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Summary . Stochastic differential equations (SDEs) for ecosystem modelling have attracted
increasing attention during recent years. The modelling has mostly been through simulation
based experiments. Estimation of parameters in SDEs is, however, possible by combining
Kalman filter and likelihood techniques. The resulting filter equations handle additive diffusion
effectively, while state dependent diffusion is difficult to handle. In many cases it is however
possible to transform the state-space to avoid state dependent descriptions. It is demonstrated
how pure random walk hidden state formulation and state estimation of key parameters can
generate data driven model formulations. The resulting models are based on short-term pre-
dictions and it is demonstrated how considerations on stationarity of the distribution and inspec-
tion of probabilistic properties of simulation results can generate further model improvements
of simulation models. The proposed methodology is demonstrated using phytoplankton and ni-
trogen data from a Danish estuary covering a 16 years period (1988-2003). It is demonstrated
how non-linear relationships between states can be identified by plotting the (random) produc-
tion parameter as a function of the state variables and global radiation. Further improvements
of both the drift and the diffusion term are achieved by comparing simulated densities and data.

Keywords: Stochastic differential equations, Maximum likelihood, Extended Kalman filter, Struc-
tural identification, Validation, Lamperti transform, Simulation performance, NP-models.

1. Introduction

Stochastic differential equations (SDEs) are stochastic generalisations of ordinary differen-
tial equations (ODEs), where the differential increments are given a probabilistic interpre-
tation (Øksendal (2003)). The theory of SDEs is in a mature state and the literature on
theoretic properties of SDEs is bulk (e.g. Klebaner (2005), Karatzas and Shreve (1991)),
and the use of SDEs is standard in mathematical finance.

SDEs has also proven useful in diverse fields such as pharmacokinetic (Tornøe et al.
(2004)), engineering (Madsen at al. (1987)) and geolocation of fish (Pedersen et al. (2008)).
These applications uses data to estimate parameters in a continuous-discrete time stochastic
state space formulation, which allow a splitting of the noise processes into observation noise
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and system noise. In SDEs system noise is often referred to as diffusion, which describes
the stochastic part of the state-space formulation.

The estimation in the present work is based on an implementation of the Extended
Kalman Filter (EKF) (e.g. Jazwinski (1970)) and approximate likelihood estimation as
presented in Kristensen et al. (2004a). The EKF allows for optimal state estimation, and
through modelling parameters in the model as pure random walk hidden states it is possible
to formulate data-driven hypotheses based on the reconstructed or smoothed state of the
system (Kristensen et al. (2004b)).

The EKF filter approach is effective in handling additive (state independent) diffusion,
however, such an assumption is in many cases a strong simplification of real life systems, that
will not fulfil basic requirements of the system, such as positive states. The assumption also
exclude a large class of well known diffusion processes (such as “Black and Scholes” type
models, (Øksendal (2003)) and the Feller diffusion (Iacus (2008))). For one-dimensional
diffusion processes this is effectively handled by transformation of the state-space (Baads-
gaard et al. (1997)), the transformation is often referred to as the Lamperti transform
(Iacus (2008)). For multivariate processes this is a more delicate matter (Luschgy and
Pagés (2006); Aı̈t-Sahalia (2008)), but for a restricted class of diffusion processes it can be
handled by Itô’s lemma, and a general multivariate formulation that allow for a Lamperti
type transformation is presented.

The present work is a further development of the methodology presented in Kristensen
et al. (2004b), in addition to the consideration based on the likelihood and reconstruction of
the random walk hidden states, the structural development is based on considerations about
the stationary solution and simulations results. The proposed methodology is exemplified
with a comprehensive study of a marine ecosystem.

Marine ecosystems represent very complex structures of coupled subprocesses of which
each subprocess represent a detailed discipline in its own right, and the subprocesses inter-
acts across a wide spectrum of space and time in a complicated manner, which ultimately
determines the dynamics of the complete system.

Typically a model for a complex system is obtained by coupling deterministic sub-models
together, where each sub-model describes a specific subprocess. The functional relations
are therefore not based on the specific conditions observed at the study site. The output of
the resulting model is compared to observations from the specific study-site and parameters
are tuned to mimic observations in the ecosystem. An early and simple example of this
approach is found in Fasham et al. (1990), a more resent and complex example is Bartell
et al. (1999). The later example illustrates the profound complexity of ecosystem models.

The complexity of ecosystem models makes these especially useful for illustrating the
methodology presented here, since the dynamics of the full system is not determined by the
individual subprocess, but by the subprocesses and the way these are interconnected and
working on different time scales.

Section 2 introduce the continuous-discrete time stochastic state-space formulation with
emphasis on the transformations that enables estimation of system with state dependent
noise. The proposed methodology is presented in Section 3, with the example constituting
the main part of the article in Section 4. Finally the results from the example and some
general implications of the proposed methodology are discussed in Section 5.
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2. Continuous-discrete time stochastic state-space model s

Stochastic differential equations are stochastic generalisations of ordinary differential equa-
tions in the sense that the deterministic skeleton of an SDE is an ODE. The continuous time
state of the SDE is observed indirectly in discrete-time through the observation equation.
This gives the continuous-discrete time stochastic state-space formulation

dxt =f(xt,ut,θ, t)dt+ σ(xt,ut,θ, t)dwt (1)

yk =h(xtk ,utk ,θ, ek, tk), (2)

where t ∈ R0 is time, tk (k ⊂ N0) is the sample times, xt ⊆ χ ∈ R
n is a vector of state

variables belonging to the state-space (χ), ut ∈ R
r is a vector of inputs, wt is the standard

Brownian motion, θ ∈ R
p is a parameter vector, f(·) ∈ R

n is a vector function referred to
as the drift term, σ(·) ∈ R

m×n is a matrix function referred to as the diffusion term, yk is
the observation at time tk, h(·) ∈ R

l is the observation function and ek ∈ R
l is a random

observation error. Hence, the state-space formulation consist of the system equation (1),
which describes the time-evolution of the states, and the observation equation (2), which
describes the how the actual observations relates to the states.

The system equation (1) is a short-term notation for the integral interpretation, and
in this context the Itô interpretation is used. Details on the formulation of SDEs and the
general theory can be found in e.g. Øksendal (2003).

2.1. Parameter and state estimation
The estimation procedure employed here is based on the Extended Kalman Filter (EKF)
and maximum likelihood estimation. A general account for the procedures can be found in
Kristensen et al. (2004a), however the basic assumption is that the differential increments
in Eq. (1) are Gaussian and that the observations are also Gaussian. For the filter equation
to take on a sufficiently simple form to allow efficient implementation, the continuous-time
stochastic state formulation and the discrete-time observation formulation is restricted to
the form

dxt =f(xt,ut,θ, t)dt+ σ(ut,θ, t)dwt (3)

yk =h(xtk ,utk ,θ, tk) + ek, (4)

where σ ∈ R
n×n is a quadratic matrix function independent of the state, and ek ∈ R

l is a
Gaussian random variable with zero mean and covariance S(ut,θ, t). All other terms are
as explained above. The first restriction (σ quadratic) is not a real restriction since the
estimation is based on the likelihood (weak solution) which, as a consequence of the fact
that the Kolmogorov forward (Fokker-Planck) equation (Gard (1988)) only depends on
σσT . The independence between the diffusion matrix and the state can to some extent be
dealt with by transformation of the state-space (see below) to obtain a formulation where
the diffusion is independent of the state. The last restriction (observation noise additive and
Gaussian), is crucial for the EKF, real life observations are, however, often not Gaussian,
but it is often possible to deal with this by transformations of the observations before
estimation (e.g. Box-Cox transformations).

The approximate likelihood estimation is based on the assumption that the conditional
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density is Gaussian, and in this case the likelihood can be written as

L(θ;YN ) = p(y0|θ)

N
∏

k=1

exp
(

− 1
2ǫ

T
kR

−1
k|k−1ǫk

)

√

(2π)ldet(Rk|k−1)
, (5)

where YN = {y0, ...,yN} are all observations up to time T = tN , p(y0|θ) is the conditional
(on the parameters) density of the first observation, the innovation covariance matrix is
given by Rk|k−1 = V {yk|Yk−1;θ} and the innovation is given by ǫk = yk −E{yk|Yk−1;θ}.
While the restriction of the observation equation (4) is necessary for (5) to form a reasonable
approximation, it is not sufficient, since the observation equation (4) consist of a function
of the state h(·) and an additive Gaussian error. The assumption is therefore that the
conditional density of xt is approximately Gaussian (possibly after a transformation h).
This is likely to hold when the sampling frequencies are fast (compared to the dynamics
of the system), while there exist methods to verify this (Bak et al. (1999)), we will not be
concerned with this issue in the present study, since the evaluation of the final model is
with respect to long term simulations not short term predictions (see Section 3).

In addition to the parameter estimation provided by the maximum likelihood proce-
dure the filtering procedure allows for state estimation to obtain the state reconstruction
(E[xt|Yt]), and the smoothed state (E[xt|YT ]), where Yt is the information provided by
observations up to time t. The estimation procedure is implemented in the open source
software CTSM† (Kristensen et al. (2004a); Kristensen and Madsen (2003)).

2.2. Transformation of the state-space
As noted the diffusion matrix should be independent of the state in order to allow the
filtering equation to be simple enough to allow efficient and numerically stable solutions.
Transformations of SDEs is an application of Itô’s Lemma (Øksendal (2003)), the special
case where the transformed system has state independent diffusion is often referred to
as the Lamperti transform (Iacus (2008); Luschgy and Pagés (2006)). For one dimensional
processes this is well-known (Baadsgaard et al. (1997); Iacus (2008)) and the transformation
is only limited by the ability to find an explicit expression for the inverse transformation
(Iacus (2008)).

Unfortunately the generality of the Lamperti transform is restricted to one dimensional
diffusion (Luschgy and Pagés (2006)). It is however possible to construct a Lamperti type
transformation for a restricted class of diffusion processes (Luschgy and Pagés (2006)) given
by

dxt =f(xt,ut,θ, t)dt+ σ(xt,ut,θ, t)R(ut,θ, t)dwt, (6)

where σ(·) ∈ R
n×n is a diagonal matrix, with diagonal elements σii(xt,ut,θ, t) = σi(xi,t,ut,θ, t)

and R(·) ∈ R
n×n is any matrix function (independent of xt). If zi is chosen as

zit = ψi(xit,ut,θ, t) =

∫

dξ

σi(ξ,ut,θ, t)

∣

∣

∣

∣

∣

ξ=xi
t

, (7)

†Available at www2.imm.dtu.dk/∼ctsm
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then by Itôs lemma (e.g. Øksendal (2003)), zit is also an Itô process given by

dzit =
∂

∂t
ψi(·, t)dt+

∂

∂ξ
ψ(ξ, ·)

∣

∣

∣

∣

ξ=xi
t

dxit +
1

2

∂2

∂ξ2
ψi(ξ, ·)

∣

∣

∣

∣

ξ=xt
t

(dxit)
2 (8)

=



ψt(·, t) +
fi(·)

σi(·)
dt−

1

2
σi
x(·)

N
∑

j=1

[R(·)]
2
i,j



 dt+

N
∑

j=1

[R(·)]i,j dwj , (9)

where the diffusion term is independent of the state. The Lamperti transformation is essen-
tially one dimensional (Luschgy and Pagés (2006)), which is also the construction applied
here. The construction (9) involves the time derivative of σ(·). In real life application such
time dependence will often be through some observed input and the time-differentiation
will involve numerical differentiation of the input. It is therefore recommended that time
dependence in σ(·) is avoided if possible. Aı̈t-Sahalia (2008) provides a more general result
than (6), but (6) is simpler to apply and will suffice for our purpose.

3. Description of methodology

The procedure proposed here is an iterative procedure, where each step is repeated until an
acceptable model has been achieved. The procedure is divided into 4 steps (Figure 1), the
aim of step 1-3 is to identify possible model improvement, this being either model exten-
sions or model reductions. Traditionally model extensions is implemented by formulating a
hypothesis based on mechanistic knowledge and hypothesis testing by e.g. likelihood ratio
testing. However, inspection of pure random walk processes adapted to data by the EKF,
for different parameters can also generate data driven hypotheses, which can be tested by
conventional likelihood testing.

Maximum likelihood estimation is equivalent to optimisation of the one-step predictions
(to the next available observation) error. However, if the model objective is different, such
as a k-step prediction or simulation, then investigating model performance with respect to
this objective may lead to model extensions, potentially different from those suggested from
optimising the one-step prediction.

Step 0: Data considerations
In this initial step, before model development and estimation, the main question is, if the
Gaussian assumption is fulfilled. If the Gaussian assumption of observation noise is not
fulfilled observations should be transformed such that the observation equation has the
required form (Eq. (4)). Other considerations could be outlier detection, data aggregation,
etc. These considerations should be made a priori, since changes affect the iterations in
step 1-3 and especially the classical statistical hypotheses testing depend critically on the
transformation of data.

Step 1: Statistical inference
This is the classical statistical step where a candidate model is formulated and statistical
testing is performed by comparing likelihoods or information criteria (e.g. AIC, BIC). Pos-
sible model reductions are considered in this step, even if a model reduction seems plausible
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from a statistical point of view it might not be so from a modelling point of view, for in-
stance a model reduction might lead to a model that does not fulfil basic model requirements
(e.g. positive states). Additionally, some model reductions may prove unreasonable from
a mechanistic understanding of the system in question, despite that statistical testing has
rendered parameters equal to zero. In such cases it is preferable to maintain insignificant
parameters in the model. Some of these steps are described in more details in Kristensen
et al. (2004a).

If possible, model validation should also be performed by considering the autocorrelation
function or generalisations like lag dependent functions (Nielsen and Madsen (2001)). These
standard model validation tools are, however, not applicable for non-equidistant sampled
data.

Since testing is based on one-step predictions only, rather than performance with respect
to the required purpose, it might be appropriate to skip the testing part and go directly to
the validation (Step 3), when model reformulation is based on considerations with respect
to the required purpose.

Step 2: Structural identification
The initial model formulation will often be simpler than the complexity of the system
suggests, and the challenge is to identify possible model extensions that lead to signifi-
cant improvements of the model while avoiding over-parameterisation. One way to identify
potential model deficiencies is to examine the diffusion term (Kristensen et al. (2004b)),
because large diffusion coefficients indicate model deficiencies in the corresponding state.
Examining the observation noise may similarly pinpoint model deficiencies. Although obser-
vation noise will always be present, large observation variance suggests that the observation
bear no information or alternatively that the state equations do not sufficiently describe the
dynamics of the observations. Thus, the diffusion and observation noise are both expected
to be positive, but large parameter estimates give hints for model improvement.

The considerations above should lead to the selection of one parameter for further anal-
ysis. This parameter is formulated as a pure random walk hidden (unobservable) state
denoted by θi,t,

dθi,t = σθidwθi . (10)

The model is re-estimated with the random walk diffusion (σθi) added to the parameter
vector, and θi replaced by the initial state of θi,t (θi,0). Ideally σθi should be estimated, but
for complicated models this might, as we will see in Section 4.2.3, lead to small estimates
on the diffusion σθi . Although small estimates of the diffusion term indicates that the main
interactions are captured by the model, it is advisable to fix the diffusion to a moderate
value that allows regular and sufficient updating of the parameter to describe parameter
variations over time. The time evolution of the random walk parameter should not show
systematic variations with neither time nor other states, provided that the drift term is
adequately modelled.

The smoothed state or state reconstruction for the random walk parameter is calculated
using the estimation procedure described above (Section 2.1), and plotted against state
variables and inputs to identify possible functional relationships. Non-parametric modelling
tools such as generalised additive models (GAM) (Hastie and Tibshirani (1990)) can be
employed as part of this identification approach, but the significance of these relationships
has to be confirmed either by testing (Step 1) or validation (Step 3).
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Satisfied?

Is the model a candidate for  
the required purpose?

extensions?
Obvious/sensible model

− Transformations
− Outlier dectection
− Ect...

Yes

No
Yes

Yes

Parameter estimation

Identify model deficiencies

Pure random walk hidden state

Intrepretation of smoothing results (Visualisation, testing, ...)

− Visual inspection

Test if model is sutiable for required purpose

Done

No

Yes No

Generate smoothed states

− Compare statistics of data (e.g. skill scores)

    (simulation, k−step prediction, ect.)

No

Model formulation

Parameter estimation 

Model validation (if applicable)

Statistical test (Likelihood ratio, AIC,..)

Sensible model reduction?

Step1: Statistical Inference

Step 2: Structural identification

Data considerations

Step 3: Validation

Step 0:

Fig. 1. Conceptual diagram of model development method.

Step 3: Validation
The model developed in Step 1 and 2 should be evaluated against its objective. However,
the validation methodology depends on the objective, that is, if the objective is short-term
prediction then the development tools presented in Step 1 and 2 are likely to produce satis-
factory results, because the likelihood estimation procedure is based on one-step predictions.
On the other hand, if the model objective is long-term prediction the model developed dur-
ing Step 1-2 may prove inappropriate, since model components governing the long-term
predictions may not significantly affect the short-term predictions and thus may not be
included in the model formulation (e.g. parameters characterising higher order moments
of the stationary distribution). The general applicability of a model developed with one
specific objective in mind can be assessed by various methods of cross validation, see e.g.
Hastie et al. (2001) for a general discussion or Madsen (2008) for a time series oriented
discussion.

In the example presented below the objective is to develop a model suitable for simula-
tions and in this context visual inspection of the state distributions is relevant and useful
for the model development. Visual inspection is, however, subjective by nature and should
be combined with some kind of objective skill score. In the presented example we employ
a quantile skill score and interval skill score (Gneiting and Raftery (2007)) that assigns one
number to the ability of the model to predict quantiles and confidence intervals.

4. Example: A multivariate Nitrogen-Phytoplankton model

The methodology presented above is applied to a simple two-state model for the interac-
tion between water column nitrogen and phytoplankton, structural identification is used to
generate hypothesis on primary production, these include both non-linear and multiplica-
tive terms for nitrogen and light saturation. The model development is exemplified with
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water quality data from the Danish estuary, Skive Fjord, and global radiation gauged in
the vicinity of Skive Fjord.

4.1. Data sources and processing
Skive Fjord is a shallow estuary located in the northern part of Denmark, which has been
extensively monitored during the Danish National Aquatic Monitoring and Assessment
Program (DNAMAP), and from this monitoring program measurements of total nitrogen,
chlorophyll as a proxy for phytoplankton biomass and primary production sampled weekly
or biweekly were used in the present study. Freshwater discharge and nitrogen input from
the entire Skive Fjord watershed, calculated as combination of measured and modelled
inputs, were given with a monthly resolution. Finally, global radiation with an hourly
resolution was provided by the Danish Meteorological Institute (DMI).

The temporal resolution of nitrogen and freshwater inputs was increased to daily values
by means of piecewise linear functions to maintain total monthly inputs. Chlorophyll data
(µg chla/l) was converted into kg N/m3 using the standard carbon to chlorophyll weight
ratio of 50:1, the Redfield ratio (C:N=106:16 (molar)), and primary production (mgC/m2)
was converted to kg N/m3 by means of the Redfield ratio and the average depth of Skive
Fjord (3.2 m).

The time series for global radiation had gaps and occasionally erroneous zero values
during daytime, that were also treated as missing values. Missing values were filled by
linear interpolation if the sequence of missing data was short (data available within two
hours from the missing observation or available at the same time of day the day before and
after). After this initial gap filling, longer sequences of missing observation were filled using
a general harmonic function (including a diurnal and a daily seasonal component) fitted
to data. The average daily global radiation, after completing all gaps, was used as input
to the model. All data had pronounced seasonal variation, but also contained fast random
variations, particularly evident for phytoplankton and primary production (Figure 2).

4.2. The multivariate stochastic differential equation model
The conceptual setting (Figure 3) is that Skive Fjord is enriched with nitrogen discharges
from the surrounding watershed (Nex), whereas atmospheric deposition is relatively smaller
and neglected for this model development study. To maintain the water balance of the estu-
ary nitrogen and phytoplankton are flushed out of the system depending on the freshwater
inflow (Q). The estuarine circulation will lead to additional dilution that is contained in
the general loss processes, that also include denitrification and burial in the sediment (awl).
awl also describes other systematic effects such as the diffusive nitrogen exchange across
the sediment-water interface. Measured global radiation is a proxy for the photo-synthetic
active radiation (PAR) that sustains phytoplankton growth (awp), transforming inorganic
nitrogen from the water column into organic biomass. Besides the flushing described above
phytoplankton loss is assumed to be mediated through the water column nitrogen (apw).
Clearly, this system is a rather coarse (lumped) simplification of the many complex pro-
cesses taking place, but the idea is to focus on the primary production process and lump
other processes to simple first-order approximations.

In the initial step the conceptual model (Figure 3) is transformed into the simplest pos-
sible mathematical formulation encapsulating the different mass flows, thereby minimising
the risk of over-parameterisation and imposing false hypotheses based on the initial model.
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Fig. 2. Data used for modelling. Input and output variables in the left panel and right panels,
respectively.

The minimal requirements of the mathematical formulation is that mass balance is
maintained in the drift term, and that the state-space does not contain negative values.
The simplest way to ensure this is by introducing noise proportional to the states, leading
to the initial model formulation

d

[

Xw,t

Xp,t

]

=

[

Nex,tQt

0

]

dt+

[

−Qt − awp − awl apw
awp −apw −Qt

] [

Xw,t

Xp,t

]

dt

+

[

σwXw,t 0
0 σpXp,t

] [

1 r12
r12 1

]

dwt, (11)

where Xw,t is the water column nitrogen not contained in phytoplankton, Xp,t is phyto-
plankton nitrogen, Nex,t is the input of nitrogen from land, Qt is the normalised (by the
volume of Skive Fjord) freshwater input, awpXw,t (awp > 0 constant) is the primary produc-
tion, QtXi,t is the flushing of nitrogen, awlXw,t (awl constant) is the loss/exchange of water
column nitrogen through various processes besides primary production and phytoplankton
mortality, apwXp,t (apw > 0 constant) is the phytoplankton mortality, σiXi,t (σi > 0) de-
scribes the system noise and r12 determines the noise correlation. The multiplicative noise
ensures that the state-space of Xt = (Xw,t, Xp,t)

T is strictly positive almost surely (a.s.)
if X0 > 0.

Conservation of mass is not maintained in the diffusion term, and this seems reasonable
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NexQ
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Radiation
Solar

W
X

apw

awp

X p

GR

Fig. 3. Conceptual diagram of the model. The state variables are Xw water column nitrogen not
contained in phytoplankton, and Xp is phytoplankton nitrogen. The forcing are nitrogen input NexQ,
nitrogen loss QXi and the parameters are phytoplankton mortality rate apw, phytoplankton birth pro-
cess awp and interactions between water column nitrogen and other compartment e.g. the sediment.

because the lumped model for the loss/exchange processes in the drift term is too simple
to describe in detail all the complex and interacting processes. Further, mass balance in
the diffusion term would imply that random loss (gain) of phytoplankton biomass should
appear in the water column, and would therefore be equivalent to only birth and death
processes being stochastic. This is a quite strong assumption for a model that cannot be
considered as a closed system. Additionally, mass balance in the diffusion term can to some
extend be accounted for by the correlation r12, and in this way it is tested by estimation.

As noted in Section 2.1, the estimation procedure does not allow state dependent dif-
fusion, and therefore the system equation (11) is transformed according to the Lamperti
transform (Eq. (7))

Zi,t =
log(Xi,t)

σi
⇒ Xi,t = eσiZi,t , (12)

the transformed system is given by

d

[

Zw,t

Zp,t

]

=





1
σw

(

Nex,tQt+apwXp,t

Xw,t
− (Qt + awl + awp)

)

− 1
2σw(1 + r212)

1
σp

(

awp
Xw,t

Xp,t
− (apw +Qt)

)

− 1
2σp(1 + r212)



 dt

+

[

1 r12
r12 1

]

dwt, (13)

where Xi,t is a function of Zi,t defined by the inverse transformation in Eq. (12).
While the state-space of the original system (11) is [0,∞)× [0,∞) the state-space of the

transformed system is R2, which is tractable from an estimation point of view. The system
given in (13) is observed through a set of observation equations. Under the assumption that
the observations are log-normal distributed around the expectation values, these are





YTN,k

Yp,k
Ypp,k



 =





ǫTN,k 0 0
0 ǫp,k 0
0 0 ǫpp,k









Xw,k +Xp,k

Xp,k

awpXw,k



 , (14)
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where YTN,k is observed total nitrogen in the water column, Yp,k is the observed phyto-
plankton nitrogen, and Ypp,k is the observed primary production, all at time t = tk. In the
log-domain we obtain the observation equation





log(YTN,k)
log(Yp,k)
log(Ypp,k)



 =





log(Xw,k +Xp,tk)
log(Xp,k)
log(awpXw,k)



+





eTN,k

ep,k
epp,k



 , (15)

where Xw,k and Xp,k are described by the inverse transformation Eq. (12), and ei,k ∼
N(0, s2i ). In order to strengthen conclusions obtained in the structural identification step
we have chosen to use all available data in for estimation and the validation described
Section 4.3.1 is therefore based on the same data (but not on likelihood performance).

4.2.1. Model 1: The linear model

The parameters of the linear model Eqs. (13) and (15) were estimated. All parameters,
except apw, display good estimation statistics (Table 1). Although apw is not statistically
significant at this step of the modelling procedure, it is not advisable to remove it, since
this would lead to a biologically meaningless model with a zero death rate. The estimated
correlation coefficient is negative, implying that part of the randomness introduced by the
diffusion is affecting the difference between primary production and mortality.

The model does not implicitly contain any other seasonal elements than the nitrogen
input (Nex) to describe the strong seasonality of the data displayed in Figure 2. The problem
of how to identify possible improvements of the model Eqs. (11) and (14) in an objective
way is the main theme of this paper. While the parameterisation of the diffusion term is
not extremely important for the estimation problem as such, because the process is kept
in place by the EKF, the diffusion term is a main driver for the distributional properties
of the process and will be addressed in Section 4.4.1. The diffusion estimates (Table 1)
highlights that the phytoplankton diffusion (σp) is approximately 10 times larger than the
water column nitrogen diffusion (σw). Further, the observation noise of primary production
(s2pp) is very large, which makes it reasonable to select the primary production parameter
(awp) for a more thorough examination. This is also a plausible hypothesis from a biological
point-of-view since primary production is traditionally modelled as a function of PAR and
phytoplankton biomass as well as available nitrogen. For notational convenience, we will
represent the primary production process by

aiwp,t = a0wpXw,tfi(Xt,ut), (16)

where fi is the functional expression to be identified (with f1(Xt,ut) = 1 in the linear
model). In each step, i, a0wp is replaced with a0wp,t to identify a candidate model, i + 1
(replacing fi(·) with fi+1(·)).

The primary production parameter (a0wp,t) is now modelled as a random walk process
that will adapt to the data through the EKF. To ensure a0wp,t > 0, ∀t the random walk
is introduced in the log domain, resulting in the following equation for the random walk
parameter

d log(a0wp,t) =σawp
dwawp,t. (17)

The parameters of this modified model description and the smoothened state E(Xt|YT )
(the mean of posterior distribution) from the EKF are estimated. A clear seasonal variation
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Table 1. Estimation results for Model 1-6, bold face number refer to significant (on a 5% level)
parameters, while number in parenthesis refer to standard deviation of parameter estimates.

Unit Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Drift parameters

a0
wp

a) d−1 0.016 0.159 0.361 0.376 0.362 0.405

(0.002) (0.006) (0.020) (0.021) (0.020) (0.024)
awl d−1 0.007 0.018 0.018 0.018 0.02 0.024

(0.003) (0.001) (0.001) (0.001) (0.001) (0.001)
apw d−1 0.053 0.124 0.319 0.310 0.322 0.379

(0.034) (0.007) (0.019) (0.020) (0.018) (0.021)
kw

g

m−3 0.067 0.106 0.025 0.006
(0.017) (0.020) (0.025) (0.020)

kgr
W

m−3 0.990 9.283 18.068

(0.244) (3.247) (3.360)
ap0

g

m3·d 0.002 0.004

(0.001) (0.001)

Diffusion parameters

σw
b) g

m3
√
d

0.061 0.055 0.063 0.063 0.061 0.062

(0.004) (0.003) (0.004) (0.004) (0.004) (0.004)

σp
b) g

m3
√
d

0.625 0.252 0.152 0.145 0.197 0.065

(0.085) (0.015) (0.008) (0.009) (0.017) (0.012)
r12 −0.164 −0.135 −0.057 −0.046 0.014 0.009

(0.046) (0.034) (0.035) (0.039) (0.039) (0.042)
γw 0.662

(0.128)
γp 0.546

(0.062)
Variance of observation noise

s2TN
g2

m6 0.013 0.029 0.013 0.013 0.012 0.011

(0.002) (0.004) (0.002) (0.002) (0.002) (0.002)

s2p
g2

m6 0.304 0.141 0.172 0.185 0.198 0.205

(0.148) (0.047) (0.018) (0.036) (0.022) (0.031)

s2pp
g2

m6d2
3.546 2.193 1.174 1.126 0.851 0.715

(0.285) (0.179) (0.095) (0.098) (0.102) (0.075)
a)Unit does not apply to Model 2, where the unit is m3

g·d .

b)Units does not apply to Model 6, where the unit of σi is
(

g

m3
√
d

)−γi

.

Table 2. Likelihood table or Model 1-6, column 1-4 refer to the model set up, column 5
report the log-likelihood, column 6 report the total number of degrees of freedom (including
the initial state), while column 6-7 report AIC and BIC for all models and the last column
reports the likelihood ratio test when applicable.

f ap0 γi log(L) DF AIC BIC P (x > −2Dl)

Model 1 f1 = 1 0 1 -1446 11 2914 2971
Model 2 f2 = f1Xp,t 0 1 -1374 11 2770 2828

Model 3 f3 = f2
kw+Xw,t

0 1 -1079 12 2182 2245

Model 4 f4 = f3GRt

kgr+GRt
0 1 -1067 13 2159 2227

Model 5 f5 = f4 free 1 -1007 14 2042 2115 0.0000
Model 6 f6 = f4 free free -986 16 2004 2088 0.0000
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in â0
wp,t|T (Figure 4A) as well as evident correlations with phytoplankton nitrogen (Xp,t),

water-column nitrogen (Xw,t), and global radiation GRt (Figure 5A-C) emerges, however
most pronounced with phytoplankton. This is also confirmed by comparing AIC for linear
models of the hypothesised relationships

â0wp,t|T =αgr,0 + αgr,1Grt + ǫGr,t AIC =− 22928 (18)

â0wp,t|T =αp,0 + αp,1X̂p,t|T + ǫp,t AIC =− 28410 (19)

â0wp,t|T =αw,0 + αw,1X̂w,t|T + ǫw,t AIC =− 23998. (20)

âwp,t|T
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Fig. 4. Smoothened state of the random walk phytoplankton growth parameter (â0
wp,t|T ) in Model

1-4 as function of time. 95% confidence interval (grey area) is base on a Gaussian assumption of
log(â0

wp,t|T ). Red lines represent the median of â0
wp,t|T .

4.2.2. Model 2: Including phytoplankton

Based on the statistics in Eqs. (18)-(20) and Figure 5A-C phytoplankton nitrogen is included
in the production process and hence f2(·) (in Eq. (16)) is modelled as

f2(Xtk ,ut) = Xp,t. (21)
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Model 1 is not a proper subset of Model 2 implying that likelihood ratio testing is not valid.
We therefore base the model evaluation on AIC and BIC, improvements in both criteria in
the order of 140 (Table 2) are seen. All parameters in this model formulation, including
the death rate, are well determined (Table 1), though the phytoplankton diffusion (σp) and
primary production observation noise (s2pp) are still large compared to the diffusion of Xw,
despite that both decreased.

To address these large errors the primary production parameter is again modelled as
a random walk and plotted as a function of the potential explanatory variables and time
(Figures 5D-F and 4B). A clear seasonal variation (Figure 4B) still remains as well as
evident correlation between â0

wp,t|T and the state variables and global radiation (Figure 5D-

F). It is also seen that linear relations would be a poor fit (Figure 5D-F), and the following
hypotheses are therefore considered

H1 : awp =
Grt

kgr +Grt
(22)

H2 : awp =
Xp,t

kp +Xp,t

(23)

H3 : awp =
1

kw +Xw,t

. (24)

H1 is based on Figure 5F and the well-known fact that light saturation occurs for primary
production, although the parametric description here is simpler than the usual parameteri-
sation of light saturation (e.g. Fasham et al. (1990)). H2 is based on empirical evidence only
(Figure 5D), while H3 is based on Figure 5E and Michaelis-Menten kinetics for nitrogen.
These hypotheses are transformed into linear relations and the best relationship based on
AIC is chosen

1

awp,t

=αgr,1
1

Grt
+ αgr,2Grt + ǫGr,t AIC =34812 (25)

1

awp,t

=αp,1
1

Xp,t

+ αp,1Xp,t + ǫp,t AIC =30108 (26)

1

awp,t

=αw,0 + αw,1Xw,t + ǫw,t AIC =15040. (27)

The lowest AIC was the formulation with water column nitrogen Eq. (27), which is also
most apparent from the less scatter in Figure 5E.

4.2.3. Model 3: Including nitrogen saturation

Based on the statistics in Eqs. (25)-(26) and Figure 5D-F, water column nitrogen is included
in the model, and the primary production process is reformulated as

f3(Xtk ,ut) =
Xp,t

kw +Xw,t

. (28)

This model, now including nitrogen saturation of primary production, was first fitted with-
out random walk parameters (Table 1). All parameters, except the correlation parameter,
were significant, even though the statistics suggest to remove the correlation parameter, it
is maintained in the model and the model reduction step is postponed to the final model.
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Fig. 5. Smoothened state of the random walk phytoplankton growth parameter (â0
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(second column), observed global radiation (third column). Grey dots represent point estimation of
â0
wp,t|T , while red lines represent GAM (smoothing splines) fit to the points.

Since Model 2 is not a proper subset of Model 3 model evaluation is again based on AIC and
BIC, improvements was about 600 for both criteria (Table 2). It should also be stressed that
the diffusion of Xp and the observation noise of primary production (s2pp) both decreased.

The estimated random walk diffusion for the primary production parameter (a0wp,t)
almost disappeared (2.4 ·10−4) after this model change, and there was no seasonal variation
in the random walk, despite an anticipated seasonal pattern yet uncovered in the model
formulation. To address this artefact from the estimation procedure and allow regular
updating of a0

pw|t, the diffusion for the random walk parameter was fixed to 0.05, which
is comparable to the diffusion of the water column diffusion parameter. Following this
modification the strongest relationship to the random walk parameter is still with water
column nitrogen (Figure 5H), however, it is also evident that the random walk parameter
was related to global radiation (Figure 5I). As the intention is to build a model that is well
suited for simulation, it is necessary to include a seasonal input, but also cross correlation
between Xw and GR might influence the results seen in Figure 5G-I. Therefore global
radiation is included, acknowledging that the relationship between a0

pw|t and GR is clearly

not linear, the simple light saturation function given in Eq. (22) is chosen.
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4.2.4. Model 4: Including global radiation

Based on the reasoning above f4(·) is chosen as

f4(Xtk ,ut) =
GrtXp,t

(kgr +Grt)(kw +Xw,t)
. (29)

Again all parameters except for the correlation coefficient are clearly significant (Table 1).
The phytoplankton diffusion (σp) and primary production observation noise (s2pp) did not
decrease (Table 1), but the improvements of AIC and BIC is about 20 (Table 2).

The primary production parameter is again modelled as a random walk with fixed diffu-
sion parameter equal 0.05. There is no strong correlation between the states and the input
(Figure 5J-L), and the distinctive seasonal pattern observed in Figure 4A-C has disappeared
(Figure 4D). As the developed model is a potential candidate for simulation studies, we con-
tinue to Step 3 in the model development procedure to validate if the model is suitable for
simulation.

4.3. Simulations
The modelling so far has focused on formulation hypothesis based on pure random walk pri-
mary production parameter, likelihood testing and information criteria. Likelihood testing
is equivalent to optimisation of the ability to predict the observation at time tk+1 given the
information up to time tk. The time between water quality samples vary from 4 to 94 days
with an average sampling time ranging from 11.5 to 16 days for the different water quality
variables. For simulation studies the objective of the model is to predict perhaps one or
several years ahead. Further the aim of a simulation is not only to predict one value (like
the mean) of future states, but to predict the distribution of the future states. This imply
that we need to get both the drift and the diffusion term right. The simulation studies
in the following is based on the Euler scheme (Kloeden and Platen (1999)) applied to the
transformed process with ∆t = 1

96d. The time step ∆t is decreased until the simulation
plots (like Figure 6) do not change.

4.3.1. Simulation of Model 4

Model 4 was simulated over the entire span of the dataset, with the initial state drawn from
a Gaussian distribution around the smoothened state, having a mean and variance equal
to that of the smoothen state (in the transformed domain). The simulated water column
nitrogen seems to be well captured (Figure 6A and D), while phytoplankton (Figure 6G
and J) and primary production (not shown, but similar to the phytoplankton plot) perform
poorly, with the simulated distribution drifting away from the observations. To address this
problem, we reconsider the developed phytoplankton equation

dXp,t =

(

awp

Xw,tGrt
(kw +Xw,t)(kgr +Grt)

−Qt − apw

)

Xp,tdt

+ σpXp,t(r12dw1,t + dw2,t). (30)

The stationary distribution (considering Xw, Qt and GRt as constants) for this equation is
either 0 or ∞ depending on the factor in front of Xp,tdt. Such a behaviour is clearly not
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intervals around the median of the distribution, while gray dots are the measurements.

desirable and is the main course of the drift seen in Figure 6G and J. In order to solve this
problem we add a constant (ap0 > 0) to the equation to get

dXp,t =ap0dt+

(

awp

Xw,tGrt
(kw +Xw,t)(kgr +Grt)

−Qt − apw

)

Xp,tdt

+ σpXp,t(r12dw1,t + dw2,t). (31)

The argumentation for the constant ap0 is clearly mathematical convenience, but we can
think of ap0 as an inoculum. Also if the constant is small it will not influence (local)
phytoplankton growth greatly.
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4.4. Model 5: Including a constant inoculum

The model with a constant inoculum factor is also well determined (Table 1) and the
likelihood improved by 59.9 on 1 degree of freedom (Model 4 is a proper subset of Model
5), which is significant with p << 0.0001. To evaluate if ap0 is small, imagine that no
water column nitrogen is present and that Qt = 0, then the mean value (of the stationary
distribution) of the phytoplankton would be

ap0

apw
= 6.8 · 10−3 g

m3 (Iacus (2008); Forman

and Sørensen (2008)), which is low compared to the observed values (about 0.7% of the
observed phytoplankton nitrogen is below this value). The nitrogen saturation kw constant
is not significant in t-test (Table 1), and it is low compared to the observed values of water
column nitrogen, it is however comparable to the saturation constant used by Fasham et al.
(1990) (0.007 gNm−3) and the reported saturation constant by Fisher et al. (1992) (0.028
gNm−3). Furthermore if kw is removed the model would be able to produce undesirable
negative values of water column nitrogen, and kw is therefore kept in the model.

An important test of Models 5 is its behaviour in a simulation study. The annual
variations of the phytoplankton state is captured much better (Figure 6H and K), however
the model does predict very large mean values for phytoplankton (Figure 6H) and primary
production (not shown, but similar to the phytoplankton plot), and the confidence intervals
are also large, with values exceeding the largest observations.

4.4.1. Model 6: Analysis of diffusion

These wide confidence intervals obtained with Model 5 could be due to the diffusion scaling
too fast with the state. In order to analyse this question, we replace the diffusion term, in
Eq. (11), with

[

σwX
γw

w,t 0
0 σpX

γp

p,t

] [

1 r12
r12 1

]

. (32)

The coefficients γw and γp are commonly chosen as either 1 (Øksendal (2003)) or 0.5 (Kle-
baner (2005)) in biological models. For γi equal to 0.5 the linear one-dimensional process
is known as Feller diffusion in biology (Klebaner (2005)) or CIR model in finance (Iacus
(2008)). It has a positive probability of reaching zero if the loading parameter is small
compared to the diffusion parameter (Iacus (2008)), while for γi larger than 1 the system
does not fulfil the linear growth condition, and existence and uniqueness is not guaranteed
(Øksendal (2003)).

The Lamperti transform presented in Eq. (12) needs to be reformulated as

Zi,t =
X1−γi

i,t

σi(1− γi)
⇒ Xi,t = [σi(1− γi)Zi,t]

1

1−γi . (33)

For γi ∈ (0, 1) the state-space of Zi,t is equal to the state-space of Xi,t ([0,∞)). The
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transformed system is given by

dZw,t =
X−γw

w,t

σw

(

Nex,tQt −
(

Qt + awl + a0wpf4(Xt,ut)
)

Xw,t + apwXp,t

)

dt

−
1

2
σwγwX

γw−1
w,t (1 + r212)dt+ dw1 + r12dw2 (34)

dZp,t =
X

−γp

p,t

σp

(

ap0 + a0wpf4(Xt,ut)Xw,t − (apw +Qt)Xp,t

)

dt

−
1

2
σpγpX

γp−1
p,t (1 + r212)dt+ r12dw1 + dw2. (35)

Rearranging and using the short hand notation, θ̃w,0 = (Nex,tQt + apwXp,t)/σw, θ̃w,1 =

(Qt + awl + a0wpf4(Xt,ut))/σw, and θ̃w,2 = 1
2σwγw(1+ r212) gives the following SDE for the

water column nitrogen

dZw,t =X
−γw

w,t

(

θ̃w,0 − θ̃w,1Xw,t − θ̃w,2X
2γw−1
w,t

)

dt+ dw1 + r12dw2. (36)

Now consider the limit where Xw,t → 0, for γw 6= 1
2 we get

lim
Xw→0

dZw,t = lim
Xw→0

{

−θ̃w,2X
γw−1
w,t = −∞ a.s. γw < 1

2

θ̃w,0X
−γw

w,t = +∞ a.s. γw > 1
2 .

(37)

For γw = 1
2 the limit splits into three cases

lim
Xw→0

dZw,t = lim
Xw→0











(θ̃w,0 − θ̃w,2)X
− 1

2

w,t = −∞ a.s. θ̃w,0 < θ̃w,2

dw1 + r12dw2 θ̃w,0 = θ̃w,2

(θ̃w,0 − θ̃w,2)X
− 1

2

w,t = +∞ a.s. θ̃w,0 > θ̃w,2.

(38)

These considerations show that the transformed system is not consistent with the topology
of the state-space when γw < 1

2 , and for γw = 1
2 the transformed system is only consistent

with the topology of the state-space for a restricted set of parameter values (θ̃w,0 > θ̃w,2).
The reasons for these inconsistencies is that the transformation is only valid inside the state-
space and not on the boundary. The parameter set should reflect that P (Xw,t = 0) = 0.
Clearly the simplest way to ensure this is by restricting γw to the interval (0.5, 1). Similar
arguments apply to the phytoplankton equation, and γw is therefore also restricted to the
interval (0.5, 1).

The parameters were estimated with γi ∈ (0.5, 1). Most parameters are well determined
(Table 1) (with the exception of the correlation coefficient and nitrogen saturation), and
further the diffusion coefficient of Xp and Xw have comparable sizes. The simulation study
(Figure 6 third column) shows that the confidence intervals for phytoplankton nitrogen
has narrowed (Figure 6I and L) and that phytoplankton mean is now close to the median
of the distribution. The consequence is that more extreme values are not included in the
distribution of the simulations.

4.5. Quantification of simulation performance
The purpose of simulation studies like the ones presented in Figure 6 is to predict the
distribution of the future state of the system. One way of quantifying this analysis is to
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compare simulation quantiles with observed data. The visual inspection of the simulation
results (Figure 6) is clearly relevant and led to the introduction of ap0 and γi. However, to
quantify the model skills we need to represent the performance by a single number, in the
same way as the likelihood values represent the overall quality of short-term predictions.

A good model candidate should 1) be reliable meaning the quantiles of the estimated
distribution should hold the right proportion of the data (often referred to as reliability)
and 2) have narrow confidence regions (often referred to as sharpness (Gneiting and Raftery
(2007)). In addition, the ability to adapt to different uncertainty regimes is sometimes con-
sidered (often referred to as resolution). Though misleading results may emerge if sharpness
and resolution are considered only and reliability is not taken into account (Pinson et al.
(2007); Møller et al. (2008)). A proper skill score for quantiles should therefore combine
these objectives into one single number. One such skill score is (Gneiting and Raftery
(2007))

S(r1, ..rk;x) =

k
∑

i=1

(αisi(ri) + (si(x)− si(ri))I{x ≤ ri}) + h(x), (39)

where x is the observation, ri is the quantile predicted by the simulation, si is non-decreasing
and h is arbitrary. Here we choose si(x) = x and h(x) = −

∑

i αix, and in this case Eq. (39)
is the sum of loss functions for quantile regression as defined by Koenker and Basset (1978).
Model 6 perform consistently better than Model 4 and 5 when comparing the skill score for
all observations (Table 3). Based on these statistics Model 6 is the better choice of model.

To evaluate individual confidence intervals the (negatively oriented) interval score (Gneit-
ing and Raftery (2007)) is calculated by

Sint
α (l, u;x) = (u− l) +

2

α
(l − x)I{x < l}+

2

α
(x− u)I{x > u}, (40)

where [l, u] is the confidence interval and α is the nominal coverage. As noted by Gneiting
and Raftery (2007) this is intuitively appealing, since sharpness is formulated directly (u−l)
and values outside the interval are penalised. Model 6 performs consistently better for
total nitrogen and primary production (Figure 7), Model 5 performs slightly better for
high confidence levels of phytoplankton (above 0.6) while Model 6 performs better for
confidence levels below 0.6. The combined conclusion is therefore that Model 6 is the
preferred candidate for the final model.

The better performance of Model 5 compared to Model 6, in terms of nominal coverage
of phytoplankton nitrogen (Figure 7), reflects that extreme values are not well described
in Model 6. This is not surprising as neither Model 6 nor any of the other models contain
any mechanisms to specifically capture these extreme events. To capture these extremes,
information on e.g. oxygen depletion would be needed, but oxygen depletion events are
governed by local weather conditions such as wind, which cannot be predicted long time
ahead. It is therefore not realistic to predict extremes with a simulation model that runs
for several of years.

4.6. Model reductions
Model 6 is the candidate for the final model formulation, although the results in Table 1
suggest two potential model reductions. Nitrogen half saturation (kw) is not significant,
however, as discussed above, it is not reasonable to remove this parameter since it will lead
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Table 3. Quantile skill scores and quantile skill score differences for
the simulation models. Skill scores are calculated in the log-domain,
and index refer to observations.

STN DSTN Sp DSp Spp DSpp

Model 4 -8.96 -214.32 -187.96
Model 5 -8.98 -0.02 -24.00 190.32 -30.34 157.62
Model 6 -8.39 0.60 -23.65 0.35 -28.29 2.05
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Fig. 7. Relative interval quantile skill score for simulation models 5 and 6; α refer to nominal cov-
erage. Values above 1 indicate better performance of Model 6 while values below 1 indicate better
performance of Model 5.

to a positive probability of reaching negative values for water column nitrogen. It should
be noted that an attempt to estimate parameters in a Model 6 with kw = 0 failed, because
the optimiser tested values that led to negative values of water column nitrogen.

The correlation coefficient (r12) is also not significant, and consequently this parameter
is removed and the model re-estimated, yielding a log-likelihood decrease of 0.023, which
corresponds to a p-value of 0.83. Furthermore, the relative (to the standard deviation)
changes of the parameters are all less than 0.1. Thus the final model consists of the syatem
equation

d

[

Xw,t

Xp,t

]

=





Nex,tQt − (Qt + awl)Xw,t −
a0

wpXw,tXp,tGRt

(kw+Xw,t)(kgr+GRt)
+ apwXp,t

ap0 +
a0

wpXw,tXp,tGRt

(kw+Xw,t)(kgr+GRt)
− (apw +Qt)Xp,t



 dt

+

[

σwX
γw

w,t 0
0 σpX

γp

p,t

]

dwt, (41)

and the observation equation




log(YTN,k)
log(Yp,k)
log(Ypp,k)



 =





log(Xw,k +Xp,tk)
log(Xp,k)
log(awpXw,k)



+





eTN,k

ep,k
epp,k



 . (42)

4.7. Discussion of the biological model
The model development presented here is based primarily on mathematical and statisti-
cal reasoning, while the biological/physical reasoning is mostly used in the initial model
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formulation. The model development based on visual inspection of the (smooth) path of
the primary production parameter is, however, consistent with existing knowledge from
N-P models. Identified model extensions based on the random walk hidden states are all
significant, as are the extensions based on considerations of the simulated or stationary
distribution.

Clearly, the presented model is very simple and represents a coarse simplification of
the complex ecosystem, and a higher dimensional state-space would be needed to give a
realistic description owing to all the known processes. The simplicity is a deliberate choice,
since the focus is placed on demonstrating the model development and the significant role
of the diffusion term. The structural identification and the considerations of the simulated
distributions are, however, not limited to simple systems and the identification methodology
can principally be applied directly to models with a higher number of state variables as well.
Further, the probabilistic formulation of state transitions also lump weak interactions that
may otherwise be formulated in a complicated ODE model, often with a large degree of
uncertainty. The SDE setting provides a direct quantification of the uncertainty, which
cannot be estimated directly from ODE models. The model development does not include
explicit knowledge about the parameters, and prior knowledge is only included implicitly
in the hypothesis formulations.

The key importance of the diffusion term is illustrated by the large improvements in
the likelihood criteria, when introducing the exponents γi, stressing the importance of the
specific parametric formulation of diffusion term. One of the main results of the model
development is the large reductions of the confidence band width of the simulated densi-
ties obtained by introducing γi. Actually, a hypothesis of γi =

1
2 cannot be rejected using

unconditional t-tests for each of the exponents, and the results therefore support the hy-
pothesis that the diffusion is of the Feller type. It is, however, argued that estimating γi
in the open interval

(

1
2 , 1

)

is robust from a estimation point of view, but just as important
is that strictly positive states included in the drift term are maintained in the stochastic
formulation when γi >

1
2 .

The model focuses mainly on primary production, whereas loss processes are lumped
together. The partitioning of the loss term in the model could be carried out following
the same methodology as presented for the production process, provided that explanatory
information or observations needed to describe the different terms (e.g. zooplankton and
filter feeder biomass) is available. This will probably result in a more variable set of loss
functions as opposed to the constant loss rate (awl) used in the present context. Another
issue is that the model does not distinguish between labile and non-labile nitrogen for phyto-
plankton growth, and a better partitioning of the nitrogen pool may lead to further model
improvements. All these potential improvements imply additional states in the system,
which makes both estimation and inferences more complicated, and therefore render such
model extensions less appropriate for introducing the methodology. More importantly, a
more detailed process description requires additional information that is not available in
standard monitoring programmes.

The light half-saturation parameter is well determined by the procedure. Comparing
the half-saturation parameter (Figure 8) with the range of data shows that there are obser-
vations on both side of the constant. In contrast, the half-saturation parameter for water
column nitrogen is far below any observed value, implying that phytoplankton growth is
not severely limited by nitrogen. Skive Fjord is a eutrophic ecosystem with large land-based
inputs of nitrogen, and ambient concentrations of dissolved inorganic nitrogen are mostly
above the levels reported to limit phytoplankton growth in experiments (e.g. Fisher et al.
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Fig. 8. Nonlinear multiplicative effects for nitrogen and light saturation. Red lines show the estimated
relationships, and the histogram show the distributions of water column nitrogen (left) and observed
global radiation (right).

(1992)).

5. Conclusion

The methodology presented in this study is based on likelihood estimation for identify-
ing probabilistic models of physical/biological phenomena, formulated as a system of Itô
stochastic differential equations partially observed in discrete time through a set of observa-
tion equations. By formulating parameters of the stochastic differential equation model as
pure random walk hidden (unobserved) states, it is demonstrated how embedded structural
information can be extracted by analysis of the smoothen state estimates. The selection of
which parameter should be analysed to improve the model is based on considerations about
the diffusion matrix and the observation covariance matrix. Large values of either or both
of these terms for a particular state propose model deficiencies in the corresponding state
and therefore possible model improvements. The diffusion of the random walk hidden state
parameter should preferably be estimated to describe the dynamics of the parameter. It
is demonstrated that even when the random walk parameter is estimated (close) to zero,
it is still possible to identify model improvements by fixing the diffusion to a value that
allowed regular and sufficient updating. In the presented example this is fixed such that
the diffusion is comparable to the diffusion of other states of the system.

All suggested model improvements was tested by means of information criteria or likeli-
hood ratio testing. The first part of the identification, based on random walk state estima-
tion for identification and information criteria for selection, resulted in large reductions of
the diffusion and the observation variance, implying that the deterministic skeleton dictated
by the drift term, provides a better description of the model as the complexity of the model
increase. The validation step is based on simulation studies, which also pinpointed model
deficiencies and suggested further model extensions for both drift and diffusion. These
model extensions lead to significant improvements of the likelihood, but more importantly
to a stable simulation model and reductions of the simulation variance while improving the
simulation performance (in terms of quantile skill score).

The diffusion term is shown to be important for both short-term (likelihood estimation)
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and long-term (simulations) dynamics of the system. In the present context we are limited
by the ability to find solutions for the Lamperti transform and an explicit inverse transfor-
mation. This excludes a large class of diffusion processes, where mass balance or partial
mass balance is taken into account in the formulation of the diffusion matrix. The model
development did however demonstrate that the correlation coefficient is not an important
parameter in the model.

The simplicity of the model example implies that most parameters are well determined in
a statistical sense. For more complicated models (or models with less information provided
by the observations) it might be appropriate to include prior knowledge in the optimisation.
The statistical software used here, does include the possibility of including prior knowledge
in the estimation through the Maximum A Posterior (MAP) procedure described in Kris-
tensen et al. (2004a). Such prior knowledge could be obtained from literature studies or
from site specific experiments.
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