in SDEs

Estimation of parameters in SDEs is a difficult task because eval-
uation of the likelihood of observation requires knowledge about
the transition densities between discrete time observations. Transi-
tions densities are generally unknown except for very simple SDEs
and approximate methods has to applied. To enable general esti-
mation of SDEs simulation based methods has to be applied (e.g.
Nicolau, 2002), including sampling techniques (e.g. Pastorello and
Rossi, 2010) and particle filters (e.g. Givon et al., 2009). While sim-
ulation based method has the advantage of dealing effectively with
general differential noise terms like Poisson noise (e.g. Givon et al.,
2009), the draw- back is the computational effort needed in the
simulation part of the algorithms.

Closed form likelihood expansions are also available (e.g. Aït-
Sahalia, 2008), while tractable from a computational point of view,
these are complicated to apply involving Hermite series expansion
of the local log-likelihood function. Further the assumption is that
all states are observed, which will not be the case in general. In the
present study we will base the analysis on the Extended Kalman fil-
ter (EKF), where the prediction of the first and second moments of
the process is based on a set of ODEs, which are solved numerically.
While the methodology is well-known (Kristensen et al., 2004) it
has, to our knowledge, not been applied to marine ecosystems pre-
(Kristensen and Madsen, 2003; Kristensen et al., 2004).

1 The software is available at www2.imm.dtu.dk/∼ctsm.

http://www2.imm.dtu.dk/~ctsm
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.3.1. Likelihood estimation by EKF
Consider the continuous-discrete time stochastic state-space

odel formulation in Eqs. (1) and (4)

xt = f (xt ,ut , t, �)dt + �(xt ,ut , t, �)dwt , (5)

k = h(xtk ,utk , tk, �, ek), (6)

here parameters and variables are as described in Section 2.
For the continuous-discrete time stochastic state-space model

5) and (6), the problem that needs to be solved is: find the set
f parameters (�̂) such that some objective function is maximised
iven a set of observations YN = {y0, . . . ,yN}. A natural choice of
uch an objective function is the joint probability density of the
bservations, considered as a function of the unknown parameters
�) (the likelihood function), i.e.

(�;YN) = p(YN |�) =
(

N∏
k=1

p(yk|Yk−1, �)

)
p(y0|�), (7)

here Bayes rule has been applied recursively to form the product
f conditional densities (e.g. Madsen, 2008). In principle the solu-
ion of this problem would be an application of the Fokker–Planck
quation for predictions and Bayes rule for updating given a new
bservation. Such a strategy is, however, infeasible, except for
ystems with very simple structures of the system equation (5),
ecause it involves the solution of a very complex partial differen-
ial equation.

The estimation procedure, which will be introduced in the fol-
owing, relies on an implementation of EKF techniques (Jazwinski,
970). This implementation requires the system and observation
quations to have the form

xt = f (xt ,ut , t, �)dt + �(ut , t, �)dwt , (8)

k = h(xtk ,utk , tk, �) + ek, (9)

here 1) the diffusion matrix is quadratic, i.e. �(·) ∈Rn×n and
t ∈Rn, 2) the diffusion term is not allowed to depend on the

tate, and 3) the observation noise is additive Gaussian white noise
ek ∈ N(0, Sk(�, uk))). In a weak solution sense (equality in distri-
ution) (see Øksendal (2003) for a discussion of weak and strong
olutions), 1) is not a restriction since �( · ) can only be identi-
ed up to the “square root” of ��T( · ), 2) is clearly a restriction

n the multivariate case, but to some extent this can be dealt with
y transformations, and a class of diffusion processes can be dealt
ith by transformations (e.g. all processes with diffusion given by
iag(xt)�(t, �); Luschgy and Pagés, 2006). Finally, the restriction
3) should be dealt with by transformation of the observation if
ossible.

Since the systems (8) and (9) are driven by Wiener noise,
nd the observation noise is additive Gaussian, a reasonable local
pproximation of the conditional densities in (7) is the Gaussian
istribution, which is completely characterised by its mean and
ovariance.

The one-step prediction, covariance and the innovation are
efined as

ˆk|k−1 = E{yk|Yk−1, �}, (10)

k|k−1 = V {yk|Yk−1, �}, (11)

k = yk − ŷk|k−1, (12)

here E{ · } is the expectation and V{ · } is the variance. Using this

otation the likelihood can be written as

(�;YN) =

⎛
⎝ N∏
k=1

exp((1/2)�T
k
R−1
k|k−1�k)√

det(Rk|k−1)(2�)l

⎞
⎠p(y0|�), (13)
ling 222 (2011) 1793–1799 1795

where l is the dimension of the sample space (see Eq. (1)) and ( · )T

is the vector transpose. The actual optimisation is done in the log-
domain and the (approximate) maximum likelihood estimate of �
is

�̂ = argmax
� ∈�

{log(L(�;YN))}. (14)

The Kalman gain is essential for the state updating proce-
dure. The Kalman gain governs how much the one-step prediction
(x̂k|k−1) should be adjusted to form the reconstruction (x̂k|k) of the
state based on the observation, and is given by

Kk = Pk|k−1CTR−1
k|k−1, (15)

where C is the first order Taylor expansion (the Jacobian) of h and
Pk|k−1 is the covariance of the one-step prediction. Note that the
Kalman gain is proportional to the information (R−1

k|k−1) provided
by the kth observation. The state reconstruction is given by

x̂k|k = x̂k|k−1 + Kk�k, (16)

Pk|k = Pk|k−1 − KkR
−1
k|k−1KTk , (17)

i.e. a combination of the predicted state and the information
obtained by the kth observation (yk). The state predictions are gov-
erned by a set of ordinary differential equations (Kristensen et al.,
2004; Kristensen and Madsen, 2003).

In addition to the state reconstruction and parameter estimates
discussed above, the optimisation of the likelihood function pro-
vides an estimate of the parameter covariance given by the negative
inverse Hessian of the log-likelihood evaluated at the optimal
parameter values. As the estimation is based on the maximum like-
lihood, the procedure allows for likelihood ratio tests of nested
models and t-tests for all estimated parameters.

3. A simulation example

This section presents a simple simulation example, with syn-
thetically generated observation. The example resembles some
features of the case study presented in Section 4, and illustrates
the points discussed above. Consider the SDE

dxt =
[

sin
(

2�
12
t
)

+ 1 − axt
]
dt + �xtdwt, (18)

xt can be considered as an ecosystem component (e.g. phytoplank-
ton) with a periodic growth process (sin ((2�/12)t) + 1), which is
independent of the state, a death-rate (a), and a diffusion term
that is proportional to the state of the system. The solution to
dxt = −axtdt + �xtdwt , for each fixed time horizon T, is a log-normal
distributed random variable if the initial state (x0) is larger than
zero (e.g. Øksendal, 2003, Example 5.1.1). Therefore adding a posi-
tive forcing, will still guarantee that xt > 0 ∀ t, if x0 > 0. Assume that
the observation equation is given by

log(yk) = log(xtk ) + ek, (19)

this implies that the standard deviation of the observation noise
is proportional to the state of the system. The synthetic data are a
realisation of the stochastic process defined by (18) and (19) with
a = 0.5, � = 0.2 and ek ∼ N(0, 0.12). The simulation of (18) is per-
formed by the Euler approximation scheme (Kloden and Platen,
1999) with�t = 10−4, and the sampling frequency of the synthetic
observations is 3/�.

As discussed above, the ODE solution (Fig. 1) is a determin-

istic function, with autocorrelated residuals. The SDE solution is
a stochastic process represented by the expectation (Fig. 1) and
covariance (not shown) of the state given all observations. Clearly
this expectation captures the autocorrelation of the underlying pro-
cess quite well (Fig. 1).
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Fig. 1. Simulation results from the system described in Eqs. (18) and (19). “ODE
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with shape parameter 1 + �−1
1 and scale parameter�/�1 (see Iacus
ion of the stochastic process (18) and (19), “Forcing” is the input function in (18)
sin (2�t/12) + 1) and “True state” refers to one realisation of (18).

The example demonstrates that the SDE solution captures the
ynamics of the underlying process better than the ODE solution
the residual sum of square is 0.18 and 1.60 for the SDE solution and
he ODE solution, respectively). When SDEs are used for long-term
orecasts autocorrelation between the residuals will be observed,
ince xt is an autocorrelated process, see e.g. Madsen (2008) for
his result in linear time series analysis. However, the distributional
roperties of long-term forecasts will be captured better with SDEs
han with ODEs.

The estimated death-rate was 0.508 (±0.14) and 0.536 (±0.04)
or the SDE model and the ODE model, respectively. Thus, the ODE
olution deviates substantially from the true value (0.5) and the 95%
onfidence interval does not even contain the true value, indicating
hat the estimate of the dynamics of the process is also better when
aking the correlation structure into account.

. Skive Fjord case study

This section presents a simple model to describe the phyto-
lankton nitrogen dynamics in an estuary located in the northern
enmark. The model aims at describing total phytoplankton nitro-
en (Xp,t) as a function of total nitrogen in the water column (Uw,t)
nd incoming global radiation (Ugr,t). The period with overlapping
ime series of input data is September 18th 1987 through December
8th 2006, which will be the modelling period.

.1. Data

Skive Fjord has been extensively monitored during the Danish
ational Aquatic Monitoring and Assessment Program (DNAMAP),
here various ecosystem components and water-chemistry vari-

bles have been recorded since the 1980s.
The data set includes chlorophyll in �g chla/l, which is converted

o nitrogen units using the standard chlorophyll to carbon ratio
f 1:50 (weight) (e.g. Pedersen et al. (2010), which report a ratio
f 1:47), the Redfield ratio (C:N = 106:16 (M)), and assuming that
he monitoring station is representative of the entire estuary (the
bservation is denoted Yp,t). Because nitrogen in the water column
cts as an input to the system, missing observations are not allowed
nd are filled in by linear interpolation between data points.

Global radiation data (provided by the Danish Meteorologi-
al Institute) are available from two sites around Skive Fjord and

eported on an hourly basis. The global radiation data contain both
issing observations and what we will refer to as “false zeros”. A

alse zero is when global radiation equal to zero is reported dur-
ng daytime. To identify such points, a general yet simple periodic
lling 222 (2011) 1793–1799

function for global radiation is fitted to the non-missing data

fgr(t; �) =
(
a0 + a1 sin

(
2�
Pyear

t + �1

)
+ a2 sin

(
2�
Pday

t + �2

))
+
,

(20)

where (x)+ = max (x, 0), Pyear = 24 × 365.25 is the average number of
hours in one year and Pday = 24 is the number of hours in one day.
If the observation at time ti0 is zero and fgr(ti) > 0 for i ∈ {i0 − 1, i0,
i0 + 1} then the observation is considered a false zero and marked
as missing. The number of observations removed in this way is 144
out of a total of about 270 × 103 observations.

The hourly global radiation is found as a simple average (over
stations) of the non-missing observations at each time point. As
global radiation acts as an input, missing observations are not
allowed (the number of missing observations is about 1% of the
total number of observations). If the sequence of missing data is
shorter than three, or the same hour of the day before and after
is available, then the missing observations are filled in by linear
interpolation. Remaining gaps in data are filled in by equating with
fgr(t), and Ugr,t is created by average daily global radiation.

The seasonal variation in both input variables and phytoplank-
ton nitrogen is evident (Fig. 2), but strong fluctuations overlaying
this signal are apparent.

4.2. A simple SDE-model

The simple model set up is a constant mortality rate and a
growth process which is a function of available nitrogen and global
radiation

dXp,t
dt

= b(Uw,t, Ugr,t) − aXp,t + noise, (21)

where Xp,t is total N in phytoplankton, and the growth process
b(Uw,t, Ugr,t) and the mortality rate (a) are both strictly positive. The
growth process will be assumed to be proportional to the available
nitrogen and the inflow of solar energy, i.e.

b(Uw,t, Ugr,t) = b0Uw,tUgr,t, (22)

where b0 > 0 is a constant. This formulation governs a stochas-
tic process and a natural requirement for the process is that
P(Xp,t < 0) = 0 ∀ t. A formulation that meets this constraint is

dXp,t = (b0Uw,tUgr,t − aXp,t)dt + �xXp,tdwt, (23)

where wt is the standard Wiener process. In this formulation the
diffusion for the process is proportional to the level of the pro-
cess, i.e. the higher the abundance of phytoplankton the higher the
variance (in absolute terms). This choice of noise process is the sim-
plest in terms of estimation, because the state space of the Lamperti
transformed process (see below) is the entire real axis, but it is also
in good agreement with the generality of the log-normal distribu-
tion (Limpert et al., 2001) and coincide with the choice in Dowd
(2006).

Assuming b(Uw,t, Ugr,t) is constant, then Eq. (23) is a special case
of the Pearson diffusion, which is defined as (Iacus, 2008)

dXt = −�(Xt −�)dt +
√

2�(�1X2
t + �2Xt + �3)dwt, (24)

which does not have a closed form solution for the transient. For
�2 =�3 = 0, � > 0,�> 0, and�1 > 0, the stationary distribution for this
process is, however, known to be an inverse Gamma distribution
2008, observe the misprint on p. 54 in the reference though). With
b( · ) a function of t (the inputs vary in time), the process will always
be in the transient, nonetheless the process should be close to the
stationary distribution, if the time constant for the system (1/a) is
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calculate confidence intervals around the mode of the stationary
distribution of each t (Figs. 3 and 4).

In addition to parameter estimates, the implementation of the
EKF allows us to calculate the smoothed state (the conditional

Table 1
Estimation results.

[�min, �max] �̂ Std. dev. t-Score P(x > | t | )
ig. 2. Observations of total nitrogen in phytoplankton, total nitrogen in the wat
nterpolated data points.

ast compared to the variation in b( · ). Suppressing the time index
nd comparing (23) and (24) gives

= a, � = b0UwUgr
a

, �1 = �2
x

2a
, (25)

hich implies that for each fixed t the stationary distribution for
p,t follows an inverse gamma distribution with shape parameter
+ (a/�2

x ) and scale parameter 2b0Uw,tUgr,t/�2
x .

As discussed in Section 2.3 the diffusion term is required to be
ndependent of the state of the system, which is not the case for the
resented system. Fortunately it is always possible to transform a
ne-dimensional system with only one continuously differentiable
iffusion term into a system with constant diffusion, by applying
he Lamperti transform (e.g. Iacus, 2008; Baadsgaard et al., 1997)

(Xt) =
∫

1
�(	)

d	| 	=Xt , (26)

y choosing Zt =  (Xp,t) =
∫

1/(�x	)d	| 	=Xt = (1/�x) log(Xp,t), and
pplying Ito’s lemma (e.g. Øksendal, 2003) we get

Zp,t =  t(Xp,t)dt + x(Xp,t)dXp,t + xx(Xp,t)(dXp,t)2, (27)

(b0Uw,tUgr,t − aXp,t)dt + �xXp,tdwt
�xXp,t

− 1
2

(�xXp,t)
2

�x(Xp,t)
2
dt, (28)

(
b0Uw,tUgr,t
�xXp,t

− a

�x
− 1

2
�x

)
dt + dwt , (29)

(
b0

�x
e−�xZp,t Uw,tUgr,t − a

�x
− 1

2
�x

)
dt + dwt, (30)

hich is now a non-linear SDE with unit diffusion. In addition to the
ystem equation described above, there has to be a description of

he observation equation. Under the assumption that observations
re log-normal distributed around the true state, the observation
quation is

og(Yp,k) = �xZp,tk + ek, (31)
umn and global radiation. Black dots are observations, while grey dots/lines are

where Yp,k is the observed nitrogen content in phytoplankton and
ek∼N(0, �2

y ).

4.3. Results

The parameters of the model Eqs. (30) and (31) are now esti-
mated using the estimation procedure presented in Section 2.3. All
parameters score well in t-tests (Table 1). The time constant (1/a)
of the deterministic skeleton (remove the noise term) is about 59
days. As discussed above, the stationary distribution is known when
the forcing (b0Uw,tUgr,t) is constant, which is clearly (Fig. 2) not the
case for the system analysed here. Even though we do not analyse
the dynamics of the forcing compared to the time constant of the
system, it is reasonable to assume that the state (total phytoplank-
ton nitrogen) is close to the stationary distribution in some sense.
To explore this we define a moving average growth process

b̃t = b0

14

t∑
i=t−13

Uw,iUgr,i. (32)

This moving average growth process is now used (in Eq. (25)) to
Zp,0 [−20, 20] −9.4e+00 3.1e+00 −3.0 0.003
b0 [0, 1] 1.9e−03 2.2e−04 8.4 0.000
a [0, 1] 1.7e−02 3.4e−03 5.0 0.000
�x [0, 1] 1.6e−01 1.3e−02 12.0 0.000
�y [0, 1] 1.9e−01 2.6e−02 7.6 0.000
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Fig. 3. Time series of stationary distributions, smoothed state (black line) and obser-
vations (blue dots). The color key refers to confidence intervals around the mode of
the stationary distributions. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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ig. 4. Time series of stationary distributions, smoothed state (black line) and obser-
ations (blue dots). The color key refers to confidence intervals around the mode of
he stationary distributions. (For interpretation of the references to color in this
gure legend, the reader is referred to the web version of this article.)

xpectation of the state given all observations), i.e.

ˆ t|T = E[xt |YN]. (33)

When considering that the stationary distribution does not
epend on the local information given by the observations the
moothen state is in general quite close to the mode of the sta-
ionary distribution (Figs. 3 and 4). Both the stationary distribution
nd the smoothen state reproduce the periodic dynamics of data
uite well, while the extreme values are not well captured. In par-
icular, the stationary distribution fails to reproduce extreme values
Figs. 3 and 4), because it does not use local information given by
he observations.

Very large observations influence the smoothed state of the sys-
em strongly (Fig. 3), implying that observations in the tail of the
tationary distribution draw the smoothed state away from the cen-
re of the stationary distribution. This indicates that the model does
ot capture the extremes in the dynamics very well, which is not
urprising since the model does not include any mechanism to cap-
ure extreme events. It might possible to capture such behaviour by

ore effects (e.g. b(t) = b(Uw,t, Ugr,t, Xp,t)) in the system equations.

. Conclusion

We have demonstrated that the presented approach based on
mbedded stochastic differential equations provides an alterna-
ive tool for phytoplankton modelling. In particular the procedure
as illustrated in Section 3) accounts for the autocorrelated resid-
als often seen when ODEs are used for modelling. Furthermore,
s the model is formulated in continuous time, the states can be

pdated and parameters estimated from data that are not sam-
led at equidistant points in time, which often happens to be the
ase with ecosystem monitoring. This is exemplified with the Skive
jord case study presented in Section 4. The higher flexibility of
he estimating procedure, compared to discrete-time models, is
lling 222 (2011) 1793–1799

a trade-off with the computational effort. The ODEs given by the
filter equations are computationally expensive when the system
equations are complex. Further, the optimisation requires many
iterations when the number of parameters to be estimated is high.
In practice, this limits the complexity of ecosystem models formu-
lated as SDEs that can be estimated, acknowledging that the more
complex and less significant mechanisms will be contained in the
stochastic processes of the covariance model, that will be regularly
updated through the filter equations. Consequently, SDEs are per
se data-driven and less appropriate for long-term predictions or
interpolation over larger gaps in the time series compared to ODEs.
However, an important feature of SDEs is the uncertainty quantifi-
cation of the model outputs, such uncertainty quantification cannot
be readily and reliably provided by ODEs.

The skive Fjord case study provide two qualitatively different
results 1) the stationary distribution, which represents long-term
predictions under given loading conditions and 2) the smoothen
state which represents the conditional mean of the phytoplank-
ton state given all observations (both past and future), the model
structure and the parameters. The stationary distribution repro-
duces the long-term dynamics of the data quite well, while local
information from the observation does not influence the predic-
tions and extreme observations are quite far from the mode of the
distribution. The smoothen state clearly describes data better than
the stationary distribution as it is adapted to the local information
provided by the observed phytoplankton. The smoothen state can,
however, not describe extreme observations.

The problem of reproducing extreme observations could poten-
tially be solved by including more effects (e.g. the phytoplankton
state and local weather conditions) in the growth process. More-
over, for the model to constitute a realistic representation with
desired mathematical properties (stationarity of the solution), a
two-state system, where phytoplankton remove nitrogen from the
water column, is more appropriate. However, the aim of this study
was to introduce SDEs and the estimation procedure, and not a
modelling exercise.
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