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Descriptive and predictive evaluation of high
resolution Markov chain precipitation models

H. J. D. Sgrup™*, H. Madsen® and K. Arnbjerg-Nielsen®

A time series of tipping bucket recordings of very high temporal and volumetric resolution precipitation is modelled
using Markov chain models. Both first and second-order Markov models as well as seasonal and diurnal models are
investigated and evaluated using likelihood based techniques. The first-order Markov model seems to capture most
of the properties of precipitation, but inclusion of seasonal and diurnal variation improves the model. Including a
second-order Markov Chain component does improve the descriptive capabilities of the model, but is very expensive
in its parameter use. Continuous modelling of the Markov process proved attractive because of a marked decrease
in the number of parameters. Inclusion of seasonality into the continuous Markov chain model proved difficult. Monte
Carlo simulations with the models show that it is very difficult for all the model formulations to reproduce the time
series on event level. Extreme events with short (10 min), medium (60 min) and long (12 h) durations were investigated
because of their importance in urban hydrology. Both the descriptive likelihood based statistics and the predictive
Monte Carlo simulation based statistics are valuable and necessary tools when evaluating model fit and performance.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Modelling of precipitation is of major interest on many scales, ranging from large-scale temporal-spatial climate driven models
(Gelati et al., 2010; Mehrotra and Sharma, 2010) over local models modelling daily precipitation amounts (Ailliot et al., 2009,
Burton et al., 2010) down to temporal extremely high resolution models modelling observed point precipitation (Srikantan and
McMahon, 1983; Arnbjerg-Nielsen et al., 1998; Thyregod et al., 1999; Gaume et al., 2007). In an urban hydrological context, these
high-resolution models are of key interest, given that the typical hydrological response times in urban drainage systems is 10—-60 min.
Different kinds of models are used to model rainfall with a high temporal resolution. Weather generators using random pulses to
simulate rainfall intensity time series are popular, but lack the short-term memory at very small time steps (Wilby et al., 2003; Onof
and Arnbjerg-Nielsen, 2009; Burton et al., 2010). Markov chain models more closely related to classic time series analysis have been
used for fine-scale time series generation and forecasting (Srikantan and McMahon, 1983; Arnbjerg-Nielsen et al., 1998; Thyregod
et al., 1998). Furthermore, statistical models have been widely used to model only the precipitation extremes (Madsen et al.,
2002; Koutsoyiannis, 2004a, 2004b; Betrd er al., 2008).

Markov chain models are very flexible and can also be used to generate models of time series covariates (Cox and Miller, 1965).
Furthermore, Markov chain models are very efficient for simulating time series using Monte Carlo algorithms (Negra et al., 2008),
but can also be used for downscaling of precipitation from climate models (Gelati et al., 2010), possibly down to scales useful in
urban drainage.

At the minute scale, pulse models come short because of the previously mentioned lack of short-term memory at this scale. This is a
logical consequence of the structure of the models and is not solved easily by scaling (Olsson and Burlando, 2002; Marani, 2003). The
Markov chain model seems an attractive approach due to its apparent ability to model the chronology of intensities within rainfall events
at the minute scale (Thyregod et al., 1998). Furthermore, Arnbjerg-Nielsen ez al. (1998) show that instead of modelling the occurrence of
tipping bucket tips as a poison process, which is a classical representation of the Markov chain model, waiting times between recordings
of equal volume of rainfall from tipping buckets can be modelled based on previous states of waiting times in a Markov Chain model.
Waiting times between equal volumes is a surrogate measure of the mean intensity while the volume was collected. In this study, a stochastic
description of rainfall waiting times is done by Markov chain models, and descriptive and predictive qualities of these models are evaluated.
Within the Markovian framework, also seasonal and diurnal differences are investigated. The first-order Markov chain model can be
described as (Arnbjerg-Nielsen et al., 1998; Thyregod et al., 1998):
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where:

w; is the waiting time in minutes between tips at index i.
Wi_1, Wi_2, ..., Wo. are the waiting times at index i — 1, i — 2 up until the first one at index O.
0 is the parameter set defining the model.

meaning that the probability density function for w at index i is only dependent on the last value of w at index i — 1. Likewise, the second-
order Markov chain model is described by also including w; _, on the right hand side of Equation (1).

The evaluation of the descriptive capability of the models is carried out by computing likelihood statistics. However, these statistics tend to
focus too much on reducing the number of parameters based on average properties of rainfall at the cost of obtaining a good description of
the precipitation extremes. The extremes are of key interest in urban hydrology. Therefore, the models should also be evaluated on the basis
of their ability to reconstruct the extreme properties of precipitation. This will be done by performing Markov chain Monte Carlo (MCMC)
simulations with the identified models and comparing extreme statistics between the observed and simulated series.

The aim of this paper is to create parsimonious Markov chain models for precipitation at the minute scale and assess whether likelihood based
techniques can be a fast way of identifying which models perform better than others when long synthetic time series are generated with the models.

2. DATA

The data used in the modelling is 12 years of tipping bucket data from a Danish measuring station in Kolding, Denmark (Mikkelsen et al., 1998).
The tipping bucket rain gauge records precipitation at a volumetric resolution of 0.2 mm, and the raw data set is given as total depth for those
minutes where tips have been recorded. The data set is quality assured to avoid erroneous data following the approach by Fankhauser (1998)
and Jgrgensen et al. (1998) and subsequently converted to waiting times between consecutive tips. The conversion implies that the time series
is transformed from equal time steps to equal volumetric steps. Because the data set does not contain any information below 1 min in the temporal
domain, minutes where several tips have been recorded will be denoted as 1/(the number of tips within the minute). Data contained no recording
of more than 10 tips/min after quality assurance. Thus, data consists of discrete realizations: {1/(10 tips/min), 1/(9 tips/min), ... ,1/(2 tips/min),
1 tip/min, 2 min between tips, . .. , kmin between tips}, as indicated in Figure 1. The primary advantage of this treatment of data is the creation
of data that contain all the information in the observed data but avoid zero recordings. The waiting times span six orders of magnitude, from rain-
fall intensities in the order of 2 mm/min (10 tips/min) up to dry spells of weeks (>10000 min between tips).

3. METHODS

3.1. Markov chain models

Markov chain models are characterized by describing the state of observation at a given time as a function of the previous state only
(Equation (1)). Both Arnbjerg-Nielsen ez al. (1998) and Thyregod et al. (1998) have used this approach to model precipitation. Arnbjerg-
Nielsen et al. (1998) constructed discrete Markov chain models with good descriptive and predictive statistics, but uses a vast amount of
parameters by allowing almost all realizations to represent an individual discrete state. These models describe the precipitation process very well,
but tend to be over parameterized. More coarse models have been developed with fever parameters, still with a good fit. Thyregod et al. (1998), on
the other hand, used the Markov chain models to simulate precipitation events. The models satisfactorily reproduced the chronology of intensities
observed for both convective and frontal precipitation events.

To obtain a more parsimonious model for an entire rain series, a substantial reduction of the number of parameters is needed. Initial tests
have shown that after a simple Box—Cox transformation, the numerical values of the states can be approximated by a normal distribution.
Another feature of the Box—Cox transformation is that the per definition positive waiting times follow an unlimited normal distribution in
the transformed space. A standard Box—Cox transformation is applied as follows (Box and Cox, 1964; Katz, 1999):

v
(2) _ w —1
w = 2
7 @)
where:
w is the original waiting time.
w* is the Box—Cox transformed waiting times.
/ is the transformation parameter.
The obtained maximum likelihood estimate for the transformation parameter is J. = —0.1755. This is used to transform the data set.

Figure 2 shows data before and after transformation. The fit is not perfect, but the discrepancies are primarily for the very long waiting times
(Figure 2). This means that the models using the transformed data will be poorer at describing the dry periods between the rain events in
comparisons with the chronology of waiting times within events.

As a consequence of the transformation, it may be possible to construct models where each state is characterized by a specific normal
distribution. Normal distributions have advantages over other distributions. They have attractive statistical properties. The distribution
parameters are independent of each other, providing the opportunity to model them independently (Box and Cox, 1965). The model is of
the type defined in Equation (1), but operates in a transformed space where the waiting times at index i of the time series is described by
the state at index i — 1, S(i — 1). It can be expressed as follows:

______________________________________________________________________________________________________________________________________________|
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Figure 1. Visualization of data. (Top) The whole time series measured as minutes between tips. (Middle) The red subsection of the top time series. (Bottom)
The blue subsection of the middle figure — A typical course of a single rain event. The dashed line represents waiting times of 1 h, which is used as the shift
between dry and wet weathers (Mikkelsen et al., 1998)
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Figure 2. (a) Quantile—quantile plots of the original and (b) Box—Cox transformed data sets against a normal distribution
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where:

wi is the Box—Cox transformed waiting time at index i.

S(i — 1) is the state at index i — 1.

ug,’s and g, ’s are the means and standard deviations characterising the normal distributions defining the states of a given model,
k=1,2,...,n, with n being the number of states.

¢s,;’s are standard normally distributed random quantities defining the error in the model at the given state and index.

The states can be defined by the waiting times themselves and/or by external explanatory variables such as season or time of day. Initially,
three different model state dependence will be investigated; a simple first order Markov model (named Markov(1)), a seasonal model
depending only on the month (named Seasonal), and a diurnal model depending on the hour of the day (named Diurnal). The Seasonal
and Diurnal models are not Markov chain models but provide useful information that is later combined with the Markov properties.

To create the Markov(1l) model, the states are set up to include a larger proportion of the waiting times the longer waiting times
considered. This gives a very fine description of the precipitation for the very short waiting times and an increasingly coarser model for
longer waiting times. The aggregated states are believed to be scaled fine enough to capture the precipitation processes sufficiently well.
Furthermore, this aggregation secures that there is sufficient data in each state.

The states definitions for the three initial discrete models are given by the following:

1
N for w;_1 < 61
Slz for WiT1 = g
S
Ss for Wi = E
Se for w1 =1
SMarkov(1) = 5;4 for Wi;1 -9 (4a)

S1s for 10<w;_1<14

Soa for 55<w;_1<59
Sos for 60<w,_ 1<89

Sog for 150<w;_1<179
S29 for w;i_1=>180

- S for month = January

SSeasonaI = : : (4b)
S1,  for month = December

B S:  for hour of the day = 00

Sbiurnal = : : (4c)

S,4  for hour of the day = 23

with 29 states for the Markov(1) model, one for each defined bin of waiting times; 12 states for the Seasonal model, one for each month;
and 24 states for the Diurnal model, one for each hour of the day. According to Equation (3), each of the states uses two parameters for
determining the probability distribution function for the next waiting time, and each model needs one extra parameter to account for the
Box—Cox transformation (Equation (2)). Several models are developed from the original ones. For the Markov chain model, two different
alternative model formulations are examined; a second-order Markov model that includes information on the two previous waiting times,
and a continuous model where the normal distribution parameters are modelled across states using continuous functions. The seasonal
and diurnal models are regarded as having a cyclic nature and the means (x) and standard deviations (o) are modelled across states using
a three-parameter single harmonic sine function, g,(S) defined as follows:

max

2:(S) = @y + by sin (cx + 2”) (5)

where:

x is the original parameter that should vary according to the sine function (e.g. u or o).
a, b, and c are the three parameters used to fit the harmonic variation.

S is the numeric representation of the state (e.g. one for January).

S,nax 18 the number of states (e.g. 12 for the seasonal variation over months).
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This approach reduces the number of parameters used to describe the variation and introduces a smooth evolution in the modelled
variables over the considered states.

3.2. Statistics for comparison of models

Likelihood based statistics are used to determine the descriptive nature of the models and simulations in combination with extreme statistics
to determine the predictive strength.

3.2.1. Likelihood based statistics

The models are compared directly using likelihood based statistics. The likelihood is an objective measure of the models fit to data, and is, as
such, ideal for comparison of nested models including different variables but describing the same data set (Madsen and Thyregod, 2011). All
simple models are tested against their more complex counterparts using the likelihood ratio test:

(6)

maximum likelihood of model with r +p parameters 3
-2 lo : — . ~1°(r)
maximum likelihood of sub model with p parameters

This test specifically tests whether a change in the number of parameters (from r + p to p) can be justified given the change in likelihood
using a y? distribution with r degrees of freedom (Madsen and Thyregod, 2011).

The Bayesian information criteria (BIC) is calculated for each model for comparison. The BIC is chosen because it favours simple models
with few parameters. The BIC is calculated as (Yang, 2005):

7
BIC = — 2:1(6]x) + log(np)-np !

where:

l(01x) is the maximum log-likelihood.
np is the number of parameters in the model.

3.2.2.  Monte Carlo simulations boundary conditions

Monte Carlo simulations are carried out for all models. The Box—Cox transformation results in good model representation of the
waiting times in the chosen interval (Figure 2), but the unbound normal distributions can result in unrealistic extremes, and boundary
conditions are introduced in the simulations to avoid this. The boundary and initial conditions are set equal for all simulations with all
models. The very long waiting times are removed as a physically based constrain because dry periods of more than 2 weeks are
unexpected at the modelled location. Finally, a modification of the boundary condition regarding the very short waiting times is
included; these are important when modelling the short-time extremes, but the data basis is very limited, and it is impossible to formulate a
reasonably model. The constrains are expected to result in the models to slightly overestimate the mean annual precipitation (MAP), due to
the lack of very long waiting times, and to underestimate the short time peaks slightly due to the lack of descriptive data in this area. The boundary
conditions are specified as follows:

* All models cover the range of waiting times from 10s to 2 weeks; that is w € 6%20 160J with the waiting times expressed in minutes.
e Ifvalues outside this range are produced, they are corrected to the boundary value, and the stafe is determined with the boundary value as input.
* The only exception to the previously stated rules is for the very extreme precipitation represented by values between six and 10s
(we [11_0 ; %] ), where the value is kept, but the state is determined as if the value were w = Z.
All models are initiated with the first value of the observed time series, except the second-order Markov model, which takes the two
first values as initial conditions. For each model, 100 time series are simulated, each with 200 000 waiting times. This corresponds to approximately
50 years in the time domain if the MAP is satisfactorily reproduced.

3.2.3.  Extreme statistics on simulations

A number of statistics are extracted from the simulated time series to evaluate the model performance. These are as follows:

* The MAP. This parameter is evaluated to ensure that the model produce the right amount of precipitation on the large (annual) scale.

* Seasonality of extreme events. The top 300 extreme events are extracted for events with 10 min, 60 min and 12 h durations and compared
with the observed seasonality of extreme events.

* Magnitude of extreme events. The magnitude of the extreme events with 10 min, 60 min and 12h durations are compared with the
observed ones, and to an extreme value distribution fitted to the observations. The comparison is based on the estimated at-site confidence
limits for a partial duration series model of the extremes as introduced by Madsen et al. (2002, 2009).

Environmetrics 2012; 23: 623-635 Copyright © 2012 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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The return period of the extreme events is calculated using the California plotting formula with the length of the time series defining the
return period of the most extreme event (Chow et al., 1988) and the threshold values identifying extreme values for the Generalized
Pareto distribution (GPD) for different event durations are adopted from Madsen et al. (2009). A GPD is fitted to the observations
(Madsen et al., 2002), and from this, confidence intervals of the observations are estimated.

4. IDENTIFICATION OF MODEL COMPONENTS

Initially, three different model components are investigated. The short-term memory is investigated using the simple first-order Markov chain
model named Markov(1). Seasonality is investigated by the creation of a monthly model named Seasonal, and diurnal variation by an hourly
model named Diurnal. Equations (4a)—(4c) defines the states of the three models. All the models are compared with a single state model
named Base. This is a model consisting of only one normal distribution fitted to all data after the Box—Cox transformation.

Figure 3 shows the marginal distribution of four states of the Markov(1) model. The distributions seem reasonable. Table 1 lists the
log-likelihood of all models, together with the calculated likelihood ratio test conclusions. The results indicate that extensions with all
three types of models lead to a significantly better description than using just the Base model. The Markov(1) model is seen to improve
the value of the log-likelihood most, but also, the seasonal variation seem to be important. The diurnal variation seems to have only
limited influence compared with the other two models. Only the Markov and seasonal properties will be studied further.

4.1. Optimization of the model components

As the Markov process seems to be the most important, this is the one first optimized. Two different alternative formulations are investigated:
(i) a second-order Markov model (denoted Markov(2)) and (ii) a first-order Markov model with continuous state space (denoted Markov
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Figure 3. The quantile—quantile plots for four states of the Markov(1) model. Box—Cox transformed values
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Table 1. The likelihood based test statistics of the models

Model Number of parameters  Log-likelihood Likelihood ratio test conclusions BIC BIC rank
Base 3 —70551 — 141103 8
Markov(1) 59 —56993 The models with the most 114090 2
Markov(2) 1683 —55168 parameters are always favoured 115765 4
Seasonal 25 —68 021 136077 5
Seasonal(sine) 7 —68172 136350 6
Diurnal 49 —70265 140613 7
Markov(continuous) 10 —57136 114282 3
Markov(seasonal, continuous) 28 —56 060 112161 1
Likelihood ratio test probabilities of bold italic models are calculated against the bold model.

For italic models, it is calculated against the preceding bold italic model.

(continuous)) to emphasize that the precipitation process can be described continuously even though precipitation at very short time steps by
nature is discrete (Ignaccolo and de Michele, 2011). The continuous state space model should solve some of the problems that arise from
splitting data into discrete states. These two models have inverse impacts on the number of parameters in the model. The Markov(2) model
will increase the number of parameters dramatically whereas the Markov(continuous) will reduce it markedly. The Markov(2) model states
are modified from the Markov(1) states as follows:

1 1
5:1 for Wi 1= g and w;_,< g
_ ' ' 1
SMarkov(Z) = S29 forw;_7=180 and w; ,< 6 (8)
1
S.30 for wi 1= g and Wiy = %
Sga for w;_1=>180 and w;i_,=>180

equal t0 Syarkov(2) = SMarkov(1) X Sarkov(1)» &iVing 841 states in total.

The Markov(continuous) model uses a two compartment model where the normal distribution parameters are described as continuous
functions for waiting times below 60 min (subscript r for rain) and as constants above (subscript n for no rain). This is a simple way of
estimating the embedded process that leads to the pulses of 0.2 mm rainfall that is observed by the rain gauge. The Markov(continuous)
is defined as a variant of Equation (3) as:

P

WE = uwis1) + o(wio1)g (9a)
where:
oy Ja, +b, log(wiq) 4+ ¢y, IOQ(WH)2 ,0<wi_; <60
uwi-1) { L Wi_1=60 (96)
2 3 .
(wir) = ag, + bg, log(wi—1) + ¢;, log(wi—1)” + d,, log(w;—1)” ,0 < wi—1 < 60 (90)
g, , Wi—1=60

The model described by Equations (9a)—(9c) uses a mixture of transformed and untransformed waiting times; this was done to keep close
connection to the physical properties of precipitation and the distinction between within and between events.

Table 1 shows the main results of estimating the proposed model extensions. The Markov(2) model improves the log-likelihood markedly,
and the likelihood ratio test show that it is in fact significantly better than the Markov(1) model. However, it uses so many parameters that is
not considered useful in this context, and no further work will be done with the Markov(2) model. The Markov(continuous) and Markov(1)
models are not nested models and cannot be compared directly using the likelihood ratio test. The BICs in Table 1 show that the Markov(1)
model is the best model. However, the Markov(continuous) model only decreases the log-likelihood slightly, even though it decreases the
number of parameters used markedly. From the results in Table 1, it is concluded that the Markov(continuous) model hold the largest
potential for further development given a need for few parameters; this is the approach that will be used to describe the Markovian nature
in the following combined model.

Environmetrics 2012; 23: 623-635 Copyright © 2012 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/environmetrics
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The approach of modelling parameters across states is also used in the optimization of the seasonal model. Here, a sine function, see
Equation (5), is used to estimate parameters that vary over the course of the year. Table 1 shows the likelihoods of the seasonal models.
The decrease in log-likelihood is not big even though the likelihood ratio test concludes that the simple seasonal model cannot be
used. Despite this result, the simplified seasonality formulation will be used because it drastically decreases the number of
parameters in a model.

A model is created using elements from the Markov(continuous) and Seasonal(sine) models. The model, Markov(seasonal, continuous),
is created by sine varying the parameters from the Markov(continuous) model. This gives the following model formulation for Markov
(seasonal, continuous):

wi = uwia) + o(wir)e (10a)
where:
[ 8q, (m) + gb,, (m)log(wi1) + g, (m)log(wi_1)* ,0 < wiy < 60
,Lt(w171) - { g;t” (m) ,W,‘,‘|260 “Ob)
) — {8 00) 0, (m)10G(wi1) + g, (m)log(wi-1)? + g, (m)log(wi-1)” .0 < wioy < 60 (100
8o, (m) » Wiz1260

The g(m) functions mean that the parameter vary with month according to Equations (5).

Table 1 shows the log-likelihood, the likelihood ratio test conclusion and the BIC of the Markov(seasonal, continuous) model in
comparison with the Markov(continuous) model. Inclusion of seasonality significantly improves the model and leads to a marked
increase in the log-likelihood. Most interesting is that the Markov(seasonal, continuous) model with 28 parameters better describes
data than the Markov(1) model with 59 parameters. This further strengthens our belief in the usefulness of the continuous description

of the Markov process.
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Figure 4. Quantile-quantile plots for the (a) Markov(1), (b) Markov(2), (c) Seasonal, (d) Seasonal(sine), (¢) Markov(continuous) and (f) Markov(seasonal,
continuous) models. Box—Cox transformed values
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5. MONTE CARLO SIMULATIONS

5.1. Marginal distribution

Figure 4 shows the quantile—quantile plots for the six models chosen for simulation. Generally, they all show the same trend. The points are
rather scattered for the low waiting times, with the two continuous models systematically producing too low values (Figure 4(e) and (f)). All
models show a consistent shape for the high waiting times where the upper simulation bound is clearly marked and the spread is very narrow.
Again, the continuous models show systematic discrepancy from the observations (see Figure 4(e) and (f)). The clear marking of the upper
simulation bound suggests that all models could have problems with simulating dry weather; resulting in a too short mean waiting time
between events.

5.2. Mean annual precipitation

The MAP of the individual simulations is presented in Figure 5. The Markov(1) and Markov(2) models both produce less precipitation than
observed on an annual basis indicating that the mean waiting time simulated by these models is somewhat higher than the observed.

The Seasonal model vastly overestimates the MAP. This indicates that for some months, the model simulates very intense precipita-
tion, and also that the model does not capture the full dynamics of the time series. The Seasonal(sine) model, on the other hand,
reproduces the MAP fairly well, only overestimating it a bit; somehow, the dampening effect of using sine curves to represent annual
variation result in much more realistic waiting times overall. The Markov(continuous) and Markov(seasonal, continuous) models
both overestimate the MAP with approximately 70% which is in line with the discrepancies observed in the quantile-quantile plots
on Figure 4(e) and (f).

5.3. Seasonality

The seasonal distribution of the extreme events for event lengths of 10 min, 60 min and 12 h are shown on Figure 6(a), (b) and (c), respectively.
Figure 6(a) and (b) show that for the short events, there is a clear seasonality and only the three seasonal models (Seasonal, Seasonal(sine)
and Markov(Seasonal, continuous)) seem to reproduce it (with varying precision though). For the 10-min events, the seasonal variation is
very pronounced and quite well reproduced by the seasonal models. For the 60-min events, where the seasonality is less pronounced, the
seasonal models seem to retain the strong seasonality, and as a consequence, they all overestimate the seasonality. For the 12-h event, no real
seasonality is observed (although there is a slight indication of more events in the fall and less in spring), but the seasonal models all have a
clear seasonal variation similar to the one for the shorter events. This indicates that the extreme 10-min events in general are the peaks of the
extreme 60-min events, which again are the peaks of the extreme 12-h events for the seasonal models. This is not what is expected from the
observations, and it means the models are not able to reproduce the long lasting low intensity rains of the fall well.

From Figures 4-6, it seems the Seasonal(sine) model is the best model; however, this model has no mechanism to order the chronology of
waiting times and is thus expected to perform poorly on event level.
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Figure 5. The mean annual precipitation (MAP) produced by the simulations with the six models compared to the observed MAP of the recorded precipitation
time series
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5.4. Extreme events statistics

The simulations result in 100 realizations of the individual models and confidence intervals are constructed from these, see Figure 7 for
examples. Figure 7(a)—(c) show the observations, the fitted GPD and its 95% confidence interval along with the mean of the Markov
(seasonal, continuous) model and its 95% confidence interval for 10 min, 60 min and 12h extreme events, respectively. The other
models have similar sized confidence intervals (not shown in this paper). Figure 7 illustrates that not only do the models result in
uncertainty but also the observations themselves are to be regarded just as uncertain in the sense that the true return period of the most
extreme events are effectively unknown.

Figure 8(a)—(c) show the mean of the simulations with the six models along with the observations and the GPD fitted to the observations
for 10 min, 60 min and 12 h extreme events, respectively. The extreme statistics in Figure 8(a) illustrates the difficulty of reproducing the
observed time series on event level. Furthermore, difficulties in reproducing realistic dry weather periods are reflected in the assigned
return periods for the simulated events, adding even further, unquantifiable, uncertainty to the figures. All the models seem to have
problems capturing the shape of the curve resulting in a flattened curve. For the continuous model, this result in too high intensities for
the short return periods and too low intensities for the long return period. The Markov(1) and Markov(2) models fairly well reproduce
the short return periods but again underestimates the long ones. The seasonal models simply lack clustering of the very high intensity
waiting times, and thus vastly underestimate this statistic. For event durations of 60 min, Figure 8(b) clearly shows that the Markov(1)
and Markov(2) models very well capture the pattern, whereas the continuous models, as discussed earlier, include the same events as
for the extreme 10-min events and thus seriously overestimates the statistics. Again, the seasonal models lack clustering of the waiting
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Figure 6. Seasonal variation of occurrence of the (300 most) extreme events. (a) 10 min extreme events; (b) 60 min extreme events; and (c) 12 h extreme events
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Figure 7. The uncertainty associated with both the Monte Carlo simulations and the observations, both 95% confidence intervals. Examples (a)—(c) showing
only the Markov(seasonal, continuous) model and the observations; other models not shown

times and underestimate the intensities. The 12 hours total depth shown on Figure 8(c) again substantiates the assumption that it is the
same event that produces the extreme statistics for all the event durations. Furthermore, the Markov(1) and Markov(2) models seem to
have problems reproducing the long duration extreme events, a problem also recognized by Arnbjerg-Nielsen er al. (1998). The Seasonal
model is actually the best performing model with respect to this statistic, but the wrong seasonality of the model (Figure 6(c)), leads to the
conclusion that it is a result without physical relations to the observed time series.

6. CONCLUSIONS

Stochastic modelling of precipitation is a useful tool. The Markov chain models used in this paper provide a fairly simple way of describing
changing intensity as an inherent property of the precipitation itself. To do this, the use of waiting times, instead of intensities, is a valuable
tool. Seasonality is also shown to have importance when describing this process, but the ideal incorporation into the model is not identified.
On the event level, the simulations show that even the models with the best likelihood scores have problems in describing the events. Both
descriptive and predictive statistics will have to be used when evaluation of such models are to be carried out; the descriptive statistics is a
quick tool to select among very similar models, but for most time series, where chronology matters, the descriptive statistics derived from the
simulations are essential in evaluating the model performance.
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