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Demand response programmes are seen as one of the contributing solutions to the challenges posed to power
systems by the large-scale integration of renewable power sources, mostly due to their intermittent and stochas-
tic nature. Among demand response programmes, real-time pricing schemes for small consumers are believed to
have significant potential for peak-shaving and load-shifting, thus relieving the power system while reducing
costs and risk for energy retailers. This paper proposes a game theoretical model accounting for the Stackelberg
relationship between retailers (leaders) and consumers (followers) in a dynamic price environment. Both players
in the game solve an economic optimisation problem subject to stochasticity in prices, weather-related variables
andmust-serve load. Themodel allows the determination of the dynamic price-signal deliveringmaximum retailer
profit, and the optimal load pattern for consumers under this pricing. The bilevel programme is reformulated as a
single-level MILP, which can be solved using commercial off-the-shelf optimisation software. In an illustrative
example, we simulate and compare the dynamic pricing scheme with fixed and time-of-use pricing. We find
that the dynamic pricing scheme is the most effective in achieving load-shifting, thus reducing retailer costs
for energy procurement and regulation in the wholesale market. Additionally, the redistribution of the saved
costs between retailers and consumers is investigated, showing that real-time pricing is less convenient than
fixed and time-of-use price for consumers. This implies that careful design of the retail market is needed. Finally,
we carry out a sensitivity analysis to analyse the effect of different levels of consumer flexibility.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Favoured by ambitious international agreements and national plans,
integration of renewable power sources is expected to constantly rise in
the years to come in most industrialised countries. Several among the
currently or potentially deployable renewable sources, namely wind,
solar, tidal and wave, are characterised by an intermittent and stochas-
tic nature. This will pose problems to the operation and management
of future power systems, as supply must match demand at all times.
Furthermore security of supply will become an issue as the capacity
margin is lower during peak-demand hours with low intermittent
generation. Finally price volatility is also destined to increase, since it
is known that intermittent renewables have an impact onmarket prices
under the current demand conditions (Jónsson et al., 2010;Morales and
Conejo, 2011).

As a way to cope with these issues, many propose a revolution of
power systems from a structure where supply follows demand to one
where demand follows supply. This can be achieved in practice by
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adopting measures facilitating demand response, such as load shed-
ding programmes, time-of-use or real-time based consumer tariffs.
While large industrial consumers can participate in spot markets and
are already involved in load shedding programmes in many countries,
little has been done yet to allow the participation of small end-
consumers in demand response programmes, at least within a European
context (Torriti et al., 2010). Nevertheless, demand response is receiving
increasing attention from governments and policy makers.

In line with this increasing governmental consideration, demand re-
sponse is being studied intensively by researchers. Several setups have
been proposed involving different stakeholders, namely transmission
system operators (TSOs), distributing companies (DISCOs) and retailers.
In parallel different advantages of demand response have been stressed,
in particular the ability to enhance power system security, and the pos-
sibility of reducing electricity procurement costs and, at the same time,
market risk.

The TSO's perspective on the demand-response problem attracted
a fair share of interest since centralising the management of demand
response may have a number of advantages. On the one hand, specific
stochastic unit commitment approaches were introduced, permitting
to account for demand-side reserve bids submitted by an aggregator
on the day-ahead market (Parvania and Fotuhi-Firuzabad, 2010), or
jointly accounting for wind power generation and demand response
based on a linear inverse demand function (Sioshansi, 2010). On the
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Nomenclature

Sets
T time periods in the optimisation horizon
Ω2 space of second-stage stochastic variables
Ω3 space of third-stage stochastic variables

Indices
t Index of Program Time Unit (PTU) t∈{1,2,…NT}
ω2 scenario index for second-stage stochastic variable

ω2∈ 1;2;…NΩ2

� �
ω3 scenario index for third-stage stochastic variable

ω3∈ 1;2;…NΩ3

� �
Random variables
Ta
t;ω2

ambient temperature
πs
t;ω2

energy price at the spot market
π↑
t;ω2

up-regulation price at the real-time market
π↓
t;ω2

down-regulation price at the real-time market
lit;ω3

consumption from inflexible (must-serve) load
ψ↑
t;ω2

up-regulation penalty at the real-time market
ψ↓
t;ω2

down-regulation penalty at the real-time market

Decision variables
Et
s energy contracted at the spot market
π̃t;ω2 dynamic real-time price charged to the end-consumer
lt;ω2 energy purchased by the consumer
ΔE↑t;ω2 ;ω3

up-regulation energy purchased at the real-timemarket
ΔE↓t;ω2 ;ω3

down-regulation energy sold at the real-time market
Tr
t;ω2

indoor temperature in the consumer building model

Tf
t;ω2

floor temperature in the consumer building model
Tw
t;ω2

water temperature in the consumer building model
vt;ω2 deviation from the comfort band for indoor temperature

Parameters
πP minimum dynamic price charged to the end-consumer
π maximum dynamic price charged to the end-consumer
πAVG average daily dynamic price charged to the end-

consumer
ρ penalty for deviation from the comfort band for indoor

temperature
lP minimum flexible consumption for the end-consumer
l maximum flexible consumption for the end-consumer
Tr
P t lower bound of the comfort band for indoor temperature

Tr
t

upper boundof the comfort band for indoor temperature
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other hand, different economic dispatch models aiming at integrating
demand response and wind power were reviewed and compared
in Ilić et al. (2011a) and Ilić et al. (2011b), respectively. These are
based on a model using multi-directional information exchange
where the TSO chooses a price sequence based on communicated
production schedules and corresponding load response to that price
sequence.

In parallel in view of their potential leading role in the optimal man-
agement of demand response, the DISCOs' point of viewwas extensively
studied with a blend of load shedding and control-based proposals. In-
deed, it may be that DISCOs' operating distributed generation and with
the capability of interrupting load consider the possibility of optimising
their overall operating costs, as in Algarni and Bhattacharya (2009).
They may alternatively design optimal bidding strategies with the addi-
tional flexibility such that a certain number of load interruptions are
allowed by contract as agreed on with the consumers (Oh and Thomas,
2008). In a different paradigm focused on the consumption dynamics,
the idea of using price signals for controlling a part of the loadhas recently
appeared, based e.g. on statistical models for the forecasting of the condi-
tional load response to varying prices (Corradi et al., in press), or con-
versely on the optimisation problem of a load exposed to dynamic
market prices (Conejo et al., 2010). Finally as a more global approach in-
volving DISCOs, retailers (which are purchasers of demand response) as
well as aggregations of consumers (sellers), specific market designs
may be proposed as in Nguyen et al. (2011), the configuration of which
should arguably allow maximising social welfare.

In contrast to these proposals mainly focused on TSOs and DISCOs
point of views, we take an original path focused on the joint consider-
ation of the economic optimisation problems of a set of consumers
and of their electricity-supplying retailer. In this setup, the retailer nat-
urally acts as a buffer between already existing electricity markets and
newly-enabled flexible end-consumers. We assume that consumers
respond to a dynamic price signal sent by the retailer by shifting part
of their consumption to low-price periods, thus minimising the cost of
electricity procurement. The fact that the consumption schedule is de-
cided after the communication of the price signal by the retailer implies
that there is a leader–follower structure typical of Stackelberg games,
whichwere introduced in the original version of thework later translat-
ed in von Stackelberg (2011). For simplicity only the load used for
heating purposes is considered as flexible, i.e. it can be shifted in time,
although this assumption is not binding. In practice consumer flexibility
in time is modelled by using a discrete-time state-space model; the
reader not familiar with state space models is referred to Madsen
(2007). In turn the retailer is also subject to an economic problem, in
that it acts as an intermediary by purchasing at wholesale (day-ahead
and real-time) markets and selling back to the consumers.

The novelty of this approach is fourfold. First of all, it jointly considers
the optimisation problem of consumers, consisting of the maximisation
of a utility function minus the electricity procurement costs, integrating
it into the retailer problem, which is purely economic. Using a game
theoretic approach, completely novel compared to the state-of-the-art
reviewed above,we are able to capture the conflicting economic interests
of the retailer and their end-consumers. Under the assumption that the
introduction of real-time prices makes the consumers rational, we quan-
tify the cost/benefit improvement for both the stakeholders involved.
Secondly, by incorporating the consumer optimisation problem in the
model, our analysis is based on a realistic cost function rather than
resorting to models that arbitrarily choose demand elasticities or con-
sumer benefit functions, as in Parvania and Fotuhi-Firuzabad (2010),
Sioshansi (2010), Algarni and Bhattacharya (2009) and Nguyen et al.
(2011). Thirdly, by using a state-space model for consumer preferences
within a game-theoretic approach, we rigorously account for the dynam-
ics of demand response, which are often either heuristically approached,
see Ilić et al. (2011a) and Ilić et al. (2011b), or simply discarded by mak-
ing use of static elastic demand as in Parvania and Fotuhi-Firuzabad
(2010), Sioshansi (2010), Algarni and Bhattacharya (2009) and Nguyen
et al. (2011). Last but not least, we consider a two-market settlement
rather than a single one (Conejo et al., 2010; Corradi et al., in press;
Ilić et al., 2011a,b; Nguyen et al., 2011; Oh and Thomas, 2008;
Parvania and Fotuhi-Firuzabad, 2010; Sioshansi, 2010). This allows us
to quantify the advantages of demand response both with respect to
peak-shaving(-shifting) and to the reduction of costs due to imbalances
(deviations) of real-time consumption from the day-ahead prognosis.

Thepaper is structured as follows. Section2 introduces themathemat-
ical formulation of the retailer and the consumer problems separately.
Then, the bilevel problem is linearised and formulated as a single-level
optimisation programme in Section 3. Section 4 discusses the results of
an illustrative example. Finally, conclusions are drawn in Section 5.

2. Formulation of retailer and consumer optimisation problems

We consider the economic optimisation problem of an energy
retailer, which acts as an intermediary between energy wholesalers
and end-consumers. Energy is purchased at the wholesale market
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and, in turn, it is sold to the consumers, who face an economic optimi-
sation problem aimed at minimising the cost of their consumption.

Needless to say, the retailer business can only be profitable if the elec-
tricity price charged to the consumers π̃ is greater than the purchase
(spot) price πs. This price surcharge is justified by the risk that retailers
take when entering into a contract with consumers. Indeed retailers
must purchase energy in advance on thewholesalemarket, at a stochas-
tic price πs, and sell it to the consumers at a price π̃ that is often regulated
and/or fixed. Furthermore they might incur penalties when the aggre-
gate consumption from their customers, which is stochastic, deviates
from the schedule resulting from thewholesalemarket clearing process.
The most striking example of the risk faced by retailers is undoubtedly
the Californian energy crisis in 2000–2001, where several utilities went
bankrupt as a result of soaring wholesale prices and regulated retail
rates, see Borenstein (2002).

In this model we specifically focus on the interaction between the
retailer and a partially flexible consumer, who can decide on the alloca-
tion of its heating consumption based on an hourly price schedule com-
municated by the retailer as well as on weather forecasts (e.g. of the
outdoor temperature). The problem exhibits a bilevel structure, where
the retailer determines the price schedule delivering the optimal profits
(upper-level problem), while the consumer, based on this price schedule,
optimises its flexible consumption (lower-level problem). In game
theory, hierarchical optimisation problems of this type are usually re-
ferred to as Stackelberg games and can be formulated mathematically
in the framework of bilevel programmes, which are special instances of
Mathematical Programmes with Equilibrium Constraints (MPECs). The in-
terested reader is referred to Luo et al. (1996) for a complete treatment
of the subject.

In the following, we adopt the general formulation of a bilevel
programme

Maximize ϕ x; yð Þ
s:t: x; yð Þ∈Z

y∈S xð Þ ¼ arg min
y

θ x; yð Þ : y∈C xð Þf g ð1Þ

where x∈Rn is the vector of decision variables of the upper-level
problem, y∈Rm the one of the lower-level problem, ϕ x; yð Þ : Rnþm→R
and θ x; yð Þ : Rnþm→R the objective functions of the upper- and the
lower-level problems respectively, Z is the joint feasible region of the
upper-level problem and C(x) the feasible region of the lower-level
problem induced by x.

From the discussion above, it is clear that the financial risk of the
retailer stems from multiple stochastic variables: spot and regulation
market prices, weather-related variables that influence heating con-
sumption, fluctuations of the inflexible (must-serve) part of the load
as well as inaccuracies in modelling consumer behaviour. The specific
market design allows the players (retailers and consumers) to make
decisions both day-ahead and real-time. Furthermore energy imbal-
ances are settled ex-post, i.e. after their realisation and the calculation
of market prices. Decisions made at the later stages benefit from
updated information on the stochastic processes that influence the sys-
tem, either in the form of more accurate forecasts thanks to a shorter
look-ahead time or of realised values of random variables. Specifically,
we consider the following situation for the three aforementioned stages:

day-ahead The retailer decides on the amount Ets of energy purchased
at the spot market for every Program Time Unit (PTU) t in
the optimisation horizon, based on forecast scenarios of the
spot market price πs

t;ω2
, of the up- and down-regulation

prices, π↑
t;ω2

and π↓
t;ω2

respectively, of the ambient tempera-
tureTa

t;ω2
, of the inflexible load lit;ω3

and on its model of con-
sumer behaviour.

real-time The retailer decides on the price schedule π̃t;ω2 to be sent
out to the consumers for every PTU in the optimisation
horizon, given the certain realisation of the spot price πts

and the contracted purchase at the spot market Ets. At the
same time the consumer optimises its heating consumption
schedule lt;ω2 based on the price signal received from the re-
tailer and on the realisation of the ambient temperature
Ta
t;ω2

, which is assumed to be known at this point. This is a
simplification of themore realistic, yet intractable, situation
where more accurate forecasts are available in real-time
than day-ahead, which would result in an exponentially
growing scenario-tree.

ex-post The realisation of the inflexible part of the load lit;ω3
becomes

known, allowing the calculation of the up- and down-
regulation imbalances ΔE↑t;ω2 ;ω3

and ΔE↓t;ω2 ;ω3
, respectively.

These imbalances are purchased and sold at the up- and
down-regulation price,π↑

t;ω2
andπ↓

t;ω2
respectively, determin-

ing the net profit for the retailer.

The proposed model is therefore a stochastic bilevel optimisation
model with second- and third-stage recourse. The two levels of the
model capture the hierarchical relationship between the retailer and
the consumer. The three stages allow us to discriminate between uncer-
tain factors being revealed before real-time operation and those disclosed
on an ex-post basis. The remainder of the section is dedicated to the intro-
duction of the upper-level (retailer) and the lower-level (consumer)
problems.

2.1. Retailer problem

The objective function of the retailer is the maximisation of
the expected market profits, with respect to both the second- and
third-stage stochastic variables, given by

ϕ x; yð Þ ¼ EΩ2 ;Ω3

XNT

t¼1

π̃ t;ω2
lt;ω2

þ lit;ω3

� �
−πs

t;ω2
Est−π↑

t;ω2
ΔE↑t;ω2 ;ω3

þ π↓
t;ω2

ΔE↓t;ω2 ;ω3

( )

ð2Þ

where x ¼ π̃t;ω2
; Est ;ΔE

↑
t;ω2 ;ω3

;ΔE↓t;ω2 ;ω3

n o
is the retailer's set of decision

variables and yt lt;ω2

n o
is the consumer's one.

The objective function above is the sum of four terms. The first one
represents the revenues from charging the price π̃t;ω2 to both the flex-
ible and the inflexible load of the consumer, lt;ω2 and lit;ω3

respectively.
The second term is the cost of purchasing the energy Et

s at the spot
market price πs

t;ω2
. Finally the last two terms represent the cost (profit)

of purchasing (selling) up(down)-regulation powerΔE↑t;ω2 ;ω3
(ΔE↓t;ω2 ;ω3

)
at the regulation price π↑

t;ω2
(π↓

t;ω2
), where up- and down-regulation are

defined as

ΔE↑t;ω2 ;ω3
¼ lt;ω2

þ lit;ω3
−Est ; lt;ω2

þ lit;ω3
−Est≥0

0; otherwise

�
ð3Þ

ΔE↓t;ω2 ;ω3
¼ Est−lt;ω2

−lit;ω3
; lt;ω2

þ lit;ω3
−Es≤0

0; otherwise
:

�
ð4Þ

Thepiecewise definitions (3) and (4) of the up- anddown-regulations
are necessary only in a two-price market, i.e. if π↑≠π↓. On the contrary
the problem formulation for a single-price real-timemarket (i.e. amarket
where π↑=π↓) requires only one variable definition for the imbalance,
without piecewise splits. Although we consider here a two-price market
for regulation, themodel can be easily adapted to the single-pricemarket
case, which is simpler to treat owing to the linearity of the definition of
the imbalances.

Due to the fact that the model provides no possibility for consumers
to switch to a different retailer, i.e. market competition is not modelled,
the retailer could increase the end-consumer price possibly up to infinity
in order tomaximise its profits. On the other hand the process of retailer-
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switching is rather slow as compared to the optimisation horizon consid-
ered here, which makes it hard to consider competition directly in the
model. Still, in order to enforcemarket competitiveness of retailer prices,
we choose to introduce constraints that model possible future con-
tracts between retailers and price-responsive consumers. We make
the assumption that the two parties will agree on certain character-
istics of a variable electricity price, i.e.minimum,maximumand average
value during the day, just as today they agree on a fixed rate. In mathe-
matical terms, this assumption implies the following constraints on the
consumer-price

π̃t;ω2
≥ π

P
; ∀t∈T;∀ω2∈Ω2 ð5Þ

π̃t;ω2
≤π ; ∀t∈T;∀ω2∈Ω2 ð6Þ

1
24

X1þið Þ24

t¼1þ24i

π̃t;ω2
¼ πAVG

; i ¼ 0;1;…;
Tj j
24

−1;∀ω2∈Ω2: ð7Þ

Constraints (5) and (6) ensure that the price charged to the demand
is always contained within the range πP ;π½ �. Constraint (7) enforces that
by contract the dynamic price signal must have a fixed daily average.
Notice that the latter constraint is necessary in order to ensure a suffi-
cient number of low-price periods. In the absence of this constraint,
the retailer would in principle be allowed to always charge the maxi-
mum price to the consumer when not faced by high regulation prices.
Finally, we underline that constraints (5)–(7) consent a straightforward
comparison between retailers in a competitive market, based on few
meaningful parameters such as the average hourly price and its maxi-
mum and minimum values, i.e. the price level and its volatility.

Following the general formulation of a bilevel programme (1), we
write the retailer problem as

Maximize
x;yω2

ϕ x; yω2

� �
ð8aÞ

s:t: 3ð Þ � 7ð Þ ð8bÞ

yω2
∈Sω2

xð Þ;∀ω2∈Ω2: ð8cÞ

Eq. (8c) enforces that the schedule for flexible load consumption is
part of (one of) the solution(s) Sω2 xð Þ of the lower-level optimisation
problem for any realisation of the second stage variables ω2∈Ω2. In
practice each consumption schedule lt;ω2 solves a different optimisation
problem parameterised in ω2.

Furthermore, it should be noticed that the objective function in
Eq. (2) has two nonlinearities. The first one is introduced by the piece-
wise linear definition of the imbalances (3) and (4); the second one by
the bilinear products π̃t;ω2 lt;ω2 in Eq. (2). The former nonlinearity can
be worked around through a reformulation of the problem, the latter
by enforcing the strong duality theorem, see Luenberger (1984), on the
lower-level (consumer) problem. The description of the linearisation is
left to Section 3, while the next section introduces the consumer
(lower-level) problem.

2.2. Consumer problem

Weconsider aflexible demand response environment,where the con-
sumer can optimise its future consumption based on a dynamic price
schedule communicated by the retailer. We assume here that only the
load lt;ω2 necessary for heating is flexible, and treat the remaining, inflex-
ible part of the load lit;ω3

as a third-stage stochastic variable. We remark
that this limitation to heating load is not critical and other sources of con-
sumer flexibility could be considered. In a similar fashion one could con-
sider more general models akin to the one in Conejo et al. (2010).

Just like the retailer, the end-consumer faces an economic problem,
too.With a flexible price, he/shewill minimise the cost of the electricity
needed for heating by shifting asmuch consumption as possible to low-
price periods, without giving up too much on the comfort, i.e. on the in-
door temperature of the building. We therefore model the objective of
the consumer as a utility function trading-off the cost of electricity pro-
curement and the discomfort for deviating from the reference temper-
ature band.

Two different formulations of the economic optimisation problemof
the heating system of a building are introduced in this section. First, a
linear programming (LP) formulation is introduced. Then, its equivalent
system of Karush–Kuhn–Tucker (KKT) conditions is presented.

2.2.1. LP formulation of the consumer problem
Based on the work in Halvgaard et al. (2012) we consider a three-

state, discrete-time state space model for the heating dynamics of a
building. The three states of the system are the indoor temperature
Tr
t;ω2

, the floor Tf
t;ω2

temperature and the temperature Tw
t;ω2

inside a
water tank directly connected to a heat pump. The only input is the
electricity consumption lt;ω2 , while the outdoor temperature Ta

t;ω2
is

a stochastic disturbance. We stress that solar irradiation, an additional
disturbance in Halvgaard et al. (2012) is discarded here for the sake of
simplicity. Using a matrix formulation, the state space model writes

Tr
t;ω2

Tf
t;ω2

Tw
t;ω2

2
64

3
75 ¼ A

Tr
t−1;ω2

Tf
t−1;ω2

Tw
t−1;ω2

2
64

3
75þ Blt−1;ω2

þ ETa
t−1;ω2

ð9Þ

where all the matrices are constant. The output of interest is clearly the
indoor temperatureTr

t;ω2
, as this is the only variable influencing the con-

sumer comfort. In the following optimisation model, adapted from
Halvgaard et al. (2012), the deviation of the output from a reference
band TP

r
t T r

t

� �
is linearly penalised in the objective function, where it

is summed to the cost of electricity consumption.

Minimize
y

θω2
x; yð Þ ¼

XNT

t¼1

π̃t;ω2
lt;ω2

þ ρvt;ω2
ð10aÞ

s:t: Tr
t;ω2

¼ a11T
r
t−1;ω2

þ a12T
f
t−1;ω2

þ a13T
w
t−1;ω2

þb1lt−1;ω2
þ e1T

a
t−1;ω2

μr
t;ω2

� � ð10bÞ

Tf
t;ω2

¼ a21T
r
t−1;ω2

þ a22T
f
t−1;ω2

þ a23T
w
t−1;ω2

þb2lt−1;ω2
þ e2T

a
t−1;ω2

μ f
t;ω2

� � ð10cÞ

Tw
t;ω2

¼ a31T
r
t−1;ω2

þ a32T
f
t−1;ω2

þ a33T
w
t−1;ω2

þb3lt−1;ω2
þ e3T

a
t−1;ω2

μw
t;ω2

� � ð10dÞ

lt;ω2
≥ l

P
λ
P t;ω2

� �
ð10eÞ

lt;ω2
≤l λt;ω2

� �
ð10fÞ

Tr
t;ω2

þ vt;ω2
≥ T

P

r
t ð�

¯
t;ω2

Þ ð10gÞ

Tr
t;ω2

−vt;ω2
≤T r

t �t;ω2

� �
ð10hÞ

vt;ω2
≥0 ð10iÞ

The consumer's set of decision variables is y ¼ lt;ω2 ; vt;ω2 ;
�

Tr
t;ω2

; Tf
t;ω2

; Tw
t;ω2

g, while μr
t;ω2

; μ f
t;ω2

; μw
t;ω2

; λP t;ω2
;λt;ω2 ; �

¯
t;ω2 ; �t;ω2 are

the dual variables associated with constraints (10b)–(10h). The
state space model (9) translates into constraints (10b), (10c) and
(10d). Inequalities (10e) and (10f) set the lower and upper limit for
electricity consumption, respectively. Variable vt;ω2 represents the
absolute value of deviations of the indoor temperature out of the
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reference band TP
r
t T

r
t

h i
through (10g)–(10i). Positive values of this var-

iable are penalised in the objective function, where they are summed
with weight ρ to the cost of electricity over the time horizon NT.

It is stressed that since the dynamic electricity price π̃t;ω2 enters
the consumer problem as a constant vector (it is only a variable in
the retailer problem), model (10a)–(10i) is a linear programme.
Incidentally, we remark that in this model the retailer must provide
the consumer with a price forecast for a certain time-horizon, which
resembles the assumption in Ilić et al. (2011a).

Finally, we point out that the objective function (10a) with a linear
penalisation of the temperature deviations from a reference band is
only one of the possible utility functions for the consumer. However,
it has certain characteristics that make it appealing, e.g. its simplicity,
and the fact that, aswe show inwhat follows, it leads to a reformulation
of the bilevel model as a Mixed-Integer Linear Program (MILP). More
sophisticated consumer problems could involve varying upper and
lower bounds for the indoor temperature in (10g) and (10h), defined
as linear functions of the consumer price π̃t;ω2 , or quadratic penalties
for deviations from a reference, which closely relates to Linear Quadratic
Regulator (LQR) problems in control theory, see Kwakernaak and Sivan
(1972). Such extensions of the model are left for future research.

2.2.2. KKT formulation of the consumer problem
In this section we present the formulation of the consumer prob-

lem given by its Karush–Kuhn–Tucker conditions. The equivalence
of the KKT formulation and the one in Section 2.2.1 is guaranteed by
the linearity of the latter one, which implies that solutions of the
optimisation problem are also solution of the KKT system of equa-
tions and vice versa, see Conejo et al. (2006).

We begin by stating the stationarity conditions with respect to
the decision variables y ¼ lt;ω2 ; vt;ω2 ; T

r
t;ω2

; Tf
t;ω2

; Tw
t;ω2

n o
π̃t;ω2

−b1μ
r
tþ1;ω2

−b2μ
f
tþ1;ω2

−b3μ
w
tþ1;ω2

þ λ
P t;ω2

þ λt;ω2
¼ 0; tbNT

π̃t;ω2
þ λ

P t;ω2
þ λt;ω2

¼ 0; t ¼ NT

8<
:

ð11Þ

0≤vt;ω2
⊥ρþ �

¯
t;ω2

− �t;ω2
≥0 ð12Þ

μr
t;ω2

−a11μ
r
tþ1;ω2

−a21μ
f
tþ1;ω2

−a31μ
w
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þ �
¯
t;ω2

þ �t;ω2
¼ 0; t < NT

μr
t;ω2

þ �
¯
t;ω2

þ �t;ω2
¼ 0; t ¼ NT

8><
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ð13Þ

−a12μ
r
tþ1;ω2

þ μ f
t;ω2

−a22μ
f
tþ1;ω2

−a32μ
w
tþ1;ω2

¼ 0; tbNT

μ f
t;ω2

¼ 0; t ¼ NT

(
ð14Þ

−a13μ
r
tþ1;ω2

−a23μ
f
tþ1;ω2

þ μw
t;ω2

−a33μ
w
tþ1;ω2

¼ 0; tbNT

μw
t;ω2

¼ 0; t ¼ NT
:

(
ð15Þ

It should be noticed that the stationarity conditions with respect
to the variables appearing in the state-update Eqs. (10b)–(10d)
have a different formulation at the final step NT of the optimisation
horizon. This is because only one state-update equation includes
them, rather than two in the general case, as there is no equation
imposing the evolution of the state from NT to NT+1.

The system of KKT conditions is completed by the (equality and
inequality) constraints already included in models (10a)–(10i),
along with the complementary slackness conditions associated
with the inequality constraints, i.e.

Tr
t;ω2

¼ a11T
r
t−1;ω2

þ a12T
f
t−1;ω2

þ a13T
w
t−1;ω2

þ b1lt−1;ω2
þ e1T

a
t−1;ω2

ð16Þ

Tf
t;ω2

¼ a21T
r
t−1;ω2

þ a22T
f
t−1;ω2

þ a23T
w
t−1;ω2

þ b2lt−1;ω2
þ e2T

a
t−1;ω2

ð17Þ
Tw
t;ω2

¼ a31T
r
t−1;ω2

þ a32T
f
t−1;ω2

þ a33T
w
t−1;ω2

þ b3lt−1;ω2
þ e3T

a
t−1;ω2

ð18Þ

0≥λ
P t;ω2

⊥lt;ω2
− lP≥0 ð19Þ

0≤λt;ω2
⊥lt;ω2

−l≤0 ð20Þ

0≥ �
¯
t;ω2

⊥Tr
t;ω2

þ vt;ω2
− T

P

r
t≥0 ð21Þ

0≤�t;ω2
⊥Tr

t;ω2
−vt;ω2

−T r
t≤0: ð22Þ

We underline that the system of KKT conditions is linear, with the
exception of the complementarity conditions (12) and (19)–(22). In
order to linearise these conditions we make use of the Fortuny-Amat
linearisation (Fortuny-Amat and McCarl, 1981); for example Eq. (12)
can be substituted by the following constraints

ρþ �
¯
t;ω2

− �t;ω2
≥0 ð23Þ

vt;ω2
≥0 ð24Þ

ρþ �
¯
t;ω2

− �t;ω2
≤zt;ω2

M1 ð25Þ

vt;ω2
≤ 1−zt;ω2

� �
M1 ð26Þ

zt;ω2
∈ 0;1f g ð27Þ

where M1 is a sufficiently large constant. The complementary slack-
ness conditions (19)–(22) can be linearised using the same strategy.
Therefore we end upwith a (integer linear) system of KKT conditions
equivalent to model (10a)–(10i). As a trade-off for introducing
additional complexity (i.e. integer variables), we can simply concat-
enate the KKT conditions as additional constraints of the upper-level
problem. This puts the bilevel problem in a tractable formulation.
One is finally left with the necessary linearisation of the objective
function (2) of the retailer.

3. Linearisation and bilevel formulation of the problem

As pointed out in Section 2.1 there are two nonlinearities in the
objective function (2) of the upper-level problem. The first one
stems from the piecewise definition of negative and positive energy
imbalances in Eqs. (3) and (4), and can be linearised through a
reformulation of the problem. The second nonlinearity can be over-
come by exploiting the strong duality theorem on the lower-level
problem. The remainder of this section deals with the linearisation
of these terms, and with the presentation of the final formulation of
the bilevel problem as a single-level optimisation programme.

3.1. Reformulation of the energy imbalance

In order to reformulate the problem, let us first define the market
penalties for up- and down-regulation

ψ↑
t;ω2

¼ π↑
t;ω2

−πs
t;ω2

≥0 ð28Þ

ψ↓
t;ω2

¼ πs
t;ω2

−π↓
t;ω2

≥0: ð29Þ

These values represent the additional cost (or missed revenue)
per MWh incurred by the retailer in comparison to the case where
it has perfect information on its stochastic consumption. In the latter
case, the retailer is charged the spot price for all its consumption. In the
former, more realistic, case the retailer will need to adjust its bid on
the real-time market, where it is charged π↑

t;ω2
¼ πs

t;ω2
þ ψ↑

t;ω2
for any
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additional consumed MWh, and paid π↓
t;ω2

¼ πs
t;ω2

−ψ↓
t;ω2

for any MWh
consumed less than the schedule cleared at the spot market. Clearly
ψ↑
t;ω2

and ψ↓
t;ω2

can be interpreted as the per-unit penalty for imperfect
information on future consumption.

Using the market penalties defined above, the objective function
(2) can be reformulated as follows

ϕ x; yð Þ ¼ EΩ2 ;Ω3

(XNT

t¼1

π̃t;ω2
lt;ω2
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� �
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� �
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� �
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¼

¼ EΩ2 ;Ω3
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� �

−ψ↑
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−ψ↓

t;ω2
ΔE↓t;ω2 ;ω3

)

¼ EΩ2 ;Ω3

(XNT

t¼1

π̃t;ω2
lt;ω2

þ lit;ω3

� �
−πs

t;ω2
lt;ω2

þ lit;ω3

� �
−ψ↑

t;ω2
ΔE↑t;ω2 ;ω3

−ψ↓
t;ω2

ΔE↓t;ω2 ;ω3

)
ð30Þ

where the last line is obtained by noticing that lt;ω2
þ lit;ω3

¼ Estþ
ΔE↑t;ω2 ;ω3

−ΔE↓t;ω2 ;ω3
holds at any time, which is a result of the definitions

in Eqs. (3) and (4).
We can now formulate the retailer optimisation problem exploiting

the objective function reformulation (30)

Maximize
x

ϕ x; yð Þ in 30ð Þ ð31aÞ

s:t: ΔE↑t;ω2 ;ω3
≥lt;ω2

þ lit;ω3
−Est ð31bÞ

ΔE↓t;ω2 ;ω3
≥Est−lt;ω2

−lit;ω3
ð31cÞ

ΔE↑t;ω2 ;ω3
;ΔE↓t;ω2 ;ω3

≥0: ð31dÞ

5ð Þ– 7ð Þ; 8að Þ ð31eÞ

First, it should be emphasised that the maximisation of Eq. (2)
with the imbalance definitions in Eqs. (3)–(4) is equivalent to the
maximisation of Eq. (30) subject to constraints (31b)–(31d). The latter
is a relaxed, yet linear, formulation of the former optimisation problem
with a larger feasible space, where the variables ΔE↑t;ω2 ;ω3

and ΔE↓t;ω2 ;ω3

are allowed to assume greater values than the actual up- and down-
regulations. The equivalence of the two optimisation problems is readily
proved by noticing that, as long asψ↑

t;ω2
;ψ↓

t;ω2
> 0, all the additional feasi-

ble points of Eqs. (31b)–(31d) have a strictlyworse objective than at least
one feasible point of Eqs. (3)–(4), i.e. the one with the minimal absolute
imbalance allowed. In other words, there is no interest for the retailer in
artificially pushing up the values of ΔE↑t;ω2;ω3

and ΔE↓t;ω2 ;ω3
, as this

would contribute negatively to the objective functionwithout any advan-
tages.With similar arguments, it can be shown thatΔE↑t;ω2 ;ω3

andΔE↓t;ω2 ;ω3

could assume greater values than the actual up- and down-regulation,
but without influencing the other variables, in the case where at least
one between ψ↑

t;ω2
and ψ↓

t;ω2
is zero. The actual imbalances can still be

calculated by applying Eqs. (3) and (4) to the optimal solution of
Eqs. (31a)–(31e).

It is also remarked that the reformulation presented in this section is
only needed in a two-price real-time market. Under the single-price
market structure, there is no need for a piecewise definition of the im-
balances (3) and (4).

3.2. Linearisation of bilinear terms

The only nonlinearity still present in objective function (30) con-
sists in the bilinear terms π̃t;ω2 lt;ω2 . Optimisation problems including
bilinear terms are often solved by approximation techniques. For ex-
ample, Pereira et al. (2005) make use of binary expansion on one of
the variables involved in the bilinear term, while a piecewise linear
approximation is employed in Vespucci et al. (2013). Using the
same approach as in Carrión et al. (2009), we show that this problem
allows for an exact linearisation of these terms. By employing the
strong duality theorem, see Luenberger (1984), on the lower-level
model (10a)–(10i) we enforce that primal and dual objectives are
equal at optimality. This implies that
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From the equality between primal and dual objective of the lower-
level problem, it follows that the sum of terms π̃t;ω2 lt;ω2 is equal to the
sum of products between dual variables and parameters of the primal
constraints of the lower-level problem, minus ρvt;ω2 , which are all linear
in the bilevel formulation.

By solving Eq. (32) on ∑NT
t¼1 π̃t;ω2

lt;ω2 and taking the expectation
with respect to Ω2 and Ω3 on both sides of the equation, we are able
to replace all the bilinear terms in Eq. (30), thus obtaining the linear
reformulation of the objective function that follows
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ð33Þ

3.3. Final problem formulation

As a result of the reformulations above, the bilevel programme can
be expressed as the following equivalent single-level MILP

Maximize
x;y

ϕ x; yð Þ in 33ð Þ
s:t: 31bð Þ– 31dð Þ; 5ð Þ– 7ð Þ

11ð Þ; 23ð Þ– 26ð Þ; 13ð Þ– 15ð Þ
16ð Þ � 18ð Þ
lt;ω2

− l
P
≥0

λ
P t;ω2

≤0

lt;ω2
− l

P
≤z2t;ω2

M2

λ
P t;ω2

≥− 1−z2t;ω2

� �
M2

	
linearisation of 19ð Þ

ð34aÞ

lt;ω2
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λt;ω2
≥0

lt;ω2
−l≥−z3t;ω2

M3

λt;ω2
≤ 1−z3t;ω2

� �
M3

	
linearisation of 20ð Þ ð34bÞ

(34a)

(34b)



Table 1
Parameter values considered for the LP model representing the consumer's heating
dynamics.

Parameter Value Unit

a11 0.4103 –

a12 0.5586 –

a13 0.0028 –

a21 0.1092 –

a22 0.8801 –

a23 0.0078 –

a31 0.0022 –

a32 0.0310 –

a33 0.9668 –

b1 0.0044 °C/kWh
b2 0.0173 °C/kWh
b3 4.2332 °C/kWh
e1 0.0284 –

e2 0.0029 –

e3 0 –

l 0 kWh
l 0.33 kWh
ρ 30 €/°C
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Tr
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; z5t;ω2
∈ 0;1f g: ð34eÞ

The bilevel problem can be solved as a single-level one having the
same objective function as the upper-level problem (33), and con-
straints given by the concatenation of

• the constraints (31b)–(31d), (5)–(7) of the upper-level problem
• the stationarity conditions (11), (13)–(15) in the system of KKT
conditions for the lower level problem and the linearisation of the
stationarity condition (12) i.e. equations (23)–(26)

• the equality constraints (16)–(18) of the lower-level problem
• the linearisation of the complementarity conditions (19)–(22), i.e.
equations (34a)–(34d)

• the integrality condition (34e) for the binary variables introduced by
the Fortuny-Amat linearisations of the complementarity constraints.

The resulting problem can be solved as a single-level MILP due to
the linearity of both the objective function and the constraints, while
integer variables are introduced by the Fortuny-Amat linearisation of
the complementarity conditions. Problems of this type can be solved
using commercial off-the-shelf optimisation software. In this work
the problem is formulated in the GAMS environment and solved by
employing the CPLEX solver.

4. Numerical results and discussion

We describe here the numerical results obtained by running the
model in Section 3.3 on a small test-case based on real-world data.

The example simulates a single bidding round at the spotmarket for
the retailer, which optimises its bid and real-time market operation
using a 48-hour horizon. Uncertainties on the future realisation of
spot and real-time market prices, outdoor temperature and inflexible
load are modelled through scenarios.

For the sake of simplicity, we limit the number of consumers to
three. Indeed, this number is sufficient to draw quantitative conclu-
sions on the behaviour of the model, at the same time allowing the
visualisation of relevant variables for each consumer. Incidentally,
we stress that although there is no theoretical limit on the number of
consumers that can be considered in the model – adding one consumer
translates into adding one set of lower-level KKT conditions to the con-
straints of the upper-level programme – there is a certain computation-
al burden implied by the increasing number of integer variables.

Aggregation of consumers into classes characterised by similar
building dynamics, behaviour and therefore consumption is paramount
for obtaining a tractable, yet realistic, model for the retailer problem. In
general, clustering of consumers is widely applied in decision making
problems. For instance, clustering techniques for modelling electricity
consumption have been proposed in Chicco et al. (2004), where their
importance for electricity providers is also underlined. Clustering the
driving behaviour of electric car owners is proposed in Kristoffersen
et al. (2011) for optimising their charging and discharging. Similarly,
the three consumers included in this example can be regarded as three
classes each grouping a number of consumers with similar behaviour,
i.e. building dynamics, heating preferences, etc. Indeed we will treat
the three consumers as groups by assigning themdifferent probabilities,
i.e. by varying the distribution (or proportion) of consumers belonging
to a certain class.

In the following section, we present the parameters chosen to
model consumer heating dynamics. Then, we describe how scenarios
have been generated in order to model uncertainties. Finally, the re-
sults of the example are discussed.

4.1. Parameters in the model of building dynamics

The consumer optimisation problem described in Section 2.2 in-
cludes among its constraints a state space model of consumer building
dynamics.

Table 1 summarises the values used for the parameters as well
as their units. The chosen parameter values are the ones used in
Halvgaard et al. (2012), exception made for a lower hourly consump-
tion limit l for electricity and lowered b1, b2 and b3 values, due to the
choice of a smaller gain for the heat pump, which is decreased by a
factor of 3. These changes aim at better spreading the electricity con-
sumption over the day, rather than having few daily consumption
spikes as in Halvgaard et al. (2012). We do not discuss here the phys-
ical meaning of the parameters, and just refer the interested reader to
Halvgaard et al. (2012) and Madsen and Holst (1995) for discussion
on the physical interpretation of the parameters and on how they
can be estimated.

Besides, we consider time-varying comfort bands Tr
t T

r
t

h i
, so

that there is a higher reference for indoor temperature during the
day and a lower one during the night. In order to model different con-
sumer preferences, we assume that the three consumer groups have
different comfort bands. As one can see in Fig. 1, the first consumer
is the most flexible, as it accepts temperatures in a range of 5 °C,
while the range is narrowed down to 2 °C for the third consumer. It
is worth mentioning that these temperature ranges need not be con-
stant as in this example, but could e.g. be wider during working hours
and narrower when consumers are expected to be at home.

4.2. Scenario generation

This section describes themethodology employed for generating sce-
narios for the market quantities (spot and regulation prices), inflexible
load and temperature required as inputs to the model. All the employed
methodologies are rather simplistic answers to complicated problems,



6 12 18 24 30 36 42 48
18

20

22

24

T
em

pe
ra

tu
re

 [
° C

] Consumer #1

6 12 18 24 30 36 42 48
18

20

22

24

T
em

pe
ra

tu
re

 [
° C

] Consumer #2

6 12 18 24 30 36 42 48
18

20

22

24

Day time [h]

T
em

pe
ra

tu
re

 [
° C

] Consumer #3

Fig. 1. Comfort bands Tr
t T

r
t

h i
for the three consumer groups. The consumer flexibility decreases from top to bottom.

189M. Zugno et al. / Energy Economics 36 (2013) 182–197
i.e. modelling of weather- and market-related stochastic processes,
which are out of the scope of this paper. The interested reader is referred
to Dubrovsky (1997) and Madsen (1985) and to Weron (2006) and
Jónsson (2012), respectively for an introduction to modelling of stochas-
tic processes related to weather and electricity markets.

As far as the spotmarket priceπs
t;ω2

is concerned,we use the observed
spot market prices in the DK-2 (Eastern Denmark) market area of
NordPool, the Scandinavian power exchange, as mean value for the sce-
narios. We choose arbitrarily to consider prices pertaining to the 15–
16th March 2011, which are available at Energinet website (2011)
alongwith othermarket data forNordPool. In order to generate scenarios,
we simulate a multivariate Gaussian process with an exponentially de-
creasing covariance structure, i.e. the (i, j)-th element of the covariance
matrix is given by

C i; jð Þ ¼ σ2e− i−jj j=τ ð35Þ

The parameter σ is the standard deviation of the process. We con-
sider a constant standard deviation σ=€ 6.67, which is the approxi-
mate RMSE value for the spot market price forecasting model in the
work in Jónsson et al. (2013).1 Furthermore we point out that the
time-lags considered for these scenarios are at least 13 h, which is
the look-ahead time of the scenarios for the first hour of the first
day considered. The parameter τ sets the exponential decay of corre-
lation with respect to the time lag. We choose the value τ=7 h in the
example. The choice of model (35) is justified by the fact that, despite
being relatively simple, it allows us to consider the dynamics of market
prices and to easily enforce a realistic value for the standard deviation of
the forecast error.

Finally, scenarios are generated by adding the coloured Gaussian
noise to the observed spot market price. Fig. 2 shows both the
observed spot market price and the obtained scenarios.
1 This work considers the DK-1 (i.e. Western Denmark) price area of NordPool.
Generally the price difference between DK-1 and DK-2 is negligible.
Scenarios for the real-time market prices π↑
t;ω2

and π↓
t;ω2

are gener-
ated from the spot price scenarios using a model based on the average
values of the ratios

α↑
t ¼

π↑
t

πs
t

α↓
t ¼

π↓
t

πs
t
: ð36Þ

These averages are calculated for the three winter months in the
DK-2 price area of NordPool using data from Energinet website
(2011), resulting in the values α̃↑ ¼ 1:19 and α̃↓ ¼ 0:95. Scenarios
can then be generated from the model as functions of the spot price
scenarios

π↑
t;ω2

¼ α̃↑πs
t;ω2

π↓
t;ω2

¼ α̃↓πs
t;ω2

: ð37Þ

As a consequence of the use of this model, there is a single regula-
tion price scenario associated to each spot price realisation. This is
clearly a simplified model for the regulation prices. We point out,
though, that there is no obstacle in using third-stage scenarios in
the proposed model, besides that of modelling the stochastic regula-
tion prices. Furthermore, this simplification does not introduce signif-
icant distortions in the results of the model, since both regulation
penalties ψ↑

t;ω2
and ψ↓

t;ω2
are different from 0 at any time and for all

scenarios. In other words, the scenarios π↑
t;ω2

and π↓
t;ω2

represent the
expected real-time market prices conditioned on the realisation of
the spot market price πs

t;ω2
. Furthermore, it should be noticed that

model (36) is not a very good predictor of the balancing market
prices, especially as far as the up-regulation price is concerned (the
standard deviations of the ratios in Eq. (36) are 0.76 and 0.12, respec-
tively). While developing a state-of-the-art forecasting tool for the
regulation prices is out of the scope of this paper, one should keep
in mind that more sophisticated forecasting models should be used
in realistic applications. The reader should notice that the choice of
model (36) implies no loss of generality, as the scenarios for the regula-
tion prices are exogenous to the optimisation model.
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Scenarios for Ta are formed by gathering temperature observations
available at the Iowa Environmental Mesonet website (2011).2

Measurements are picked from a single location during different days
of March 2011 with similar temperature patterns. The obtained scenar-
ios are shown in Fig. 3. In total NΩ2 ¼ 14 second stage scenarios are
considered in this example, for reasons of data availability. In a more
realistic setup onewouldwant tomake use ofmore advancedmodelling
of weather-related variables. We refer the reader interested in the
subject to Dubrovsky (1997) for a presentation of scenario-generation
techniques applied to weather-related variables.

Finally the third-stage scenarios for the inflexible load lit;ω3
are gen-

erated with a model similar to the one used for the spot price πs
t;ω2

. The
observed load in DK-2, available at Energinet website (2011), is scaled
and used as mean value of the process. The scaling is done so that the
inflexible load is approximately about 85% of the total load, which is
the share of the residual household load after subtracting the consump-
tion due to heating in Denmark (Danish Energy Association, 2010). We
emphasise, though, that the share of total consumption represented by
heating varies from country to country. Coloured Gaussian noise with a
covariance structure of the same form of Eq. (35) is then added to the
load pattern. The standard deviation is here set to σ=0.0075 kWh. As
Fig. 4 highlights, the variance of the inflexible load is relatively smaller
than the variance of the spot price, reflecting the easier predictability
of the load compared to market quantities. Ideally the standard devia-
tion of the inflexible load would be a function of the size of the consid-
ered customer group, decreasing in relative terms with respect to the
size owing to smoothing of the errors. In total a number of third-stage
scenarios NΩ3 ¼ 10 are selected. Note that the number of scenarios
should be large enough to guarantee a faithful representation of the un-
certainties involved in the problem. Once more we stress that develop-
ing refinedmodels for the uncertainty is outside the scope of this paper.

4.3. Numerical results

The results of the illustrative example are discussed in this section.
First, we assess the differences in consumer behaviour and market per-
formance of the retailer between the cases of fixed-price, Time-Of-Use
(TOU) price and dynamic-price contracts between retailer and con-
sumers. Then, different distributions of consumer groups are considered
in order to discuss how dynamic prices imposed by the retailer impact
2 The geographical displacement between the locations of the temperature and mar-
ket datasets is justified by reasons of data accessibility. This displacement is equivalent
to considering that temperature andmarket price scenarios are independent from each
other. We assume that the results obtained in this paper would hold, at least qualita-
tively, using consistent datasets.
the market players, and how this impact is influenced by consumer
behaviour.

4.3.1. Advantages of dynamic pricing
In order to compare thefixed-, TOU- and the dynamic-price case, the

model is run three times on the same dataset. In the first run the price
charged by the retailer is set to be constant over time to the value €

0.2/kWh, which amounts to replacing Eqs. (5)–(7) with the equation
π̃t;ω2 =€ 0.2/kWh.

In the second run, the Time-Of-Use (TOU) pricing scheme illus-
trated in Table 2 is employed. In this scheme, consumption is
charged € 0.3/kWh during peak hours, € 0.2/kWh during flat hours,
and € 0.1/kWh during valley hours. Notice that, since there are 8 h
for each group, the average TOU price is equal to the price in the
fixed-price scheme, i.e. € 0.2/kWh.

In the third run, the original model in Section 3.3 is simulated. We
remind the reader that the price in this model is dynamic, but must
have a daily mean πAVG=€ 0.2/kWh, which is equal to the fixed
price and to the average of the TOU price. Furthermore the price
must always fall within the range [0.1, 0.3]€/kWh. In all the cases con-
sidered the distribution of the consumer groups is set to [0.3, 0.4, 0.3],
whichmeans that 30% of the consumers have highly flexible behaviour,
40% are balanced and 30% have low flexibility.

The dynamics of π̃t;ω2 and of the flexible load lt;ω2 are shown in
Figs. 5, 6 and 7 for each consumer type, in the fixed-, TOU- and
dynamic-price case, respectively. Mean, median and range (i.e. maxi-
mum and minimum value) across scenarios are shown for these vari-
ables, which, except for π̃t;ω2 in the fixed- and TOU-price case, are
scenario-dependent.

In the fixed-price case, there is no economic incentive for the con-
sumer to modify his/her consumption schedule according to the price
signal sent by the retailer. In practice the optimisation consists of a
trade-off between consumption (and therefore cost) minimisation
and aversion to deviations from the comfort band. In this example,
the consumer chooses to allocate all of its consumption during the
first hours of the simulation horizon, as shown in Fig. 5.

The situation changes in the TOU-price case, where the consumers
prefer to allocate their flexible consumption during valley hours,
which are characterised by low prices. Clearly, consumption takes
place during peak hours only when necessary, i.e. during few hours
for consumer type 2 and for the least flexible consumer type 3.

In the dynamic price case, the consumer adapts to the price signal
submitted by the retailer. Remarkably, the price plotted in Fig. 7 is on
average lower during night time, i.e. hours 0–8 and 21–32. The con-
sumer response follows the price signal: indeed, flexible consumption



6 12 18 24 30 36 42 48
−20

−15

−10

−5

0

5

10

15

20

Day time [h]

T
em

pe
ra

tu
re

 [
° C

]

Fig. 3. Scenarios for temperature Ta
t;ω2

obtained from measurements during March 2011 available at Iowa Environmental Mesonet website (2011).

6 12 18 24 30 36 42 48

0.2

0.25

0.3

0.35

0.4

Day time [h]

C
on

su
m

pt
io

n 
[k

W
h]

Observed
Scenarios

Fig. 4. Scenarios for the inflexible part of the load lit;ω3
for the period 15–16th March 2011.

191M. Zugno et al. / Energy Economics 36 (2013) 182–197
takes place more likely in time periods where the price tends to be low.
This appears to hold rather generally across all the consumer groups
considered.

Analysing the results further, one notices scenarios where the
price chosen by the retailer implies multiple solutions for the con-
sumer. In this case, the consumer is indifferent with respect to choos-
ing any of these solutions, and might therefore pick randomly or
decide according to a secondary criterion (e.g. choosing, among the
solutions delivering the minimum cost, the one minimising the con-
sumption). The results presented here refer to the case where the
consumer selects, among the optimal solutions, the one that yields
the best profit for the retailer. In mathematical terms, this is the
optimistic or strong Stackelberg solution (Loridan and Morgan, 1996).
Notice that by definition every solution to the MPEC in the general
form (Eq. (1)) is a strong Stackelberg solution. In practice this means
that the results of the bilevel model could be too optimistic, unless
there is a reasonwhy the consumer would choose the strong Stackelberg
solution instead of any other element in his/her optimal set y∈S xð Þ. For
Table 2
Details of the Time-Of-Use (TOU) pricing scheme employed. Prices are in €/kWh.

Day time 1–7 8–10 11–14 15–16 17–20 21–23 24

Type Valley Flat Peak Flat Peak Flat Valley
Price 0.1 0.2 0.3 0.2 0.3 0.2 0.1
example, the retailer could communicate, along with the price signal, a
suggested consumption level to choose in case multiple solutions are
found. As an alternative, one could modify the setup of the lower level
problem so that it always has a unique solution. In other words, one
must define a lower level problem as a variational inequality where
the functional is strongly monotone on the feasible set, see Luo et al.
(1996). Future research in this direction is needed.

Let us now consider the relationship between the total consump-
tion lt;ω2 þ lit;ω3

and the price πs
t;ω2

paid by the retailer at the spot
market under the dynamic-pricing scheme. As one can see in Fig. 8,
total consumption peaks when the spot price is at the lowest point,
i.e. during the night in both the first and the second day included in
the horizon. Furthermore, another peak of smaller intensity and
shorter duration is observed around the 13th hour of the simulation,
where the spot price appears on average to have a local valley. An in-
tuitive explanation for this is that part of the load cannot be postponed
to the following night (or shifted to the previous one) without violat-
ing the comfort band; therefore accepting a locally minimum price is a
good compromise. Observing this type of behaviour was one of the
reasons behind the choice of a model capturing the dynamics in the
consumer flexibility. Finally, the energy Es purchased by the retailer
at the spot market resembles the pattern of the average consumption,
though shifted somewhat up due to the lower expected costs for
down-regulation compared to up-regulation.

Finally, it is of interest to analyse the impact of the introduction of
dynamic prices on the retailer's energy imbalance. Indeed demand
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response, if managed with correct policies, has the potential to reduce
both the magnitude and the total cost of regulation. Deviations from
the day-ahead schedule and imbalance penalties are shown in Figs. 9,
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It is worth pointing out that generally the retailer prefers being long,
i.e. contractingmore energy at the spotmarket than needed on average.
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This is confirmed by the prevalence of down-regulation in the three
figures. Furthermore, we remark that in the TOU-price case in Fig. 10,
the largest imbalances are moved to the valley hours. In a similar
fashion, the retailer manages to move the largest imbalances away
from periods where regulation prices peak under dynamic pricing.
This is illustrated in Fig. 11.

The main results for the retailer in the simulations with fixed, TOU
and dynamic price are summarised in Table 3. It emerges from these
results that the retailer improves its performance when it is allowed
to send a dynamic price signal to its flexible consumers. The expected
profit ϕ(x,y) rises by approximately 5% compared to the fixed-price
case, both due to an increase in revenues and a cost reduction. On the
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contrary, the TOU-pricing scheme yields the lowest profits among the
three cases considered.

The retailer revenues consist of returns of the sale of energy for flex-
ible and inflexible consumption at the price imposed by the retailer,
that is

XNT

t¼1

π̃t;ω2
lt;ω2

þ π̃t;ω2
lit;ω3

: ð38Þ

The two components, averaged over the scenarios used in this
example, are presented separately in the table. In the case with TOU-
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price, revenues from the flexible part of the load are dramatically
lower if compared to the corresponding quantities with fixed- and
dynamic-price. This clearly indicates that this pricing scheme is the
most favourable to the consumers. With dynamic pricing, the total rev-
enues are maximised, indicating that the retailer is fully exploiting its
market power over the consumers.

The costs for the retailer are presented in two different formula-
tions. In the first formulation they are calculated by summing the
payment for purchasing power at the spot market and the cost
(revenue) of buying (selling) energy at the real-time market

XNT

t¼1

πs
t;ω2

Est þ π↑
t;ω2

ΔE↑t;ω2 ;ω3
−π↓

t;ω2
ΔE↓t;ω2 ;ω3

: ð39Þ

The payment at the spot market is lowest with dynamic-pricing,
i.e. when the retailer can indirectly shift the load by communicating a
price signal to the consumer,while the TOUpricing scheme ranks second.
The results in the real-time market seem, at a superficial analysis, coun-
terintuitive, since the revenues are lower in the dynamic-price case
than in the fixed-price one. However, it is not straightforward from this
formulation to understand whether dynamic prices can help to achieve
Table 3
Market performance of the retailer in the simulations with fixed and dynamic price. All
the values are averages for the considered scenarios expressed in €.

Retailer performance index Pricing

Fixed TOU Dynamic

Profits 2.3139 2.2296 2.4286
Revenues Flexible load 0.7050 0.4300 0.7180

Inflexible load 2.7155 2.8865 2.7868
Total 3.4205 3.3164 3.5049

Costs Spot market 1.2146 1.1676 1.1578
Regulation market −0.1080 −0.0808 −0.0814
Total 1.1067 1.0868 1.0763

Costs (reformulated) Perfect information 1.0970 1.0781 1.0680
Real-time penalties 0.0096 0.0088 0.0083
Total 1.1067 1.0868 1.0763
better results in terms of imbalance costs. For this reason we consider
reformulation (30) and break down the retailer costs in the following
way

XNT

t¼1

πs
t;ω2

lt;ω2
þ lit;ω3

� �
þ ψ↑

t;ω2
ΔE↑t;ω2 ;ω3

þ ψ↓
t;ω2

ΔE↓t;ω2 ;ω3
ð40Þ

where the first term can be considered as the spot market costs if the
retailer had perfect information on future consumption, and the last
two terms are the imbalance penalties, i.e. the cost of imperfect informa-
tion. As shown in Table 3, not only the spot market “virtual” payment
under perfect information, but also the imbalance costs behave according
to intuition. Indeed, the dynamic pricing scheme (which is optimal)
performs best, followed by the casewith TOU price (which is suboptimal,
but designed to reduce costs on average), while the fixed price case ranks
last. This confirms that demand response can be employed both for
reducing the cost of energy procurement (i.e. peak-shifting) and for
cutting the regulation cost.

The results of the simulations for the consumers are summarised
in Table 4. Note that the consumer costs in this table are equal to
the retailer revenues in Table 3. As already mentioned in the discus-
sion above, the electricity procurement payments for the consumers
are maximised under the dynamic pricing scheme, and lowest with
TOU price. Especially the fact that the consumer payments for the
flexible part of the load are highest with dynamic pricing tells us
Table 4
Consumer results in the simulations with fixed and dynamic price. All the values are
averages for the considered scenarios.

Consumer result index Unit Pricing

Fixed TOU Dynamic

Costs Flexible load € 0.7050 0.4300 0.7180
Inflexible load € 2.7155 2.8865 2.7868
Total € 3.4205 3.3164 3.5049

Price Flexible load €/kWh 0.2000 0.1136 0.1885
Inflexible load €/kWh 0.2000 0.2126 0.2053



Table 6
Consumer results in simulations with different demand flexibility. All the values are aver-
ages for the considered scenarios.

Consumer result index Unit Flexibility

High Medium Low

Costs Total € 3.3486 3.5049 3.6524
Flexible load € 0.5517 0.7180 0.8757
Inflexible load € 2.7969 2.7868 2.7767

Price Flexible load €/kWh 0.1870 0.1885 0.1921
Inflexible load €/kWh 0.2060 0.2053 0.2045
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that dynamic prices alone do not necessarily result in higher benefit
for the flexible consumers. In this example, the consumer is better
off with TOU- or fixed-price contracts than with a dynamic-price
one with equal average prices over the day. Reductions in the average
real-time consumer price could be considered as an incentive for con-
sumers to switch to dynamic-price contracts. Therefore, determining
an average value making dynamic real-time prices beneficial also for
consumers is an interesting problem for which models of this type
could be employed. Finallywe point out that, despite the electricity pro-
curement costs for the consumers are higher in the dynamic-price case
compare to the fixed pricing scheme, the average price paid by the flex-
ible part of the load decreases quite sensibly. This implies that the total
electricity consumption is higher in the dynamic-price case.

To conclude, we can interpret the reduction of the market costs for
the retailer in the dynamic-price case as an increase of social welfare.
This is because the transfer of money from consumers to retailer can-
cels out in a social welfare calculation. Since there were no deviations
from the comfort band in any of the cases and scenarios considered in
the example, we can conclude that the consumer benefit is constant.
As a result, the social welfare is given by the generation costs changed
in sign. These cannot be directly calculated, since this model does not
include the supply side. Nevertheless, we can consider the reduction
in retailer market costs as a proxy for the reduction of generation
cost. On the other hand, the increase in consumer payments to the retail-
er implies that the redistribution of this additional welfare between the
players might not be fair under this retailer-consumer configuration.
Once again, though, we point out that these considerations hold for the
considered example and with the considered setup. Different dynamic
price contracts, i.e. different parameters in the constraints (5)–(7),
could yield a fairer redistribution of the welfare.

4.3.2. Impact of consumer flexibility
We now consider how different levels of demand flexibility im-

pact the results for both the retailer and the consumer. This is done
by carrying out two additional simulations with different distribu-
tions into the consumer groups described in Section 1. In the first
run of the model, aimed at simulating a situation of high demand flex-
ibility, we consider the consumer group distribution [0.6, 0.3, 0.1].
The situation is reversed to the distribution [0.1, 0.3, 0.6] in the last
run of the model, simulating low demand flexibility. Both cases are
compared to the reference case in the previous section, where demand
flexibility is medium due to the choice of the distribution [0.3, 0.4, 0.3].

Table 5 illustrates the retailer market performance in the three cases
of demand flexibility, this time only with dynamic price. Observe that
higher demand flexibility results in lower average profits for the retailer.
This is the result of two contrasting trends. On the one side, total revenues
for electricity sale diminish as demand flexibility increases. This is in line
with the expectations that retailers have lower market power, i.e. ability
to impose prices to the demand, as consumers get more flexible. On the
other side, total market costs drop as well with higher consumer
Table 5
Market performance of the retailer in simulations with different demand flexibility. All
the values are averages for the considered scenarios.

Retailer performance index Unit Flexibility

High Medium Low

Profits € 2.3199 2.4286 2.5311
Revenues Flexible load € 0.5517 0.7180 0.8757

Inflexible load € 2.7969 2.7868 2.7767
Total € 3.3486 3.5049 3.6524

Costs Spot market € 1.1058 1.1578 1.2057
Regulation market € −0.0771 −0.0814 −0.0845
Total € 1.0287 1.0763 1.1212

Costs (reformulated) Perfect information € 1.0211 1.0680 1.1114
Real-time penalties € 0.0076 0.0083 0.0099
Total € 1.0287 1.0763 1.1212
flexibility. This drop is due to cuts both in spot market costs for electric-
ity procurement (perfect information row in Table 5) and in regulation
penalty costs. Nevertheless the overall effect is still of decreasing retailer
profits with increasing flexibility, because the cuts in market costs are
not large enough to offset the reduction in revenues.

The results for the consumer are shown in Table 6. As already point-
ed out, demand experiences a cut in the electricity costs as it gets more
and more flexible. This is due to a quite dramatic drop in the cost of
flexible load and only a slight increase in the cost of must-serve load.
Therefore, there is a clear economic signal suggesting the demand to
adopt more flexible consumption preferences, and to increase the
share of flexible demand. The decrease in the average price per kWh
paid for flexible load confirms that a more cost-effective load pattern
is adopted by the consumer.
5. Conclusions

This paper presents a game theoretical model for the participation
of energy retailers in electricity markets with flexible demand and
real-time consumer prices. The hierarchical structure in the relation be-
tween retailers and consumers, pertaining to the so-called Stackelberg
(or leader–follower) games, is imposed by the formulation as a bilevel
optimisation problem. The model has three-stages to reflect the fact
that decisions aremade day-ahead, real-time and ex-postwith different
information structure on the stochastic variables involved. Furthermore
a dynamicmodel for the demand flexibility based on realistic consumer
preferences is employed.

In an illustrative example, themodel is simulated in a realistic setup,
which allows the comparison of the results obtained using the optimal
dynamic price with the ones under fixed and time-of-use pricing
schemes. We show that, in the dynamic-price case, the retailer, while
maximising its profits, sends the consumer a price-incentive to shift
his/her demand to periods of the day characterised by low spot market
prices. Similarly, a drop in the imbalance costs borne by the retailer,
due to deviations of the actual consumption from the energy contracted
day-ahead, is experienced when switching from a fixed or a time-of-use
to a real-time consumer price regime. It turns out that the dynamic pric-
ing scheme minimises the retailer net payments in the day-ahead and
real-time markets. On the contrary, the fixed price yields the highest
costs among the pricing schemes considered, while the time-of-use
price has a middle performance.

We link the reduction of procurement and regulation costs, obtained
by shifting the load, to an increase in social welfare. As simulations
show, though, the redistribution of the additional welfare is not fair in
the dynamic-price scheme considered, as the retailer absorbs entirely
the added welfare. Indeed, the consumer payments to the retailer are
highest under the dynamic-pricing scheme in the considered example.
On the contrary, the time-of-use setup yields the lowest costs for the
consumers among the pricing schemes considered. These results,
however, do not account for the effect of competition among retailers.
In any case, particular care should be taken in designing pricing
schemes that can effectively motivate consumers' participation in
real-time price programmes.
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Finally, through a sensitivity analysis it is shown that, once real-time
contracts are in place, there is an economic incentive for the consumers
to increase their flexibility.

Future extensions of this research could move in several directions.
Different utility functions to model the trade-off for the consumer
between electricity price and comfort could be defined and simulated.
For example, the lower and upper bounds of the comfort band could
be linear functions of the price, or a quadratic penalty for deviations of
the temperature from a reference could be used. Furthermore, different
formsof consumerflexibility could be considered, for example bymodel-
ling the consumption of “intelligent appliances” such as price-responsive
washingmachines and electric vehicles. Besides, a different setup ensur-
ing a unique solution to the lower-level optimisation problem could be
proposed so as to improve the controllability of the load from the retailer
perspective, i.e. to ensure that the strong Stackelberg solution is also
unique. Furthermore, the effect of renewable power on market prices
could be introduced in themodel, thus paving theway for an assessment
of the value of demand response programmes in the integration of
renewable generation in the system. Additionally, the optimisation
model for the retailer could be refined by considering a diversified port-
folio including e.g. futures and options, and by including risk manage-
ment. Finally, competition among retailers could be modelled in the
framework of Equilibrium Programs with Equilibrium Constraints (EPECs).
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