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a b s t r a c t

In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential

Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state

estimates provide a systematic framework for data driven model improvements, using random walk

hidden states. Bacterial growth is limited by the available substrate and the inclusion of diffusion must

obey this natural restriction. By inclusion of a modified logistic diffusion term it is possible to introduce

a diffusion term flexible enough to capture both the growth phase and the stationary phase, while

concentration is restricted to the natural state space (substrate and bacteria non-negative). The case

considered is the growth of Salmonella and Enterococcus in a rich media. It is found that a hidden state

is necessary to capture the lag phase of growth, and that a flexible logistic diffusion term is needed to

capture the random behaviour of the growth model. Further, it is concluded that the Monod effect is not

needed to capture the dynamics of bacterial growth in the data presented.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic Differential Equations (SDEs) have shown great
potential for modelling in various areas of application, e.g.
Tornøe et al. (2004), Pedersen et al. (2008) and Madsen et al.
(1987). In general such models are based on formulations in
which a constant diffusion term is added to a non-linear drift
term, which in turn is derived from known theory. In many cases
this is a fruitful approach, but for systems with a restricted state
space, this might not be the best approach, since additive
diffusion will allow the system to leave the physically feasible
state space, referred to as the natural state space. A main theme of
this paper is to provide a proper description of diffusion terms in
restricted bacterial growth models.

It is well known that SDEs give more correct state estimation
because filtering techniques allow the information given by
observations to be incorporated into the state estimate. In addi-
tion to improved state estimation, an SDE approach provides a
framework for identification of model deficiencies (Kristensen
et al., 2004b). In this paper the method is applied to bacterial
growth data and allows us to identify and argue for possible
model improvements.

Parameter estimation in SDEs is a difficult task and approx-
imate methods have to be applied for complex systems. In this
study we apply a statistical method based on the Extended
ll rights reserved.
Kalman Filter (EKF) (Jazwinski, 1970), implemented in the statis-
tical software CTSM1 (Kristensen and Madsen, 2003; Kristensen
et al., 2004a). CTSM has proven powerful in many applications
(e.g. Philipsen et al., 2010); it is, however, not possible to include
state dependent diffusion in CTSM. One way to overcome this
restriction is by including some input in the description of the
diffusion term (e.g. state observations Philipsen et al., 2010).
A more correct description can be obtained by applying Lamperti
type transformations (e.g. Iacus, 2008) to obtain a system with
state independent diffusion from a system with state dependent
diffusion. Under the restriction that Lamperti transformations are
available, different parametric representations of the diffusion
term are derived and evaluated with respect to a case study of
bacterial growth. In particular a novel modified logistic diffusion
term will be introduced and evaluated.

The case study in this paper is a bacterial growth model, and an
adequate description of bacterial growth kinetics, i.e. the relation-
ship between bacterial growth and substrate concentration, is
important for many applications in microbiology, for instance for
fermentation processes (Kompala et al., 1984; Patnaik, 1999). The
Monod equation was the first suggestion for a mathematical
description of the growth curve. It has been extensively discussed
since its introduction in 1949 (Monod, 1949). When originally
proposed, it seemed to be a ‘‘convenient and logical’’ (Monod,
1949) choice for a mathematical expression to fit the growth curve.
Several attempts have been made to formulate a mechanistic
1 www2.imm.dtu.dk/~ctsm
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background for the Monod equation (Lobry et al., 1992; Liu, 2006).
Even though the Monod equation is a good description of the
growth on a single substrate, it fails to model growth in rich media
(Bajpai-Dikshit et al., 2003). Therefore several attempts have
been made to find another equation for this growth (Doshi et al.,
1997). According to Kovárová-Kovar and Egli (1998) these studies
can be divided into three methods: (i) extending the Monod
model with additional constants, (ii) developing an empirical or
mechanistic model from kinetic concepts and (iii) describing how
the Monod growth parameters are influenced by physiochemical
factors.

A problem with determining other expressions for the growth
rate has been the lack of high quality reproducible data which
relates the growth rate to the substrate concentration (Kovárová-
Kovar and Egli, 1998). The method proposed here makes it possible
to extract these data from bioscreen measurements, and thus limit
the time and resources used on experiments significantly.

The transition from modelling using Ordinary Differential Equa-
tions (ODEs) to Stochastic Differential Equations (SDEs) paves the
way for many strong statistical tools for model development and
inference (Kristensen et al., 2004a). In this paper a model develop-
ment method based on SDEs (and the applicability of the Lamperti
transform) will be introduced to examine and subsequently describe
the relation between growth rate and substrate concentration. The
use of SDEs enables the separation of measurement noise and
system noise, and this is used in the method. First the SDE frame-
work is introduced, followed by a short presentation of the data.
Then a thorough analysis of the diffusion term is performed to
determine the best way to introduce diffusion into the model. In the
last part we develop the drift term and present a simulation study of
the final model.
2. Methodology

The systematic framework in this study is a continuous-
discrete time stochastic state-space formulation

dXt ¼ f ðXt ,ut ,t,hÞ dtþrðXt ,ut ,t,hÞ dwt , ð1Þ

Yk ¼ hðXk,uk,tk,hÞþek, ð2Þ

where Eq. (1) is the continuous time system equation and Eq. (2)
is the discrete time observation equation. Xt is a vector of state
variables, Yk is a vector of measured output variables at times tk,
ut is a vector of known input variables, ek is an l-dimensional
white noise process with ekAN ð0,Sðuk,tk,hÞÞ, wt is a standard
Wiener process with zero mean and independent Gaussian time
increments, and rðXt ,ut ,t,hÞ is the diffusion coefficient. The first
part of the system equation is called the drift term and the second
part is called the diffusion term. Everywhere in this article the Itô
interpretation of the SDEs is used (see e.g. Øksendal, 2003).
2.1. Estimation

The estimation procedure is a maximum likelihood procedure
in which the EKF is used to evaluate the likelihood function. A full
account is available in Kristensen and Madsen (2003), and we will
not present the details here. We will, however, give a few remarks
on the output from the software and the restrictions of the
procedure.

In addition to the parameter estimates and the parameter
covariance matrix (estimated by the inverse Hessian, e.g. Madsen
(2008)), the implementation allows us to calculate k-step predic-
tions of both the state and the observations, and the smoothened
state (state estimate given all observations).
Of special interest is the one-step prediction. The standardised
residuals for one dimensional observations are given by

rk ¼
Yk�Ŷ k9k�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Syy
k9k�1

q , ð3Þ

where Ŷ k9k�1 is the one-step prediction of the observations and
Syy

k9k�1
is the variance of the one-step prediction. If the model has

captured the mechanistic behaviour of data, then rk is a white
noise process. Furthermore, if the sampling intervals are equidi-
stant, then rk can by analysed using traditional residual analysis,
like the autocorrelation function and the partial autocorrelation
function.

In addition to the improved state estimates, smoothened state
estimates of a modified system can help to identify model defi-
ciencies (Kristensen et al., 2004b). A suspicion that the model is not
sufficient to describe the variation in data can be analysed by
considering smoothened state estimates of an extended state space,
with the system equation

d
Xt

yi
t

" #
¼

f ðXt ,ut ,t,yi
t ,
~hÞ

0

" #
dtþ

rðXt ,ut ,t, ~hÞ 0

0 sy

" #
dwt , ð4Þ

where yi
t is the parameter to be investigated and ~h ¼ h\yi

¼

fy1, . . . ,yi�1,yiþ1, . . . ,yp
g, and p is the dimension of the parameter

space. By plotting the smoothened state estimates of yi
t as a

function of time and possible covariates, model improvements
can be identified.
2.2. Transformation of the state space

As mentioned above it is not possible to include processes with
state dependent diffusion in CTSM (i.e. the SDE models are
restricted to the form rð�Þ ¼ rðut ,t,hÞ). For one dimensional diffu-
sion processes with a state dependent diffusion term it is,
however, always possible to find a transformation of the state
space such that the diffusion is independent of the states (e.g.
Baadsgaard et al., 1997). The transformation is often referred to as
the Lamperti transform (Iacus, 2008)

Zt ¼cðXt ,�Þ ¼

Z
dx

sðx,�Þ

����
x ¼ Xt

, ð5Þ

and by Itô’s lemma (e.g. Øksendal, 2003), Zt will again be an Itô
process, given by Luschgy and Pagés (2006)

dZt ¼ ctðc
�1
ðZt ,�Þ,tÞþ

f ðc�1
ðZt ,�Þ,�Þ

sðc�1
ðZt ,�Þ,�Þ

dt�
1

2
sxðc

�1
ðZt ,�Þ,�Þ

 !
dtþdw,

ð6Þ

where subscript refers to partial differentiation. The transformed
SDE in (6) has state independent diffusion. The practical applic-
ability of the Lamperti transform is limited to cases where we can
find an explicit inverse (c�1

ðZt ,�Þ). The existence of a Lamperti
transform with an explicit inverse is the basis of the presented
analysis.
3. Data

Optical density measurements for the growth of a Salmonella

strain and an Enterococcus strain growing in BHI media are
available for the analysis. For each bacteria culture a 9-fold dilution
as well as the non-diluted strain are measured in duplicates. The
measurements are made for 40 h with a sampling interval of
20 min in a bioscreen (Microbiology Reader Bioscreen C) at 16 1C
under continuous shaking.
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Fig. 1. Untransformed optical density measurements (top row) and log-trans-

formed optical density measurements (bottom row).
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The OD measurements are preliminarily corrected for back-
ground broth measurements and subsequently a correction is
made for the shadow effect for high OD values by the relation
(Philipsen et al., submitted for publication)

ODcorr ¼�
1

b
log 1�

ODmeas

a

� �
: ð7Þ

The constants a and b are found by fitting the relation to results
from an experiment with Salmonella for which the OD for
different concentrations has been measured. It is assumed that
the same parameters can be used for Enterococcus. It should be
stressed that Eq. (7) originates from the physical properties
(shadow effects) of the measurements. The OD measurements
after corrections, ODcorr, are shown in Fig. 1.

The models that are developed in this work are not suited for
modelling the transition to the stationary phase (or the stationary
phase itself). However, the transition is needed in order to be able
to estimate the stoichiometric constant, Z, (see Section 4 below).
It has therefore been decided to include all data-points from the
experiments and the aim is to capture the stationary phase partly
by the diffusion term.

Even if the stationary phase can be partly captured by the
diffusion term, it is evident that the fast variation in the stationary
phase (see Fig. 1) cannot be captured by a standard growth model,
and time varying observation noise will therefore also be included
in the model.

The data set consists of two replications of each condition, and
this is divided into two parts of equal sizes. The first part (the
training set) consists of one of the replications of each of the
conditions, and the second part (the test set) consists of the other
replication of each of the same experimental conditions. The
model development in Sections 4–7 is based on the training set,
while the model results are compared with the test set in Sections
8 and 9.
4. A minimal stochastic growth model

A bacterial growth model should include mechanisms to
ensure that the growth rate is zero when the substrate is depleted
and that substrate and bacteria levels are both positive at all
times. While these restrictions are simple in an ODE setting, it is
more complicated in a SDE setting, hence the diffusion term must
be handled with care. A first general formulation is

d
Bt

St

" #
¼

~mðSt ,Bt ,hÞBt

�Z ~mðSt ,Bt ,hÞBt

" #
dtþ

~sBðSt ,Bt ,hÞ

�Z ~sBðSt ,Bt ,hÞ

" #
dw, ð8Þ

where Z is a stoichiometric conversion from bacteria units to
substrate units, and ~mð�Þ and ~sBð�Þ are functions to be determined.

Now consider Tt ¼ StþZBt . Clearly Tt is constant (dTt¼0) and St

can be expressed as

St ¼ Tt�ZBt ¼ S0þZðB0�BtÞ: ð9Þ

and (8) reduces to the one-dimensional diffusion process

dBt ¼ ~mðSt ,Bt ,yÞBt dtþ ~sBðSt ,Bt ,yÞ dw, ð10Þ

with St given by (9).
St is implemented as standardised substrate such that

Tt ¼ T0 ¼ 1. The simplest model for the drift term that ensures
substrate and bacteria concentration to be above zero at all times
is ~mð�Þ ¼ mStBt , (with m constant). It is tempting to introduce a
diffusion proportional to the state, i.e. ~sB ðSt ,Bt ,yÞ ¼ sBBt , with sB

constant (corresponding to variance proportional to B2
t ). Such a

formulation does not, however, include a mechanism to reduce
the diffusion fast enough as St approaches zero, and will therefore
hold a positive probability of ZBt 4T0 (implying St o0), which is
clearly a violation of the natural constraints for the system.

To include the mass balance in the diffusion term, we consider
a logistic diffusion term (Schurz, 2007), i.e. ~sB is modelled as

~sBðSt ,Bt ,yÞ ¼ sBBat Sbt , ð11Þ

where sB, a and b are real constants. Schurz (2007) analyses a
class of logistic SDEs (including a logistic drift term) and proves
that for aZ1 and bZ1 the logistic SDE will stay within the
boundary defined by the logistic ODE.

In Section 4.1 a minimal model with the desired characteristics
is defined and in Section 6 we define a more flexible diffusion
term, which gives a better representation of data.

4.1. Initial estimation model

Based on the reasoning above, the minimal drift term
( ~mð�Þ ¼ mBtSt) and a logistic diffusion with a¼ b¼ 1 the initial
model is then given by

dBt ¼ mStBt dtþsBStBt dw, ð12Þ

where St ¼ T0�ZBt .
In the following we will extend the model assuming that m is

not constant, but we will use (12) as a starting point for
developing the diffusion term further before we turn to the drift
term. Formulated in terms of Bt Eq. (12) is given by

dBt ¼ mðT0�ZBtÞBt dtþsBðT0�ZBtÞBt dw: ð13Þ

The Lamperti transform is

ZB
t ¼

Z
dx

xðT0�ZxÞ

����
x ¼ Bt

¼
1

T0
log

Bt

T0�ZBt

� �
, ð14Þ

with the inverse

Bt ¼ T0
eZB

t T0

1þZeZB
t T0

, ð15Þ

and the transformed system is given by

dZB
t ¼ mþ 1

2
s2

Bð2ZBt�T0Þ

� �
dtþsB dw: ð16Þ

The system Eq. (16) is intentionally not transformed to unit
diffusion, because we want to be able to control the initial
conditions independently of the parameters (see Section 5).
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The state space of Zt
B is the entire real axis, and for Bt-0 and

ZBt-T0 the drift term in dZt
B is a constant and for finite t, Zt

B is
finite a:s:. We will therefore use the formulation (16) as a starting
point for the model development.
Table 1
Estimation results for models for both g¼ 1 and g part of the estimation,

respectively. The value of the key parameters (g and Z) are marked in bold face

and standard deviations are given in parentheses.

Bacteria g Z DF log (L) AIC BIC

Enterococcus 1 (NA) 0.78 (0.024) 6 694.3 �1377 �1356
5. Estimation issues

As mentioned earlier there are two experiments for each
bacteria, one with high starting concentration and one with low
starting concentration, and two replications of each experiment
(one in the training set and one in the test set). Low starting
concentration is reported to be a 9-fold dilution of the high
starting concentration, this relation is not, however, evident from
the data, and it was decided to estimate the dilution.

The estimation of dilution is performed by starting the process
at time t¼�1 min, with B�1 close to zero (in practice ZB

�1 ¼�10)
and letting the estimation procedure estimate the starting con-
centration by integrating a modified growth model

dBt ¼ ðmStBtþC1uh
t þC2ul

tÞ dtþsBStBt dw, ð17Þ

where ul
t ¼ 1 for to0 and low starting concentration and zero

otherwise, and uh
t ¼ 1 for to0 and high starting concentration

and zero otherwise. In the following we will suppress these
inputs, but note that they will be present throughout the analysis.

The formulation (17) as well as the further development
presented below do not contain any mechanisms to capture the
deterministic dynamics of the stationary phase, and the diffusion
does not contain explicit information about the transition. It is
therefore expected that the observation noise in the stationary
phase will be larger than the observation noise in the growth
phase. The observation equation is therefore formulated as

ODcorr,k ¼ Btk
þek, ð18Þ

where ek �Nð0,s2
k Þ. As discussed above and in Section 3, the

models we consider here are not well suited for modelling
the stationary phase, this is the case for the SDE-models as well
as the deterministic model considered as a benchmark model.
One choice could be to cut off data in the stationary phase. Here
we have chosen to down-weight data in the stationary phase by
selecting s2

k as

s2
k ¼ s2

0þs2
1 max ð0,tk�tks

Þ: ð19Þ

with ks ¼ arg maxk ðODcorr,kÞ. This formulation ensures that the
influence of observations in the stationary phase is small while
still maintaining the important transition to the stationary phase
in the observations.
Enterococcus 26.6 (12) 0.93 (0.0059) 7 720.8 �1428 �1403

Salmonella 1 (NA) 0.87 (0.049) 6 687.9 �1364 �1343

Salmonella 79.9 (11) 1.09 (0.0013) 7 711.6 �1409 �1385
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Fig. 2. Smoothened states of the bacteria concentration measured in substrate

units, for Model 0 for both g¼ 1 and g estimated. Lines are smoothened values,

while dots are measured values.
6. Model development

The shape of the diffusion term determines the random
behaviour of the bacterial growth process. The drift terms of the
models that will be analysed here are well suited for describing
the growth part of the process, while the transition to the
stationary phase is not included. The stationary phase should
therefore be captured by the diffusion term. However, the diffu-
sion term introduced above takes its maximum at ZBt ¼

1
2, while

the transition to the stationary phase should be close to 1, which
is where the growth stops. It is therefore reasonable to assume that
the maximum of the diffusion is at a value in the interval ð12,1Þ.

In order to introduce this kind of random behaviour, we
propose a modified logistic diffusion term for modelling random
bacterial diffusion

~sBðBt ,St ,yÞ ¼ sBBtðT0�ðZBtÞ
g
Þ, ð20Þ
where g is a positive constant. The Lamperti transform for this
diffusion is

ZB
t ¼

Z
dx

xðT0�ðZxÞgÞ

����
x ¼ Bt

¼
1

gT0
log

ðZBÞg

T0�ðZBÞg

� �
, ð21Þ

with the inverse

Bt ¼
T0

Z
eT0ZB

t

ð1þegT0ZB
t Þ

1=g : ð22Þ

The state space of Zt
B is the real line and the Itô process for Zt

B is
given by

dZB
t ¼ m T0�ZBt

T0�ðZBtÞ
g�

1

2
s2

BðT0�ðgþ1ÞðZBtÞ
g
Þ

� �
dtþsB dwt , ð23Þ

where Bt is given by the inverse transformation (22).
Applying L’Hôpital’s rule (with T0 ¼ 1) we get

lim
ZB-1

dZB
t ¼

m
g
�
g
2
s2

B

� �
dtþsB dwt , ð24Þ

implying that ZB
t is finite a:s: for finite t.

The introduction of g improved the likelihood significantly
(Table 1) for both Enterococcus and Salmonella. The stoichio-
metric constant, Z, also changes significantly (Table 1). The
consequence of the small values of Z in the initial model setup
(12), compared to the values of Z estimated by the modified
logistic diffusion (20) is that transition to the stationary phase is
estimated to be close to the maximum of the diffusion term (i.e. 1

2

when g¼ 1, Fig. 2).
Based on the likelihood results presented in Table 1 and the

conventional knowledge that bacteria will consume the available
substrate, the model analysis in the following includes g, and
we refer to the model (17) with the diffusion (20) as Model 0.
The large values of g imply that the diffusion is close to state
proportional diffusion, except very close to the upper bound for
bacteria concentration, where the diffusion is killed off very
rapidly. However, the key difference is that the presented model
guarantees that St 40, whereas state proportional (or constant)
diffusion will allow for St o0.
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6.1. Random walk identification of the growth process

By formulating m as a pure random walk hidden state adapted
to data it is possible to analyse the growth rate and then suggest
further model improvements. The model formulation in the
transformed domain is

d
ZB

t

mt

" #
¼

mt
T0�ZBt

T0�ðZBt Þ
g�

1
2s

2
BðT0�ðgþ1ÞZBtÞ

0

" #
dtþ

sB 0

0 sm

" #
dw,

ð25Þ

where Bt is given by the inverse transformation (22).
The smoothened state (state estimate given all observations)

of mt can now be analysed to get an idea of the possible model
improvements. The shape of the mt-curves varies substantially
depending on starting concentrations and type of bacteria (Fig. 3).
It is also evident that simple functions of time or substrate (or
bacteria) will not be sufficient to capture these shapes. The
growth parameter is linearly dependent on the substrate in the
growth phase (but with different slopes in the different situa-
tions), implying a second order interaction in the growth rate of
bacteria. Furthermore, the autocorrelation function of the resi-
duals from Model 0 (Fig. 4) has many significant values. Such
behaviour suggests that an additional state could improve
the model.

Following Bajpai-Dikshit et al. (2003) a possible extension of
Model 0 is

mt ¼ vEt , ð26Þ

with

dEt

dt
¼

vþb
kþSt

St�Et
d logðBtÞ

dt
�bEt , ð27Þ
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where v is the maximum bacterial growth rate, and b is the first-
order degradation of proteins inside the cell. See Bajpai-Dikshit
et al. (2003) for more specific details of the formulation.

To keep derivations simple and preserve flexibility of the
enzyme diffusion, we consider only the deterministic part of dBt

in the derivations of dEt. For special cases of the enzyme diffusion,
a full stochastic inclusion of d logðBtÞ is possible, however (see
Appendix A). The deterministic formulation of dEt is

dEt ¼ ððvþbÞlt�E2
t vlt�bEtÞ dt, ð28Þ

with lt ¼ St=kþSt . Following the modelling procedure in Bajpai-
Dikshit et al. (2003) the bacteria growth rate should also follow
the Monod term given in lt . Adding a diffusion term to dEt gives
the full SDE description

d
Bt

Et

" #
¼

EtvltBt

ðvþbÞlt�E2
t vlt�bEt

" #
dtþ

sBBtðT0�ðZBtÞ
g
Þ 0

0 ~sEðEtÞ

" #
dw:

ð29Þ

Eq. (28) describes the relative (to the maximum) level of
enzymes and Et should therefore be restricted to the interval
½0;1�. Even though this is theoretically the case, there is no break
down of the dynamics of the equation, even if Et exceeds 1 (but v

cannot be interpreted as maximum growth rate). However the
dynamics do break down if Et is allowed to be below 0. The
remainder of the paper presents results for different choices of lt

and ~sEðEtÞ.
7. Estimation results

The model presented in Eq. (29) is estimated for different
specifications of lt and ~sEðEtÞ. The combinations are lt equals St or
including Monod growth and enzyme diffusion proportional to
the enzyme level ( ~sEðEtÞ ¼ sEEt) or enzyme diffusion which
ensures enzyme levels to stay within the interval ð0;1Þ
( ~sEðEtÞ ¼ sEEtð1�EtÞ). The likelihood results are summarised in
Table 2, while parameter estimates for selected models are given
in Table 3 (Model D refers to a deterministic ODE model defined
in Eq. (31)).

Likelihood ratio testing cannot be applied, since the models are
not nested, and the evaluation is therefore based on AIC and BIC
values. The inclusion of an enzyme state without the Monod term
and with state proportional enzyme diffusion (Model 1) gives
highly significant improvements in AIC and BIC for both Enter-
ococcus and Salmonella and all parameters (not shown) are
significant (except enzyme diffusion for Salmonella) for both
data sets.

The further inclusion of the Monod term (Model 2) does not
give further improvement of AIC and BIC for any of the two
datasets (Table 2). The parameters v and k are both estimated to
very high values (not shown), and there is evidence that the
Monod term should not be included.
0 0 2 4 6 8 10
Lag

B0 high

0 2 4 6 8 10
Lag

B0 low

Salmonella

ls in the growth phase of Model 0 (for the training set).



Table 3
Estimation results for Models 0, 5, and D. Standard deviations are given in

parenthesis and bold face numbers indicate significant estimates (on a 5%

confidence level).

Bacteria Enterococcus Salmonella

Model 0 Model 5 Model D Model 0 Model 5 Model D

Initialisation

Bhigh
0

0.051 0.055 0.099 0.033 0.036 0.044

(0.002) (0.006) (0.012) (0.002) (0.002) (0.001)

Blow
0

0.007 0.011 0.014 0.002 0.005 0.004

(0.006) (0.001) (0.002) (0.0004) (0.001) (0.001)

Drift parameters
m 0.222 0.226

(0.010) (0.012)

Z 0.934 0.921 1.143 1.091 1.092 1.146
(0.006) (0.064) (0.010) (0.001) (0.001) (0.040)

b 0.204 1.206 0.164 0.774

(0.077) (1.558) (0.054) (1.200)

v 0.366 0.183 0.302 0.416
(0.026) (0.019) (0.020) (0.108)

k 0.056 0.568

(0.031) (0.358)

Diffusion parameters
sB 0.049 0.029 0.061 0.051

(0.003) (0.003) (0.004) (0.003)

g 26.61 35.891 79.858 98.677
(11.844) (47.934) (10.904) (8.4056)

logðsE) 0.086 0.293

(0.191) (0.218)

Variance of observation noise

logðs2
0Þ
�11.996 �12.138 �5.368 �11.95 �12.254 �6.834

(0.238) (0.208) (0.084) (0.200) (0.202) (0.124)

logðs2
1Þ
�12.588 �11.262 �21.505 �9.514 �9.354 �6.203

(1.251) (0.318) (401.95) (0.378) (0.304) (0.289)

Table 2

Likelihood table for Enterococcus, DAIC
0 and DBIC

0 refer to the difference in AIC and

BIC compared to Model 0.

Bacteria lt sEð�Þ log (L) DF DAIC
0 DBIC

0

Enterococcus
Model 1 St sEEt 766 10 �86.6 �79.6

Model 2 St

kþSt

sEEt 766 11 �84.6 �74.2

Model 3 St sEEtð1�EtÞ 757 10 �68.5 �61.5

Model 4 St

kþSt

sEEtð1�EtÞ 770 11 �93.1 �82.7

Model 5a St sEEtð1�EtÞ 770 10 �94.6 �87.6

Salmonella
Model 1 St sEEt 727 10 �27.5 �20.5

Model 2 St

kþSt

sEEt 728 11 �27.1 �16.7

Model 3 St sEEtð1�EtÞ 729 10 �30.3 �23.4

Model 4 St

kþSt

sEEtð1�EtÞ 733 11 �36.4 �26.0

Model 5a St sEEtð1�EtÞ 733 10 �38.4 �31.5

a The modifications in Model 5 are defined in Eq. (30).
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Removing the Monod term and including a logistic diffusion
term for the Enzyme level (Model 3) gives improvements in both
AIC and BIC for Salmonella, while AIC and BIC increase for
Enterococcus (Table 2). The parameter estimate of sE also changes
significantly (not shown), reflecting that Et is well determined by
the deterministic equation when Et is close to 0 or 1, while it is
dominated by diffusion for Et away from the boundary.

The further inclusion of the Monod term (Model 4) gives
improvements of AIC and BIC for both Enterococcus and Salmonella
(Table 2). The parameters k, v, g and logðsEÞ are not significant (not
shown). The fact that logðsEÞ is insignificant does not imply that
sE ¼ 0, but rather that sE ¼ 1, which is not a reasonable alternative
hypothesis. The alternative hypothesis for g is g¼ 1, which has been
tested with a resulting large increase in AIC and BIC for both
Salmonella and Enterococcus. The large and insignificant values of
k and v imply that bþvCv and the consequence is a decoupling of
v and b in the enzyme equation, while there is no real Monod term
in the equation for bacteria levels. This implies that a simplified drift
term not containing b in the first term might be appropriate, i.e. an
enzyme process is given by

dEt ¼ ðvlt�E2
t vlt�bEtÞ dtþsEEtð1�EtÞ dwE, ð30Þ

with lt ¼ St and the bacteria process (29). This model is referred to
as Model 5 in the estimation Table 3. AIC and BIC improved for both
Enterococcus and Salmonella, and on the basis of the information
criteria, the best choice is Model 5.

Rather than providing the estimates of ðC1,C2Þ, the resulting
starting concentrations are given in Table 3, the standard devia-
tions of the starting concentrations are calculated from the
variance of Ci and the state variance. In general parameters with
the same impact across models ðZ,g,sB,s2

i Þ are relatively constant
across models. This implies that estimated starting concentra-
tion (C1 and C2), onset of the transition to the stationary phase
(Z), random behaviour of the stationary phase (g and sB) and
observation noise (s2

i ) are constant across models. While the
(random) bacteria drift term, determined by b, v, k and sE, varies
across models.

For reference we use the deterministic version of the most
complex model (Model 4), i.e.

d
Bt

Et

" #
¼

EtvltBt

ðvþbÞlt�E2
t vlt�bEt

" #
dt ð31Þ

with

lt ¼
St

kþSt
¼

To�ZBt

kþTo�ZBt
ð32Þ

and the observation equation given by (18) and (19). This is
included in Table 3. It is worth noting that v and k are also not
significant in the deterministic model. The stochometric constant,
Z, also changes between models, and the consequence of this
change can be seen in Figs. 6 and 7.
8. Cross validation

The models fitted in the previous sections are compared with
data from the test set. The performance measures we use in the
current section are the autocorrelation function of the one-step
predictions (Fig. 5) and the residual sum of squares for each of the
models (Table 4).

Comparing autocorrelation functions of the residuals shows
large improvements for Enterococcus when comparing Model
0 and the more complex model (Fig. 5), while the improvements
between Models 1 and 5 are small (even though evident). These
improvements are not evident for Salmonella, one reason might
be that the assumption of constant variance of the standardised
residuals does not apply. For high starting concentrations the
variance increases with time, while the variance decreases for low
starting concentrations.

As suggested by the likelihood results, the differences between
Models 4 (not shown) and 5 are not visible in an autocorrelation
plot. The difference between ODE modelling and SDE modelling is
clear from Fig. 5. While the autocorrelation in the residuals for the
stochastic models is weak, it is very strong in the deterministic
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Fig. 5. Standardised residuals from Models 0, 1, and 5 (top row). Bottom rows show autocorrelation functions and partial autocorrelation functions for residuals of each of

the models.

Table 4
Square root of residual sum of squares, in the original domian and in the log

domain (numbers in parentheses) for the test set and each model, best performing

model in each row is marked in bold face.

Model 0 1 2 3 4 5 D

Enterococcus
B0 Low 0.232 0.209 0.209 0.203 0.203 0.203 0.830

(0.382) (0.341) (0.328) (0.345) (0.326) (0.325) (2.803)

B0 High 0.164 0.129 0.132 0.133 0.132 0.130 1.149

(2.033) (2.174) (2.117) (2.275) (2.197) (2.194) (4.429)

Total 0.284 0.246 0.247 0.243 0.242 0.241 1.418

(2.069) (2.201) (2.143) (2.301) (2.221) (2.218) (5.241)

Salmonella
SB0 Low 0.325 0.303 0.301 0.289 0.284 0.284 1.383

(0.741) (0.599) (0.601) (0.587) (0.577) (0.577) 2.766

SB0 High 0.191 0.177 0.175 0.161 0.157 0.157 0.784

(4.962) (5.105) (5.024) (4.909) (5.342) (5.342) (6.730)

Total 0.377 0.351 0.349 0.331 0.325 0.325 1.590

(5.017) (5.140) (5.060) (4.944) (5.373) (5.373) (7.276)
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model, reflecting that the ODE models are not able to adapt to
local information given by data.

The models are compared by the one-step residual sum of
squares on the original scale and on log-scale in Table 4, with the
residuals given by

ri ¼ODcorr,k�B̂tk9tk�1
ð33Þ

rlog
i ¼ logðODcorr,kÞ�logðB̂tk9tk�1

Þ: ð34Þ

Comparing residual sums of squares (Table 4) gives essentially
the same conclusion as comparing the likelihoods of the training
sets, even though the differences between models are small. The
best performing model on the original scale is still Model 5 for
both Enterococcus and Salmonella. On the log-scale the conclu-
sion is not clear cut, but it is also on a completely different scale
than where the optimisation was performed. The differences
between ODE and SDE models are very large on both scales, this
is not surprising since the residuals are calculated locally, and
local and global SDE residuals are very different, while local and
global ODE residuals are equal. The conclusion from Table 4 is
therefore that the local dynamics of the data are much better
described by an SDE model than the ODE model. The global
dynamics are not considered quantitatively, but the next section
considers the global dynamics by simulation studies.
9. Simulation study

The purpose of this section is to analyse the distributional
behaviour of the best model from Sections 7 and 8 (Model 5). The
optimisation in Section 7 is based on the maximum likelihood
estimation, which corresponds to one-step predictions (in this
case 20 minutes), and therefore a comparison between data and
simulated distribution will give information on our ability to
predict the distribution of a future experiment. Simulations in this
section are performed with an Euler scheme (Kloden and Platen,
1999) on the Lamperti-transformed process.

Since the scope of this section is a discussion of the distribu-
tional properties of the models, and not model selection, we will
use only visual inspection. It should be noted that quantitative
methods for comparing the distributional properties of models
like quantile skill scores exist (e.g. Gneiting and Raftery, 2007).

Since the observation noise is small compared to the diffusion
of the models, the smoothened state and data will be close and
rather than comparing data and estimated distribution, we have
chosen to compare the smoothened state and the distribution. A
further advantage of this approach is that the smoothened state
exists for both bacteria and enzyme concentration.

The unconditional distributions are compared with the smooth-
ened states and the deterministic solution in Figs. 6 and 7. The mode
of the unconditional distribution and the smoothened state is
quite different for Enterococcus data (Fig. 6), while the deterministic
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solution fits the first part of the growth phase quite well. It is,
however, clear that there are many observations above the max-
imum for high starting concentrations, which correspond to nega-
tive values of the substrate. This problem is not present in the
stochastic models. For the bacteria levels (based on Salmonella data)
the smoothened state and the mode of the unconditional distribu-
tion differ substantially for high starting concentrations, while the
performance is better for low starting concentrations (Fig. 7,
top row).

The behaviours of unconditional distributions are clearly not
satisfactory and indicate that the model description is not fully
adequate. Obviously one feature that is missing is the ability to
describe the transition to the stationary phase. Data show a small
decline in bacteria level after the maximum has been reached,
while the model can only predict positive average growth rates.
The consequence is that the expected value of bacteria levels from
the model will converge to 1 (measure in substrate units). This is
seen as the state, where all the substrate has been converted to
bacteria acting as an effectively absorbing state.

For the smoothened enzyme levels, we see a very fast increase
from zero to values close to one and then a rapid decline to values
close to zero when the maximum bacteria levels are reached
(Figs. 6 and 7, bottom row). The smoothened state is close to the
mode of the unconditional distribution.
10. Discussion

This paper presents an analysis of two sets of bacteria growth
data in an SDE setting; traditionally such data are analysed in a
deterministic setting. SDE models are rather data-intensive and
require data sets with high sampling frequency, such as the data
sets presented in the present work. This is clearly a limitation
regarding data sets where measurements are taken manually
with low sampling frequency. However we believe that automatic
measurement techniques similar to the optical density measure-
ments presented here will become more widely used and there-
fore produce more high-resolution data sets, well suited for SDE
based models.

The presented SDE formulation includes a logistic diffusion
term and we argue that this inclusion is the most simple diffusion
term that obeys the natural constraints of the system. By introdu-
cing the power g, the shape of the diffusion function can be
controlled. The large estimated values of g indicate that the
diffusion is proportional to the state, but state-proportional diffu-
sion is not reasonable since such models can produce negative
substrate concentrations. The formulation of the diffusion term is
based on empirical reasoning and not mechanistic understanding
of the cell division process. This is a reasonable approach since the
deterministic model is also a lumped model.

Inclusion of a random walk growth rate indicates how the
model could be improved by the inclusion of an additional state.
The need for an extra state is supported by the analysis of the
autocorrelation of the standardised residuals from a simple model
with growth rate proportional to the available substrate. The
resulting model, which includes an enzyme catalysing growth, is
analysed with different enzyme diffusion terms. This analysis
stresses that the formulation of enzyme diffusion is important for
the conclusions we are able to draw from the analysis. The
analysis does not support Monod growth, but rather a decoupling
of parameters. In general the analysis emphasises the importance
of proper inclusion of the diffusion term.

The setup analysed here does not include bacteria diffusion in
the enzyme process. Such an approach gives a simpler and more
flexible (regarding Lamperti transforms) setup, and it should be
noted that the inclusion of bacteria diffusion in the enzyme
process has been tested (with enzyme diffusion proportional to
enzyme concentration). As this gives similar results, it was
decided to include the simpler setup only, but the derivation of
the system equation of the Lamperti transform is given in
Appendix A.

Comparing the smoothened state (equivalent to data) and
estimated densities show that the models are not very well suited
for simulation studies and that further model development might
be appropriate. The models lack a mechanistic description of the
transitions to the stationary phase, and one possibility would be
to exclude some of the data after this transition from the analysis.
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In this case, however, we would be faced with the problem of
deciding a proper truncation point. Another possibility is the
inclusion of a mortality parameter, which seems reasonable from
the data, but since knowledge of the mechanistic behaviour in the
stationary phase is not available, this is not a trivial task. This
drawback is shared with the deterministic model, although the
deterministic model did capture the growth phase better than the
densities of the stochastic models, but the transition to the
stationary phase is not very well captured by the deterministic
model either.

Furthermore, it has been considered to include more para-
meters in the random walk analysis to obtain data-driven hypoth-
eses on the time development of the parameters. As the main
scope of this article is proper introduction of the diffusion term, we
have chosen to leave these analyses for future studies.
Appendix A. Including bacteria diffusion in the enzyme
process

The SDE extension of enzyme level is given by

dEt ¼ ðvþbÞlt dt�Et d logðBtÞ�bEt dtþ ~sEðt,otÞ dw2 ð35Þ

in (28) bacteria levels are only included by the deterministic
formulation, but by Itôs’ lemma we can also include bacteria
diffusion.

By Itôs’ lemma we obtain

d logðBtÞ ¼ ðEvlt�
1
2ðT0�ZBtÞ

2
Þ dtþsBðT0�ðZBÞgÞ dw1 ð36Þ

inserting in (35) gives

dEt ¼ ððvþbÞlt�bEtÞ dt�EtðEtvlt�
1
2ðT0�ðZBtÞ

g
Þ
2
Þ dt

þEtsBðT0�ZBtÞ dw1þ ~sEðt,otÞ dw2 ð37Þ

dEt ¼ ððvþb�vE2
t Þlt�Etðb�1

2ðT0�ðZBtÞ
g
Þ
2
ÞÞ dt

�sBEtðT0�ðZBtÞ
g
Þ dw1þ ~sEðt,otÞ dw2 ð38Þ

Now choose the transformation

Z2
t ¼ logðBtÞþ logðEtÞ ð39Þ

then

dZ2
t ¼

dBt

Bt
þ

dEt

Et
�

1

2

ðdBtÞ
2

B2
t

þ
ðdEtÞ

2

E2
t

 !
ð40Þ

dZ2
t ¼ Etvlt�

1

2
s2

BðT0�ðZBtÞ
g
Þ
2

� �
dtþsBðT0�ðZBtÞ

g
Þ dw1

þ
vþb

Et
�vEt

� �
lt�bþ

1

2
s2

BðT0�ðZBtÞ
g
Þ
2

� �
dt

�sBðT0�ðZBtÞ
g
Þ dw1þ

~sEðt,otÞ

Et
dw2

�
1

2
s2

BðT0�ðZBtÞ
g
Þ
2
þ
~s2

Eðt,otÞ

E2
t

 !
dt ð41Þ

dZ2
t ¼

vþb
Et

lt�b�
1

2
s2

BðT0�ðZBtÞ
g
Þ
2
þ
~s2

Eðt,otÞ

E2
t

 ! !
dt

þ
~sEðt,otÞ

Et
dw2: ð42Þ

If ~sEðt,otÞ is chosen as proportional to Et then dZ2 has constant
diffusion and estimation is available through CTSM. Now, we have
already seen that a better approach is to choose ~sEðt,otÞ as the
logistic diffusion. Unfortunately the Lamperti transform with an
explicit inverse cannot be derived in this case. It is however
possible for ~sEðt,otÞ ¼ Etf ðz2Þ where f is a function that is simple
enough to allow an explicit inverse of the Lamperti transform.
Choose e.g.

~sEðt,otÞ ¼ EtðT0�ZeZ2
t Þ: ð43Þ

The state space of Et now depends on Bt and actually Et is only
restricted to ð0;1Þ when ZBt ¼ 1.

In this case choose the transformation

Z3
¼c3
ðZ2
Þ ¼

1

T0
log

eZ2

T0�ZeZ2

 !
, ð44Þ

with the inverse given by

Z2
¼ log

T0eT0Z3

1þZeT0Z3

 !
: ð45Þ

The derivatives of c3 are given by

c3
z2
¼

1

T0�Zez2
¼

1

T0�ZEtBt
ð46Þ

c3
z2z2
¼

Zez2

ðT0�Zez2 Þ
2
¼

ZEtBt

ðT0�ZEtBtÞ
2

ð47Þ

and

dZ3
t ¼

vþb
Et

lt�b�
1

2
s2

BðT0�ðZBtÞ
g
Þ
2
þs2

E

E2
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2

E2
t

 !( )

�
dt
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Et
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with the inverse

Et ¼
ez2

t

B
ð51Þ

Et ¼ ez2
t
Z
T0

ð1þegT0ZB
t Þ

1=g

eT0ZB
t

ð52Þ

Et ¼
Z
T0

T0eT0Z3
t

1þZeT0Z3
t

ð1þegT0ZB
T Þ

1=g

eT0ZB
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ð53Þ

Et ¼ Z
eT0Z3

t

1þZeT0Z3
t

ð1þegT0ZB
t Þ

1=g

eT0ZB
t

: ð54Þ

Actually the transformed process does not have a reasonable
asymptotic behaviour unless some restrictions are imposed on
the relation between b and v. Also an attempt to estimate through
CTSM (with no restriction on the relation between b and v) leads
to a break down of the estimation procedure, illustrating the
importance of considering the asymptotic behaviour.

A.1. Required relation between b and v

We consider the case where lt ¼ St . Furthermore we set T0 ¼ 1,
the critical point is ZEtBt ¼ 1) Et ¼ 1=ZBt , if this should work for
arbitrary sB, we get the restriction

vþb
Et
ð1�ZBtÞ�bo0, ð55Þ
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inserting the critical point ðEt ¼ 1=ZBtÞ gives

ZBtðvþbÞð1�ZBtÞ�bo0, ð56Þ

the left had side is a quadratic polynomial in ZBt with its maximum
at ZBt ¼

1
2, and we get the restriction

vþb
2Et
�bo0, ð57Þ

and the critical point is Et-2 and we get

vþb
4
�bo0) b4

1

3
v: ð58Þ

So in this case the required asymptotic behaviour is ensured when
b4 1

3 v, of course the appropriateness of the model has not been
discussed, and we have not attempted to incorporate these
restrictions in the model.
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