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Abstract In this paper we show how the grey box meth-

odology can be applied to find models that can describe the

flow prediction uncertainty in a sewer system where rain data

are used as input, and flow measurements are used for cali-

bration and updating model states. Grey box models are

composed of a drift term and a diffusion term, respectively

accounting for the deterministic and stochastic part of the

models. Furthermore, a distinction is made between the pro-

cess noise and the observation noise. We compare five dif-

ferent model candidates’ predictive performances that solely

differ with respect to the diffusion term description up to a 4 h

prediction horizon by adopting the prediction performance

measures; reliability, sharpness and skill score to pinpoint the

preferred model. The prediction performance of a model is

reliable if the observed coverage of the prediction intervals

corresponds to the nominal coverage of the prediction inter-

vals, i.e. the bias between these coverages should ideally be

zero. The sharpness is a measure of the distance between the

lower and upper prediction limits, and skill score criterion

makes it possible to pinpoint the preferred model by taking

into account both reliability and sharpness. In this paper, we

illustrate the power of the introduced grey box methodology

and the probabilistic performance measures in an urban

drainage context.

Keywords Grey box modelling � Interval prediction �
Reliability � Sharpness � Skill score � Urban drainage

1 Introduction

Sewer flow predictions can, in combination with Model

Predictive Control (MPC), be used to minimise damages in

a broad sense, e.g. to reduce combined sewer overflows to

prevent sludge escaping from wastewater treatment plants

and to avoid flooding of vulnerable urban areas. To the

authors knowledge, most, if not all, the suggested MPC

solutions that have been proposed in the literature to date

are based on deterministic models, (see e.g. Ocampo-Mar-

tinez and Puig 2010; Puig et al. 2009; Giraldo et al. 2010),

even though it is commonly accepted that large uncertain-

ties are present in simulation and prediction with urban

drainage models due to unreliable level or flow meters

(Bertrand-Krajewski et al. 2003), non-representative rain-

fall inputs (Pedersen et al. 2010; Vaes et al. 2005; Willems

2001) and/or unreliable rain gauge measurements (Barbera

et al. 2002; Molini et al. 2005; Shedekar et al. 2009).

For urban drainage systems, we are still awaiting this

shift of paradigm from deterministic to stochastic models

in predictive control. This can most likely be attributed to

inadequate measurement collection, both with respect to

rainfall monitoring/forecasting and in-sewer flow or level

metering. However, as the number of measurement devices

increase and these devices become more accurate, the

potential for building suitable stochastic models also

improves. A necessary first step is to derive stochastic

models that can describe the predictive uncertainty suffi-

ciently well for a certain prediction horizon of interest.

Another important step is to set up a prediction perfor-

mance evaluation method to be able to compare the
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predictive performance of different model candidates. In

this paper we intend to take these necessary first steps by

considering a case catchment area from where both rainfall

and flow meter measurements are available for stochastic

model building and prediction evaluation of sewer flows.

We apply the grey box methodology as introduced by

Kristensen et al. (2004a). The grey box approach is based

on a state space model where the dynamics are described

using Stochastic Differential Equations (SDEs), which

contain a drift term and a diffusion term. The grey box

methodology has been successfully applied in numerous

fields for stochastic model building, including e.g. phar-

macology (Tornøe et al. 2006), chemical engineering

(Kristensen et al. 2004a; Kristensen et al. 2004b), district

heating (Nielsen and Madsen 2006), hydrology (Jonsdottir

et al. 2001, 2006) and ecology (Møller et al. 2011). We

give particular attention to the diffusion term by consid-

ering various diffusion term descriptions. Several tools

have been developed to validate and compare models,

especially for point forecasts that exclusively rely on the

single value prediction. In contrast, little attention has been

given to interval predictions, which play a crucial role in

stochastic control design. We propose here to use a skill

scoring criterion for interval prediction evaluation, and

show how this can be applied to find the preferred model

among the candidate models for a specific prediction

horizon. The skill scoring criterion has previously been

applied for prediction evaluation purposes in wind power

generation (see Pinson et al. 2007; Møller et al. 2008).

In Sect. 2, we outline the stochastic grey box method-

ology. Section 3 includes a description of the interval pre-

diction generation and how the prediction performance can

be evaluated on the basis of the reliability, the sharpness

and the skill score criterion. Section 4 illustrates the

applicability of the grey box methodology and the use of

the prediction performance criteria as important tools for

model selection. Finally, in Sect. 5 we conclude on our

findings.

2 The stochastic grey box model

2.1 Model structure

The model used in this study is a grey box model, or a

continuous-discrete time stochastic state space model,

represented by

dXt ¼ f ðXt; ut; t; hÞdt þ rðXt; ut; t; hÞdxt ð1Þ
Yk ¼ gðXk; uk; tk; hÞ þ ek; ð2Þ

where the first equation is called the system equation,

composed of a set of SDEs in continuous time. The states

are partially observed in discrete time through the obser-

vation Eq. 2. The time is t 2 R0 and tk (for k ¼ 1; . . .;K)

are the discretely observed sampling instants for the

K available measurements. The states in the system equa-

tion Xt 2 R
n describe the system dynamics in continuous

time, whereas Xk 2 R
n in the observation equation is

the observed states in the discrete time as specified by the

observations. The input variables are represented by the

vector ut 2 R
m and the vector of the measured output

variables Yk 2 R
l: The vector h 2 R

p includes the

unknown parameters that characterise the model, and

the functions f ð�Þ 2 R
n; rð�Þ 2 R

n�n and gð�Þ 2 R
l form the

structural behaviour of the model. The measurement error

ek is assumed to be a l-dimensional white noise process

with ek �N 0;Vðuk; tk; hÞð Þ; where V is the covariance of

the measurement error, and xt is a n-dimensional standard

Wiener process. The first term in the system equation is the

drift term, representing the dynamic structure of the system

that is formulated by ordinary differential equations. The

second term is the diffusion term which corresponds to the

process noise related to the particular state variable in

the state-space formulation.

Discrepancies between output from deterministic mod-

els and measurements are often referred to as measurement

errors, even though the consecutive residuals are clearly

auto-correlated. In reality, these auto-correlated discrep-

ancies can however be explained by both non-repre-

sentative and/or faulty inputs as well as model structural

deficiencies. Consequently, a distinction between mea-

surement noise and noise related to inputs and model

deficiencies is required. The stochastic grey box model

provides such a distinction by separating the process noise

from the output measurement noise, where the process

noise as described by the diffusion term is related to the

state variables and accounts for noise that is not related to

the output measurements.

2.2 Parameter estimation and state transformation

For parameter estimation the Maximum Likelihood (ML)

method is used, and the Kalman Filter techniques are applied

to evaluate the likelihood function (Jazwinski 2007). For

the grey box model in Eqs. 1 and 2, the unknown model

parameters are obtained by maximising a likelihood function

that is a product of the one-step conditional densities

(Madsen 2008). Hence, the estimated parameters for an

adequate model correspond to a fit where the distribution for

the residual series for the one-step ahead prediction error is

assumed to be serial independent and Gaussian. However,

utilising such a model for predictions covering more than

one-step ahead usually results in a residual series that is
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correlated, and when dealing with increasing prediction

horizon, the predictive distribution for the output may divert

from the assumed normality.

To estimate the unknown parameters of the model, the

software CTSM1 (Kristensen and Madsen 2003) is used.

The software is well suited for estimation of linear and

many nonlinear systems. In CTSM, the ordinary Kalman

filter gives the exact solution for the state estimation

for linear systems, whereas the extended Kalman filter

provides an approximation for the states for nonlinear

systems.

Parameter and state estimation is not possible with

CTSM if state dependency is included in the diffusion

term, as this requires higher order filtering techniques to

solve the estimation than are available in the extended

Kalman filter techniques implemented in the software

(Vestergaard 1998). However, efficient and numerically

stable estimates can be obtained by considering a trans-

formation of the states. In particular, the transformation is

well-suited for a SDE when the diffusion term is only

dependent on the corresponding state variable. With such a

univariate diffusion, it is always possible to transform the

state description to obtain a state independent diffusion

term (Baadsgaard et al. 1997).

The transformation of the ith state variable Xi,t to Zi,t, for

i ¼ 1; . . .; n; is referred to as the Lamperti transform (Iacus

2008) and, subsequently, a corresponding SDE for the

transformed variable Zi,t, is obtained by Itô’s formula

(Øksendal 2003). The diffusion in the transformed SDE is

state independent and the transformed grey box model is

rewritten

dZt ¼ ~f ðZt;ut; t; hÞdt þ ~rðut; t; hÞdxt ð3Þ
Yk ¼ ~gðZk; uk; tk; hÞ þ ek; ð4Þ

where the functions f ð�Þ; rð�Þ and gð�Þ in Eqs. 1 and 2 have

been reformulated, respectively to ~f ð�Þ; ~rð�Þ and ~gð�Þ in

relation to the transformation of the state space. The

parameters h and the input-output relations are, however,

not affected by the transformation.

In this study, it is furthermore anticipated that flow

measurement errors increase proportionally with flow

magnitude and thus a log-transformation of the observa-

tions are needed to secure a Gaussian measurement noise

term. This observation transformation results in an obser-

vation equation that has an additive noise term (Limpert

et al. 2001).

3 Prediction, uncertainty and evaluation

3.1 Uncertainty of h-step ahead prediction

The objective with the proposed grey box model is to

predict the sewer flow at time k ? h, which is denoted as

Yk?h. In parallel, we have Ŷkþhjk as the prediction of the

flow at time k ? h, given the available information at time

k where h indicates the number of time steps for the pre-

diction. By using the ML method, we find that the optimal

prediction is equal to the conditional mean for the model

structure (see Madsen 2008). Hence, the prediction is

obtained by

Ŷkþhjk ¼ E
�
Ykþhj!k; ukþh

�
ð5Þ

Ŷkþhjk ¼ ~gðẐkþhjk; ukþh; tkþh; hÞ; ð6Þ

meaning that for a given sequence of precipitation input up

to time k ? h and observed flow up to time k;!k ¼
½Yk; . . .;Y0�>; the state prediction at time k ? h can be

estimated and consequently supply the observation

equation with a suitable description for the prediction.

The challenge in predicting the future flow in the system is

then not directly related to predictions based on the

observation equation, but rather on predicting the state

variables in the system equation. The state prediction

can be accomplished by considering the conditional

expectation of the future state:

Ẑkþhjk ¼ E
�
Zkþhj!̂k; ukþh

�
; ð7Þ

i.e. the conditional mean of Zkþh given all measurements

up to time k (Madsen 2008).

In the following study, the grey box model in Eqs. 1 and

2 is used to describe the model structure, whereas the

transformed model is used for parameter estimation and

model prediction in Eqs. 3 and 4. As mentioned in Sect. 2,

the Gaussian assumption for the model output is only valid

for one-step ahead predictions. Thus for h C 1, a numerical

approach is considered, i.e. an Euler scheme for the SDEs

in the system Eq. 3 is applied to predict the sewer runoff

(Kloeden and Platen 1999). Thus, a sufficient probability

distribution for the h-step ahead prediction is obtained by

generating a number of simulations from each time step,

and from this empirical distributions can be derived for the

prediction intervals.

3.2 Prediction intervals

The ideal coverage of the prediction interval is defined as

the nominal coverage 1� b; b 2 ½0; 1�: The upper and

lower limits of the interval prediction are obtained from

quantile forecasts, which are easy to obtain with a large

1 Continuous-Time Stochastic Modelling - http://www.imm.dtu.

dk/ctsm
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number of simulations provided for the same prediction

horizon, resulting in a reasonable empirical probability

distribution for the sewer flow. If Fk?h|k is the cumulative

distribution function of the random variable Ŷkþhjk and s 2
½0; 1� is the proportion of the relative quantile, the

s-quantile forecast for the k ? h prediction is obtained by

q
ðsÞ
kþhjk ¼ F�1

kþhjkðsÞ: ð8Þ

If l = b/2 and u = 1 - b/2 are defined as the lower and

upper quantiles for the prediction interval at level 1 - b,

respectively, the prediction interval for the lead time

k ? h, issued at time k, can be described as

Î
ðbÞ
kþhjk ¼ q̂

ðlÞ
kþhjk; q̂

ðuÞ
kþhjk

h i
ð9Þ

where q̂
ðlÞ
kþhjk and q̂

ðuÞ
kþhjk are, respectively, the lower and

upper prediction limits at levels b/2 and 1 - b/2 (Pinson

et al. 2007; Møller et al. 2008).

3.3 Reliability

For the prediction interval to be of practical usage for

decision makers it is a primary requirement for the interval

to be reliable, indicating that the upper and lower limits

have to correspond to the nominal coverage rate of 1 - b.

To obtain an evaluation of the reliability of the interval

we define a counter that rewards prediction intervals that

are able to capture the observations. For a given prediction

interval, as represented in Eq. 9, and corresponding mea-

sured flow in the system Yk?h, the binary indicator variable

nk,h
(b) is obtained by

n
ðbÞ
k;h ¼

1; if Ykþh 2 Î
ðbÞ
kþhjk for k�K � h

0; otherwise
;

�
ð10Þ

corresponding to hits and misses of the h-step prediction

interval. The mean of the binary series then corresponds to

the actual proportion of hits in the estimation period, i.e.

for prediction horizon h the proportion of hits for a flow

series of length K, is given by

�n
ðbÞ
h ¼ E n

ðbÞ
k;h

h i
¼ 1

K � h

XK�h

k¼1

n
ðbÞ
k;h : ð11Þ

The discrepancy between the nominal coverage and the

observed proportion of hits is measured by the bias

b
ðbÞ
h ¼ 1� b� �n

ðbÞ
h ; ð12Þ

where a perfect fit is defined as bh
(b) = 0, i.e. that the

empirical coverage is equal to the nominal coverage, �n
ðbÞ
h ¼

1� b; and a perfect reliability is obtained. However, when

the empirical coverage is larger than the nominal, i.e.

�n
ðbÞ
h [ 1� b; we talk about an overestimation in the

coverage. This means that, since the empirical coverage is

subtracted from the nominal coverage, we obtain bh
(b) \ 0

when the predictions overestimate the coverage. When the

opposite is the case, this is referred to as underestimation,

i.e. bh
(b) [ 0.

3.4 Sharpness

Sharpness is an accuracy measure of the prediction interval

where smaller values indicate that the model is better

suited to generate predictions (Gneiting et al. 2007). The

size of the interval prediction, issued at time k for lead time

k ? h is measured as the difference between the corre-

sponding upper and lower quantile forecast, and averaging

over the whole time series, defines the average sharpness.

For the horizon h and coverage 1 - b, the sharpness is

calculated by

d
ðbÞ
h ¼

1

K

XK

k¼1

q̂
ðuÞ
kþhjk � q̂

ðlÞ
kþhjk

� �
ð13Þ

and by calculating d
ðbÞ
h at relevant coverages, a d-diagram

can be viewed to summarise the evaluation of the sharp-

ness. When comparing interval predictions generated from

different models, the one with the smallest distance

between upper and lower bound is the sharpest.

3.5 Interval score criterion and resolution

The skill score combines the performance measures dis-

cussed above in a single numerical value, which enables us

to compare the predictive performance of different models

directly. The skill score for interval predictions is outlined

in detail by Gneiting and Raftery (2007), where the score

of the individual prediction interval is also referred to as an

interval score. The skill score Sc for the interval prediction,

at time instant k, is calculated as

Sc
ðbÞ
I;k;h ¼ðq̂

ðuÞ
kþhjk � q̂

ðlÞ
kþhjkÞ

þ 2

b
ðq̂ðlÞkþhjk � YkþhÞ1fYkþh\q̂

ðlÞ
kþhjkg

þ 2

b
ðYkþh � q̂

ðuÞ
kþhjkÞ1fYkþh [ q̂

ðuÞ
kþhjkg; ð14Þ

where the indicator 1f�g is equal to one if the inequality

within the brackets is fulfilled, but zero otherwise. As the

objective is to evaluate the predictive performance of each

model by a single number, an extension is required to

account for the whole considered period. Hence, we

average the scores for all time instants where

observations are available, and thus the score becomes

independent of the length of the time series. The average

interval score criterion for h-step prediction is written
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Sc
ðbÞ
I;h ¼

1

K

XK

k¼1

Sc
ðbÞ
I;k;h ¼ �dðbÞh

þ 2

bðK � hÞ
XK�h

k¼1

�
ðq̂ðlÞkþhjk � YkþhÞ1fYkþh\q̂

ðlÞ
kþhjkg

þ ðYkþh � q̂
ðuÞ
kþhjkÞ1fYkþh [ q̂

ðuÞ
kþhjkg

�
: ð15Þ

It follows from Eq. 15 that for any observation that falls

outside the predefined prediction interval, the skill score is

increased by the distance between the interval and the

observation at each considered quantile. Hence, the skill

score gives a positive penalisation, which indicates that an

increase in the score criterion will result in a reduced fit of

the prediction interval. Therefore, we select the prediction

interval with the lowest skill score.

The indication of the individual observation in relation

to the prediction interval can be merged into an indicator,

corresponding to the reliability indicator in Eq. 10. Thus,

the interval score in Eq. 15 can be written as an indirect

function of the prediction interval in Eq. 9 by including the

reliability indicator from Eq. 10, i.e.

Sc
ðbÞ
I;h ¼ �dðbÞh þ

2

bðK � hÞ
XK�h

k¼1

	
1� n

ðbÞ
k;h




�
	

min
��Ykþh � ½q̂ðlÞkþhjk; q̂

ðuÞ
kþhjk�

��
; ð16Þ

where the second term under the summation accounts for

the minimum distance between the observed value and the

prediction interval, which is always either the lower or the

upper limit of the interval.

The score is still a function of the prediction horizon

h. This indicates that there are just as many Sc
ðbÞ
I;h as there

are h’s. To evaluate the performance independently of

h, we simply average over all horizons, obtaining the

interval score criterion Sc
ðbÞ
I :

We talk about resolution when conditioning the pre-

dictive distributions on some particular property. For urban

drainage systems, it is expected that the skill score (or the

sharpness and reliability) depends on the weather, i.e. the

predictive performance is assumed to be different in peri-

ods of dry weather than in periods of wet weather.

4 Application results

In the previous sections, the model framework and tools for

assessing the uncertainty and the performance of the model

have been described. In the following we introduce the

catchment area and the data, the applied grey box models,

and finally present and discuss our results.

4.1 Description of the case study

The considered catchment area, which receives both

wastewater and rainfall-runoff, is located in the Munici-

pality of Ballerup west of Copenhagen in Denmark; see

Fig. 1. It is connected to the second largest wastewater

treatment plant in Denmark, located in Avedøre. Flow was

measured downstream from the catchment area with a

semi-mobile ultrasonic Doppler type flow meter. The flow

meter was placed in an interceptor pipe with a dimension of

Fig. 1 The Ballerup catchment area
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1.4 m. The flow meter logs every 5 min, but in this study a

temporal resolution of 15 min was considered and, thus,

only every third available measurement is used.

Precipitation was measured using two tipping bucket

gauges with a volumetric resolution of 0.2 mm. The rain

gauges are located just outside the considered catchment

area, approximately 12 km apart from each other (Fig. 1).

Data of flows and rain for almost 3-month period were used

in the case study, i.e. from April 1 2007 to June 21 2007. The

considered grey box models were estimated for all 3 months.

However for prediction uncertainty assessment only data

from May and June were utilised as very few rain events were

logged by the rain gauges in April, and because the rain

periods are the most important, it was decided to leave out

this month. When generating predictions with the models we

used the measured precipitation up to 4 h ahead of current

time assuming a perfect rain forecast was available. This

assumption is obviously unrealistic but serves an illustrative

purpose here by showing how the skill score terminology can

be applied to select the preferred model.

4.2 The stochastic model

The model should be kept simple and identifiable from data

to facilitate the parameter estimation. In hydrology it is

well known that the rainfall-runoff relationship can often

be modelled with a series of linear reservoirs (e.g. Jacobsen

et al. 1997; Mannina et al. 2006; Willems, 2010). A model

with just two reservoirs is considered here, where the

volume in each reservoir corresponds to a state variable in

the grey box model. There is also a contribution of

wastewater from the connected households to the sewer

flow that needs to be accounted for. The model is written as

d
S1;t

S2;t

� �
¼

aAP1;t þ ð1� aÞAP2;t þ a0 � 2
K S1;t

2
K S1;t � 2

K S2;t

" #

dt

þ
r1S

c1

1;t 0

0 r2S
c2

2;t

" #

dxt; ð17Þ

logðYkÞ ¼ log

�
2

K
S2;k þ Dk


þ ek; ð18Þ

where Dk is the wastewater flow variation formulated as a

periodic function with diurnal cycles of length L, i.e.

Dk ¼
X2

i¼1

si sin
i2pk

L
þ ci cos

i2pk

L

� 
ð19Þ

and s1, s2, c1 and c2 are parameters. The first reservoir S1,t

receives runoff from the contributing area A at time

t, caused by the rainfall registered at the two rain gauges

P1,t and P2,t. A weighting parameter a is defined to account

for the fraction of the measured runoff that can be attributed

to rain gauge P1,t, whereas the remaining 1 - a is attributed

to P2,t assuming that the rainfall input area A is fully

described by the two rain gauges. The second reservoir,

S2,t, receives outflow from the first reservoir and diverts it to

the flow gauge downstream from the catchment.

To fully account for the wastewater flow in the grey box

model, a constant term for the average dry-weather flow a0

is included. The constant enters the first state to secure the

physical interpretation of the system, i.e. water is always

passing through the system, also in dry weather, which

means that the reservoirs always contain water. From a

modelling point of view this is important because the state

variance from the diffusion term in Eq. 17—if large

enough—could lead to predicted states that are negative,

which is physically impossible. This risk of receiving

negative states is especially high if an additive diffusion

term is used and therefore we focus on state dependent

diffusion terms only; see Breinholt et al (2011) for more

details. When rainwater enters the system, the volume of

water in the reservoir increases and the diffusion term is

scaled accordingly (see Eq. 17), which means that the state

prediction uncertainty rises.

The observation Eq. 18 depends on the second state

variable only, since the output from the second reservoir

corresponds to the flow measured downstream from the

catchment area. The observation equation is log-trans-

formed to account for proportional observation variance as

mentioned in Sect. 2. In the following we will investigate

various state dependencies through the c parameter in each

state dependent diffusion in the system Eq. 17. Different

c parameters will produce different prediction intervals

and, subsequently, different skill scores. This is useful for

model prediction comparison.

The diffusion parameters c1 and c2 are restricted to ci 2
½0:5; 1�; for i = 1,2 in the system equation. The reasons are

that for ci B 0.5 there is a positive probability of reaching

zero and the risk of obtaining a non-stationary diffu-

sion process is increased, whilst for ci [ 1 the system

existence and uniqueness is not guaranteed because the

behaviour of the solution might explode in finite time

(Iacus 2008).

Five models are proposed with different combinations of

the diffusion parameters c1 and c2. These are (0.5, 0.5),

(1, 0.5), (0.5, 1), (0.75, 0.75) and (1,1). The minimum

c parameter is actually slightly higher than 0.5 (i.e. 0.5001)

in order to fulfill the parameter restriction, but for practical

reasons is rounded to 0.5 in the text below. It is not possible

to estimate the c parameters with CTSM because each

combination of c parameters has its own restricted Zi,t

domain. To distinguish between the models, they have

been designated ‘‘M1’’, ‘‘M2’’, etc., as in the first line in

Table 1; the corresponding sets of c parameters are indi-

cated in the next two rows (highlighted in bold).
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4.3 Estimation results

The parameter estimation is shown in Table 1. It is seen

that the choice of diffusion term description affects all the

parameters to some extent. However, the dry weather

parameters s1, s2, c1, c2 and a0 are not noticeably influ-

enced, even though a0 is slightly higher in M2 than it is in

the other models. Considering the wet weather parameters

A, K and a, it is seen that A and K are positively correlated

with c2 while a is estimated to have more or less the same

value. The largest area is estimated with M5. Regarding the

estimates for the diffusion parameters r1 and r2, a

higher expected parameter value follows a lower state

dependency.

4.4 Overall reliability assessment

The average reliability bias is studied in Fig. 2, both as a

function of the nominal coverage (Fig. 2a), and as a

function of the prediction horizon of up to 4 h ahead

(Fig. 2b). In Fig. 2a the reliability bias is calculated as the

average for all the considered prediction steps, whereas in

Fig. 2b, the reliability bias is calculated as an average of all

the nominal coverages. No definite deviation is observed

between the models, neither at the chosen prediction steps,

nor at different nominal coverages. At coverage up to

80–90%, Fig. 2a shows that all five models slightly over-

estimate the nominal coverage, whereas for higher nominal

coverage the bias is underestimated. Furthermore, the

models approach the nominal coverage at around 85–90%.

Regarding the reliability bias for the individual models,

Fig. 2a reveals that M1 deviates the most from the ideal as

it exhibits the largest positive bias at intermediate coverage

rates, and the most negative bias at higher nominal cov-

erage rates. M2 is the most reliable model on average, the

average bias from ideal reliability is -0.01 for all coverage

rates up to 95% coverage. This indicates that (c1 = 1,

c2 = 0.5) provides the best reliability across all the con-

sidered horizons.

Turning to the average reliability bias as a function of

the prediction horizon, Fig. 2b shows that all five models

produce almost the same reliability structure; i.e. for

shorter horizons the reliability bias of the model predic-

tions is overestimated, whereas for horizons longer than

1.5 h reliability is increasingly underestimated. Thus, the

almost identical shift from overestimation to underesti-

mation implies that all the models are reliable at 1.5 h lead

time, but it is recalled that this is an average for all nominal

coverages and, thus, it can vary for each nominal coverage.

In contrast to what was concluded from Fig. 2a, the most

Table 1 The results from the parameter estimation, for various values of (c1, c2), for all five models

h Unit M1 M2 M3 M4 M5

c1 – 0.500 1.000 0.500 0.750 1.000

c2 – 0.500 0.500 1.000 0.750 1.000

s1 – -59.355 -65.313 -63.303 -63.909 -65.545

(3.927) (3.861) (2.764) (3.310) (2.709)

s2 – -41.363 -34.090 -39.143 -37.341 -34.904

(2.537) (3.049) (1.989) (2.377) (2.133)

c1 – -61.618 -49.407 -56.898 -51.593 -50.884

(4.321) (8.038) (3.169) (4.062) (3.397)

c2 – 17.437 17.120 18.407 17.133 17.785

(2.537) (2.927) (1.913) (2.220) (1.889)

a0 m3/h 313.310 345.510 307.000 314.390 319.080

(4.321) (1.217) (4.524) (5.263) (5.686)

a – 0.359 0.374 0.288 0.334 0.335

(0.068) (0.080) (0.070) (0.059) (0.067)

A ha 42.406 39.694 49.591 46.479 51.413

(1.059) (1.221) (1.062) (1.080) (1.104)

K h 4.253 4.104 5.237 4.763 5.221

(0.148) (0.472) (0.200) (0.201) (0.274)

r1 – 6.510 0.373 5.866 1.313 0.254

(1.042) (1.078) (1.051) (1.048) (1.050)

r2 – 2.186 1.817 0.087 0.449 0.085

(1.027) (1.079) (1.010) (1.016) (1.011)

Standard deviance is indicated in brackets
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reliable model in Fig. 2b is M1. However, differences in

reliability bias between the models are very small, sug-

gesting that the minor discrepancies for the longer horizons

are unimportant.

Here, a single nominal coverage is chosen for further

investigation. From the reliability assessment above, it was

detected that, on average, the 85–90% coverages are reli-

able. Therefore, the 90% coverage is selected for further

investigation, which is also a typical value for interval

prediction within hydrology.

4.5 Performance evaluation of the 90% prediction

interval

In Fig. 3, the reliability bias of the 90% prediction interval

(b = 0.1) as a function of the prediction horizon is seen.

The same shift in reliability from overestimation to

underestimation is observed for all models as the prediction

horizon increases. The deviation from the nominal cover-

age is generally not that big, although M3 deviates almost

10% at the 4 h prediction step. On average, M1 is the most

reliable model with mean distance from ideal reliability of

0.043. This can be hard to envisage from Fig. 3, because at

larger prediction horizons, i.e. more than 1 h, M1 is clearly

less reliable than M2 and M5.

In Fig. 4, the sharpness of the 90% prediction intervals

is plotted for all the models as a function of the prediction

horizon. As expected, all models become less sharp with

increasing prediction horizon, i.e. the uncertainty of the

prediction rises, but only up to 2 h. Hereafter the uncer-

tainty levels out. When considering all prediction horizons,

M2 is the least sharp model (the one with the largest

uncertainty), and already at the 0.5 h prediction step it

deviates considerably from the other models. Figure 4 also

reveals that the models with c1 = 0.5 prove to be the

sharpest for all prediction horizons, and M3 is visually

slightly sharper than M1. Thus, M3 provides the sharpest

average 90% prediction interval (187.3 m3/h), whereas M2

provides the least sharp average prediction interval (286.3

m3/h).

From studying the reliability and the sharpness it is not

immediately clear which model should be preferred.

However, this can be unravelled by calculating the skill

score for each model for every prediction step and as an

average for the entire prediction horizon. Table 2 shows

the skill score for the generated 90% prediction intervals
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Fig. 2 Reliability bias for all

five models of interest:

a averaged over the entire

prediction horizon, plotted as a

function of the nominal

coverage rate, b averaged over

the coverage rates for each

prediction step considered in the

study. Coverage rates calculated

for the nominal coverage rates:

{5%, 10%...95%}

−
0.

05
0.

00
0.

05
0.

10

43215.052.0

h [hours]

b h( 0
.1

)

M1 : (γ1=0.50 , γ2=0.50)
M2 : (γ1=1.00 , γ2=0.50)
M3 : (γ1=0.50 , γ2=1.00)
M4 : (γ1=0.75 , γ2=0.75)
M5 : (γ1=1.00 , γ2=1.00)

Fig. 3 Reliability bias of the 90% prediction interval, as a function of

the prediction horizon
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calculated for various prediction steps, and as an average

for the maximum prediction horizon of 4 h. Note that all

16 prediction steps (every 15 min for 4 h) are included in

the average skill score but only 6 prediction steps are

presented in Table 2. M3 is seen to perform best at pre-

diction steps 0.25 and 0.5 h (recalling that the smaller skill

score is the preferred score), while M5 (the model with

state proportional dependency for both states) performs

best at larger prediction horizons up to 4 h. Surprisingly,

the most reliable model M1 is seen to perform rather

poorly compared to the other models for the prediction

horizons of 1–4 h. Apparently, the sharpness for M1 is too

narrow because many observations fall too far away from

the lower and upper prediction bounds incurring a high

penalty when calculating the skill score. When considering

the average skill score for the entire prediction horizon of

4 h, it is furthermore seen that M2–M4 perform rather

similarly, whereas M1 has a significantly higher score

value.

4.6 Resolution analysis: conditioning on dry and wet

weather periods

From a MPC point of view it is especially of interest to

evaluate how well the models perform during wet weather

periods. Separation of wet weather flow measurements

from dry weather flow measurements using a rough flow

threshold, i.e. wet weather interpreted as flows above 540

m3/h and dry weather flows below, a conditional reliability

is obtained as shown in Fig. 5. By introducing this

threshold, 90% of the flow data is catagorised in the dry

weather period and the remaining 10% in the wet weather

period. For shorter prediction steps, the dry weather reli-

ability (see Fig. 5a) is overestimated, whereas it is under-

estimated for longer prediction steps. This shift in

reliability was also observed in the unconditional case seen

in Fig. 3, and thus emanates from dry weather periods. In

wet weather periods, the underestimated reliability

increases with the length of the prediction horizon; see

Fig. 5b. The only exception appears at the one-step pre-

diction (0.25 h), where M3 and M5 both are reliable. At the

4 h prediction step the reliability bias is around 50–75%,

compared with just 10% in the unconditional case. The

models with c1 = 1 (M2, M5) are significantly less biased

than the remaining models, but still underestimate the

coverage by approximately 50% at the 4 h prediction step.

This observed discrepancy in reliability bias between

the unconditional case and the wet weather periods reveals

the importance of the resolution analysis, and show that the

relatively low reliability bias at the 4 h prediction horizon

for the unconditional case is a result of the dry weather

period, constituting 90% of the whole data set.

The conditional sharpness is shown in Fig. 6. In dry

weather periods (Fig. 6a) the sharpness is very close to the

unconditional sharpness, albeit slightly more sharp. In wet

weather periods (Fig. 6b), the sharpness decreases con-

siderably, i.e. the prediction intervals are approximately

twice the size in dry weather periods. It is seen that the

prediction uncertainty grows rapidly during the first pre-

diction steps and then levels out at 2 h. The effect of the
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Fig. 4 Sharpness for the 90% prediction intervals, as a function of

the prediction horizon for all five models

Table 2 Skill score calculated from 90% prediction intervals at several prediction steps and averaged for the entire prediction horizon of 4 h

c1 c2 Prediction horizon

0.25 h 0.5 h 1 h 2 h 3 h 4 h Average

M1 0.50 0.50 166.0 292.7 491.2 680.8 724.7 732.7 514.7

M2 1.00 0.50 201.9 324.9 455.2 563.6 602.6 610.1 459.7

M3 0.50 1.00 137.2 228.3 391.2 603.8 675.8 691.7 454.7

M4 0.75 0.75 155.1 264.3 429.7 606.4 663.6 673.6 465.4

M5 1.00 1.00 150.4 247.1 383.8 535.2 593.8 608.2 419.7

The preferred model candidate for each prediction horizon is highlighted in bold
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diffusion term is clearly identified. The models M2 and M5

are seen to be the least sharp, but both models have state

proportional diffusion in the first reservoir (c1 = 1). In

contrast, the models M1 and M3, with c1 = 0.5, generate

the sharpest prediction intervals.

The dry weather conditional skill score for the five

model candidates is seen in Table 3. It is readily seen that

M3 is the preferred model candidate both at each prediction

step and as an average for the entire prediction horizon. As

the reliability bias was found to be close to zero at all

considered prediction steps, we conclude that M3 is very

useful for making 90% prediction intervals in dry weather

periods.

When conditioning on wet weather periods alone,

Table 4 yields more ambiguous results. M3 is the best

model for prediction steps of less then 1h, which is the

same as obtained when conditioning on dry weather peri-

ods alone. However, for 1–4 h, models M2 and M5 provide

better results (lower skill score). Note the large difference

in average skill score between dry and wet weather periods

when comparing Tables 3 and 4. The best model on

average when considering all prediction horizons of inter-

est is M5, but it should be kept in mind that the reliability

bias showed that none of the models are able to generate

satisfactory 90% prediction intervals, and thus cannot be

fully trusted when considering prediction horizons larger

than one. If focusing on the one-step ahead prediction only

in wet weather periods, M3 must be the preferred model;

both because it was shown to be reliable and because it has

the lowest skill score.
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periods. A flow threshold of 540
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The resolution study has clearly demonstrate the impor-

tance of conditioning the drainage model performance on

relative weather situations; in our case rain. When con-

sidering the model performance on the whole data series,

altogether it appeared as though the best model is able to

provide quite reliable 90% prediction limits. However,

when conditioning separately on wet weather periods it

becomes clear that even the best model is unable to gen-

erate reliable prediction limits beyond 0.25 h. This can

primarily be ascribed to a poor rain input that does not

represent the actual rainfall on the whole catchment area. If

the rain input used in the models is improved by, e.g.,

placing rain gauges inside the catchment area or by using

rain radars a different description for the diffusion term in

the model would be preferred and a larger prediction

horizon would probably be shown to be reliable. With more

representative rain input, it is possible to extend the dif-

fusion term by considering both the states and the rain

input in its description, which would contribute to more

reliable probabilistic predictions.

5 Conclusions

This study has demonstrated how simple stochastic models

suitable for making interval flow predictions in urban

drainage systems can be built using the grey box method-

ology, and the models capabilities for providing interval

predictions evaluated by the performance measures: reli-

ability, sharpness and skill score. Reliability concerns the

coverage ratio of the prediction intervals that must corre-

spond to the nominal coverage, sharpness concerns the size

of the prediction interval, and finally the skill score utilises

both reliability and sharpness to evaluate the prediction

performance in a single score value. This is useful for

model prediction comparison. Grey box models are tailored

to derive the one-step prediction interval, but can, pre-

suming a representative rain input is given and the model

describes the processes well, be used to make interval

predictions several time steps into the future, given that the

interval predictions are reliable.

Five different grey box models, that only differed with

respect to the diffusion term description, were estimated

and their probabilistic prediction performance was evalu-

ated using data from a case catchment area. A model was

found that was able to predict the 90% flow prediction

interval up to 4 h ahead when all the observations were

included in the study. The skill score criterion was applied

to compare the prediction performance of the models and

eventually to select the preferred model. However, when

conditioning the model performance on wet weather peri-

ods (accounting for 10% of the whole data series), it was

shown that solely the one-step prediction (15 min) was

reliable. This can most likely be attributed to a poor rain

input that does not represent the actual rainfall on the

catchment area very well. In a control context, since wet

weather periods are the most important periods, more

representative rain inputs and rain forecasts are needed to

derive models that can reliably describe the prediction

uncertainty several time steps into the future. Nevertheless,

Table 3 Skill score calculated for the 90% prediction interval conditioned on dry weather periods

c1 c2 Prediction horizon

0.25 h 0.5 h 1 h 2 h 3 h 4 h Average

M1 0.50 0.50 68.3 114.2 176.4 225.0 236.5 238.8 176.5

M2 1.00 0.50 74.6 128.5 198.9 253.3 266.8 269.2 198.6

M3 0.50 1.00 62.2 101.9 159.5 214.3 233.2 237.7 168.1

M4 0.75 0.75 65.7 109.6 170.8 224.4 240.9 244.4 176.0

M5 1.00 1.00 64.2 106.9 166.7 222.4 241.7 246.9 174.8

The preferred model candidate for each prediction horizon is highlighted in bold

Table 4 Skill score calculated for the 90% prediction interval conditioned on wet weather periods

c1 c2 Prediction horizon

0.25 h 0.5 h 1 h 2 h 3 h 4 h Average

M1 0.50 0.50 397.3 709.9 1243.0 1859.4 1996.8 2015.7 1370.4

M2 1.00 0.50 572.9 820.9 1044.5 1328.0 1439.9 1456.1 1110.4

M3 0.50 1.00 289.1 489.3 913.1 1607.8 1825.9 1874.5 1166.6

M4 0.75 0.75 372.3 631.8 1051.3 1619.2 1785.3 1815.3 1212.5

M5 1.00 1.00 365.5 583.0 903.5 1374.9 1547.9 1583.5 1059.7

The preferred model candidate for each prediction horizon is highlighted in bold
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this particular case study should not detract from the power

of the proposed methodology.
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