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State-space adjustment of radar rainfall and skill score

evaluation of stochastic volume forecasts in urban

drainage systems

Roland Löwe, Peter Steen Mikkelsen, Michael R. Rasmussen

and Henrik Madsen
ABSTRACT
Merging of radar rainfall data with rain gauge measurements is a common approach to overcome

problems in deriving rain intensities from radar measurements. We extend an existing approach for

adjustment of C-band radar data using state-space models and use the resulting rainfall intensities as

input for forecasting outflow from two catchments in the Copenhagen area. Stochastic grey-box

models are applied to create the runoff forecasts, providing us with not only a point forecast but also

a quantification of the forecast uncertainty. Evaluating the results, we can show that using the

adjusted radar data improves runoff forecasts compared with using the original radar data and that

rain gauge measurements as forecast input are also outperformed. Combining the data merging

approach with short-term rainfall forecasting algorithms may result in further improved runoff

forecasts that can be used in real time control.
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INTRODUCTION
Radar observations are increasingly used for measuring
rainfall in urban areas. The good spatial coverage, however,
comes along with problems in determining the rainfall

intensity due to problems such as beam attenuation and
the drop size dependency of the relation between reflectiv-
ity and rain intensity. Merging the radar measurements

with gauge observations is a practitioner’s approach to
this problem.

Classically, radar rainfall measurements are adjusted
with mean field bias to reflect ground measurements as

well as possible. Thorndahl et al. () follow this approach
in a two-step adjustment that is used operationally within
the real time control framework in the Copenhagen area

(Grum et al. ). Uncertainties of the ground measure-
ments are thereby neglected. Further, assumptions need to
be made on how to apply rain gauge point measurements

to the radar rainfall plane. Integrating gauge and radar rain-
fall measurements using state-space models has been
proposed by several authors in the past. Chumchean et al.
() and Costa & Alpuim () use these techniques
for temporal updating of the mean field bias. Brown et al.
() integrate spatial interaction into their model via a
vector autoregressive process. Similarly Grum et al. ()
construct a simple state-space model that implicitly enables
spatial interaction between the pixels and allows for the inte-

gration of a multitude of measurement types that can be
related to the rainfall process.

We adopt this last approach due to its ability to incor-

porate spatial interaction and various measurement types
and extend the uncertainty structure. The reconstruction of
the rainfall process is then used to create stochastic runoff
forecast from a simple grey-box model. We evaluate the

quality of different forecasts using skill scores.
METHODOLOGY

Data and catchments

We consider two catchments in the Copenhagen area. The
Ballerup catchment has a total area of approx. 1,300 ha. It
is mainly laid out as a separate system but has a small com-

bined part. The runoff in this area is strongly influenced by
rainfall-dependent infiltration.
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The Damhusåen catchment is located close to Ballerup

but drains to a different treatment plant. We consider the
northern part of the catchment with a total area of approx.
3,000 ha. The catchment is laid out as a combined sewer

system and a multitude of combined sewer overflows are
located in the area. Flow measurements are available from
both catchments in 5 min resolution.

A C-band radar is operated by the Danish Meteorologi-

cal Institute (DMI) in Stevns approx. 45 km south of the
considered catchments. The spatial resolution of the radar
pixels is 2 × 2 km. The provided radar data are rain intensi-

ties derived using the Marshall Palmer relationship, where
the coefficients have been adjusted such that the average
rainfall depth observed by the radar during the considered

period matches selected gauge measurements (Thorndahl
et al. ). We denote these data ‘unadjusted radar data’.
We consider an area of 9 × 11 pixels that covers the whole
Copenhagen area (Figure 1).

Within the catchments online rain gauge measurements
are available from the Danish Spildevandskomiteen (Danish
Wastewater Committee) network (Jørgensen et al. ).

The gauges marked with grey circles in Figure 1 are used
to adjust the radar measurements. Only a few of the avail-
able gauges are used for this purpose as one objective for
Figure 1 | Considered area with C-band radar pixels, Ballerup (left) and Damhusåen (right) catch

gauges used as input for reference simulations in the Ballerup (white rectangles) a
using radar rainfall data is to derive rain intensities from

as few ground measurements as possible. To make results
comparable, we use the same gauges that are used for
radar adjustment in a real time control project in the Copen-

hagen area (Grum et al. ). A reference simulation is
performed where flow forecasts are generated using rain
gauge measurements as an input. The gauges for these simu-
lations were selected with respect to their location to the

catchment as marked in Figure 1.
We have selected a 3-month period of measurements

from 25/06/2010 until 29/09/2010 for this study. The

period contains several summer storms that should be rel-
evant for control applications in urban drainage systems
(UDS). The radar data contain extensive gaps during smaller

rain events from 27/08/2010 23:20 to 30/08/2010 12:50,
07/09/2010 08:20 to 08/09/2010 11:50 and 09/09/2010
09:20 to 14/09/2010 07:10.

A modelling time step of 10 min is adopted correspond-

ing to the resolution of the provided radar measurements.
The flow and rain gauge data are averaged to match this
time step. Considering the size of the two catchments and

the resulting concentration time of more than one hour,
this resolution can be considered sufficient to correctly cap-
ture the runoff process (Schilling ).
ments. Rain gauges in the area (small dots), gauges used for radar adjustment (grey circles),

nd Damhusåen (black triangles) catchments.
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Radar adjustment

We investigate a state-space approach that has first been
described in Grum et al. () and Grum et al. (). We

only give a brief summary here and describe parts that
differ from these previous publications. The general setup
is as follows:

• Create a linear model that predicts rainfall at the next time
step for every pixel. Each pixel value is considered a state.

• Relate model state predictions and observed rainfall

values from different sources in a set of observation
equations.

• Determine the adjusted rainfall values by ‘averaging’

between model prediction and observation using a
Kalman filtering approach. The filtering is performed
based on the ratio of the uncertainties of model predic-

tions and observations. We refer to Grum et al. ()
for a simplified explanation of this approach.

In the model equations as well as in the uncertainty
description for model predictions and observations, par-
ameters need to be defined. These are estimated using a
maximum likelihood routine, maximizing the probability

of obtaining all the measured values included in the obser-
vation equations.
Model setup

The adjusted rainfall depth in each radar pixel in the con-
sidered area is considered a state. The rain intensity of the
current time step is predicted as a weighted average of the

rain intensities in the 3 × 3 neighbourhood of the pixel at
the previous time step:

Xi,j,t ¼
X1
k¼�1

X1
l¼�1

αk,lXiþk,jþl,t�1 þ ei,j,t (1)

Xi,j,t refers to the adjusted rainfall value at pixel (i,j) in
the radar matrix at time step t; ei,j,t refers to the correspond-

ing gaussian prediction error with variance σx and αk,l to the
weighting factors. The pixels adjacent to pixel (i,j) are
indexed with k for row shifts and l for column shifts. We

define:

αk,l ¼
a central pixel, k ¼ l ¼ 0
1� a
8

non-central pixel, k ≠ 0, l ≠ 0

8<
: (2)
i.e. the sum of the weighting factors is 1 and all non-central

pixels in the 3 × 3 neighbourhood receive the same weight-
ing. In matrix notation we have:

Xt ¼ AXt�1 þ et (3)

where X is a vector containing 99 rainfall state values corre-
sponding to 9 × 11 pixels, A is a 99 × 99 weighting matrix
performing the spatial averaging defined in (1) and e is a

99 × 1 vector of model errors with covariance matrix Σ1
with constant variance σx for all states on the diagonal
and 0 on all off-diagonal elements, i.e. no correlation

between the states. States and measurements are related in
the observation Equation (4):

Yt ¼ CXt þ st (4)

The observation vector Yt contains 99 non-adjusted
measurements from all radar pixels and eight rain gauge

measurements. The 107 × 107 matrix C relates states and
observations (see Grum et al. ) and s is a 107 × 1
vector of observation errors with covariance matrix Σ2.
Observation error covariance structures

We investigate different structures of the observation error
covariance matrix Σ2. Model 1 (Equation (5)) includes
constant variances σR and σG for radar and rain gauge
observations, respectively. Spatial correlation between

observations is not considered:

Σ2 ¼

σR

. .
.

σR

0

0

σG

. .
.

σG

2
666666664

3
777777775

(5)

Model 2 extends the above setup by considering

correlation ρR only between neighbouring radar pixel obser-
vations. The correlation is found in the parameter estimation
procedure.

Model 3 considers correlation for each radar pixel

observation with all other pixels. The correlation is assumed
to decay as a power function of distance between the pixels
according to Equation (6), where the distance D between

pixels is defined in no. of pixels, and parameters ρa and ρb
are estimated from the variogram of the radar observations



587 R. Löwe et al. | State-space adjustment of radar rainfall and skill score evaluation in UDS Water Science & Technology | 68.3 | 2013
and fixed during the maximum likelihood estimation of the

whole model. No correlation is considered for the rain
gauge measurements:

ρ ¼ ρa �Dρb (6)

Model 4 is equivalent to Model 1. However, we do in

addition introduce an error marker. If a radar or rain
gauge observation is missing, the corresponding variance
is set to a large value and the correlation values are set to 0.

Stochastic runoff forecasting

The estimation of rainfall forecast models does not permit a

direct evaluation of the quality of the adjusted radar data.
We therefore generate runoff forecasts with different rainfall
inputs and evaluate the forecast quality. We use stochastic
grey-box models for generating the forecasts with focus on

wet weather periods as these are most relevant for real
time control. When generating predictions we assumed a
perfect rain forecast was available.

A lumped model consisting of a cascade of two reservoirs
is applied for both catchments. The model setup and develop-
ment is described in Breinholt et al. () using the (smaller)

Ballerup catchment as an example. For the (bigger)
Damhusåen catchment better forecasts could most likely be
obtained by applying a more elaborated model. However,

here we are mainly interested in the effect of different rainfall
inputs on the forecast quality, not the best forecasting model.
We consider the following lumped model structure:

d
S1,t
S2,t

� �
¼

A � Pt þ a0 � 1
K
S1,t

1
K
S1,t � 1

K
S2,t

2
64

3
75dtþ σ(S1,t)

σ(S2,t)

� �
dωt (7)

log Qkð Þ ¼ log

 
1
K
S2,k þDk

!
þ ek (8)

Similarly to the rainfall model described above, the

model is laid out as a state-space model where Equation (7)
is termed system or state equation and Equation (8) obser-
vation equation. S1 and S2 correspond to the storage states,
A to the impervious catchment area, Pt to the rain intensity,

a0 to the mean dry weather flow and K to the travel time con-
stant. The uncertainty of model predictions is captured by the
Wiener process dωt with incremental variance σ2. The var-

iance depends on the current state values, so a Lamperti
transform is applied and the estimation performed with
transformed states (Breinholt et al. ). In Equation (8) Q
corresponds to the observed flow values, D describes the
variation of the dry weather flow using trigonometric func-
tions and e corresponds to the observation error with

standard deviation σe.
Differently fromBreinholt et al. (), we do not estimate

the model parameters based on one-step ahead flow fore-
casts. The runoff forecasts are intended to be used in a

model predictive real time control setup (Grum et al. ).
The relevant decision variable in the setup is expected
runoff volume over the prediction horizon. We therefore

compute the expected flow values for the next 10 time steps
(step length Δt¼ 10 min) starting from time step k and inte-
grate them to a predicted runoff volume (Equation (9)):

V̂k ¼
X10
i¼1

Q̂kþi

 !
� Δt (9)

The extended Kalman filter used in the modelling pro-

cedure also provides a variance for each predicted flow
value. Assuming normal distribution, we derive a 95%predic-
tion interval on the flow predictions for each horizon.

Equivalent to Equation (9), we integrate the upper and
lower bounds for the different horizons:

V̂k,up ¼
X10
i¼1

(Q̂kþi þ n0:975 � σQ̂kþi
)

 !
� Δt (10)

V̂k,low ¼
X10
i¼1

(Q̂kþi � n0:975 � σQ̂kþi
)

 !
� Δt (11)

In Equations (10) and (11) indices ‘up’ and ‘low’mark the
upper and lower prediction bounds, respectively, n0.975 is the
97.5% quantile of the standard normal distribution and σQkþi

is the standard deviation of the flow prediction i steps into
the future starting from time step k. Equations (10) and (11)
correspond to an average of the upper and lower flow predic-
tion bounds, not to actual prediction bounds for the volume

forecast, although we obtain a simplified estimate for the
uncertainty of volume predictions that we here apply to com-
pare the quality of forecasts generated using different rainfall

inputs.
Comparing the bounds derived in Equations (10) and

(11) to the observed runoff volume, we find the optimal

model parameters by minimizing the skill score (Sk)
described in the next section. As wet weather periods are
the main focus of real time control, only the model par-
ameters relevant to runoff (A, K, uncertainty parameters)
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are estimated and dry weather periods are excluded from the

evaluation of the skill score function. The dry weather par-
ameters (a0, D) for the two catchments are estimated
deterministically from a 14-day dry weather period at the

beginning of the considered period and then fixed during
estimation of the other model parameters.

The model parameters describing forecast uncertainty
are only influenced by wet weather situations, resulting in

a good fit during wet weather (e.g. Figure 2) and an overes-
timation of uncertainty during dry weather. We consider this
uncritical as we are here interested only in the forecast qual-

ity during rain events. In an online application, the model
structure needs to be changed to properly distinguish
between wet and dry weather periods.

Forecast evaluation

When evaluating stochastic flow forecasts, we need to con-
sider the quality of prediction intervals rather than just a
mean squared error between prediction and observation.
Criteria for forecast evaluation were proposed by Jin et al.
() and Thordarson et al. ():
Figure 2 | Left – mean area rain intensities for the Ballerup catchment from gauge measurem

adjusted radar measurements (bottom) without (Model 1, full thin line) and with (Mod

the Ballerup catchment with a forecast horizon of 100 min.
• Reliability (Rel) – percentage of observations not con-

tained in a 95% prediction interval. A reliability of 5%
means that we, as intended, include 95% of the obser-
vations in the interval.

• ARIL – average width of the 95% prediction interval
(¼ sharpness Sh) relative to observation.

• Skill score (Sk):

Sk ¼ Shþ 2
0:05 ×N

X
i
Ui þ Lið Þ

where N is the number of wet weather observations, Sh is

the average width of the 95% prediction interval and Ui

and Li are the distances of the i-th observation from the
upper/lower prediction interval (over-/undershoots). Ui

and Li are 0 if the observation is contained in the predic-
tion band.

We compute these criteria for a runoff volume predic-
tion interval as described above. Only wet weather periods
are considered in the computation of the evaluation criteria
to obtain a more clear indication of forecast quality during

rain events.
ents (top), non-adjusted radar measurements (centre, missing values in this case) and

el 4, dotted bold) error marker. Right – predicted and observed flows for a sample event in



Table 1 | Parameter values for state-space radar adjustment models

Model a σx σR σG ρR ρa ρb

Model 1 0.20 1.23 × 10�4 8.12 × 10�4 9.12 × 10�4 – – –

Model 2 0.20 1.58 × 10�4 4.90 × 10�4 3.39 × 10�1 0.22 – –

Model 3 0.20 1.51 × 10�4 8.12 × 10�4 3.80 × 10�1 – 0.614 0.384

Model 4 0.20 1.23 × 10�4 8.12 × 10�4 9.12 × 10�4 – – –

Table 2 | Forecast quality criteria for the two catchments with different rainfall inputs.

Measures are given in m3 per 100 min and values are evaluated in wet weather

periods only

Ballerup catchment Damhusåen catchment

Model input
Rel
(%)

ARIL
(%) Sk

Rel
(%)

ARIL
(%) Sk

Rain gauge 5 65 1,466 4 116 11,777

Radar no
adjustment

5 56 1,378 6 95 12,283

Radar Model 1 5 56 1,342 6 90 10,975

Radar Model 2 5 57 1,345 5 92 10,721

Radar Model 3 5 64 1,403 6 93 11,265

Radar Model 4 5 59 1,339 5 94 10,479
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RESULTS

Table 1 shows the parameters derived for the radar adjust-
ment Models 1–4. The weighting factor a¼ 0.2 of the

central pixel indicates that the model predictions include
information from the whole 3 × 3 neighbourhood, rather
than just the central pixel. The variance of the model predic-
tions σx is generally estimated smaller than that of the

observations σR and σG. When computing the adjusted rain-
fall values, the Kalman filter will therefore show a tendency
to smooth the observed values.

We further observe that including spatial correlation
between the radar observations into the model (Models 2
and 3) increases the variance of the rain gauge observation

errors. The correlation term reduces the weight of the single
radar observation and allows for retrieving information from
the gauges also if they are considered more uncertain. Simi-

larly, the variance of the model prediction errors σx can be
increased in this case as less weight is put on the observations.

Generally, the estimation of the state-space radar adjust-
ment models using the described maximum likelihood

approach has turned out to be problematic in application.
Similar likelihood values may be obtained for rather different
sets of parameters leading to poor identifiability of themodels.

The improved flow forecasts obtained with adjusted radar
input as compared with, for example, rain gauge input
(Table 2) indicate that wewere able to identify reasonable par-

ameter sets. Improved estimates can most likely be obtained if
an objective function based on flow measurements is also
used to find the parameters of the rainfall adjustment models.

Table 2 shows the results of the stochastic runoff volume

forecasts generated using the different rainfall inputs. The
prediction intervals in the Damhusåen catchment are gener-
ally wider than in the Ballerup catchment, indicating a too

simple model structure for this catchment. Still, the simple
model allows us to judge the quality of different rainfall
inputs for flow forecasting. Comparing the volume forecast

quality obtained with pure rain gauge and pure radar rainfall
input to that obtained with adjusted radar rainfall input, we
notice skill scores improved by 3–15%. The prediction
intervals are generally narrower when using radar rainfall

input compared with rain gauge input.
Including correlation into the covariance structure of

the radar observations (Models 2 and 3) does not give

clear improvements of the runoff forecasts. At this stage it
is not possible to conclude if consideration of this effect
actually has no significant effect on flow predictions. A
better estimation method for the radar adjustment models

may be able to exploit this effect better.
Figure 2 illustrates the effect of using an error marker in

the adjustment of the radar data. The radar observations are

missing for the small events between time steps 11,500 and
11,800. Using the error marker in Model 4, we are able to
reconstruct rainfall values from the gauge observations.

The runoff prediction of this model is consequently closer
to the observation than that of Model 1, where forecast
values increase not as a result of rainfall input but due to
the adjustment of the runoff model to new (increasing)

flow observations (state updating, cf. Breinholt et al. ()).
CONCLUSIONS

We have evaluated the possibility of adjusting radar rainfall
measurements with rain gauge measurements using state
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space models and evaluated the effect of the adjustment on

runoff forecasts for two catchments generated from stochas-
tic grey-box models. With the adjusted radar data as input
we obtain improved runoff forecasts as compared with

using rain gauge or non-adjusted radar data as model
input. Using an error marker allows the reconstruction of
adjusted rainfall values also, if radar or some of the gauge
observations are missing.

Despite the improved flow forecasts obtained with the
adjusted radar data, we see several possibilities for improve-
ments of the presented approach. Estimating parameters for

the radar rainfall adjustment based on rainfall observations
only has proven difficult. Better results can most likely be
obtained by including a runoff prediction into the rainfall

adjustment model and comparing predicted and observed
runoff.

Further, we have considered an area of 9 × 11 C-band
radar pixels in this study. This area is sufficient to cover

the whole of Copenhagen. However, it is too small to gener-
ate short-term rainfall forecasts from the radar. Preferably,
the whole radar matrix of 240 × 240 pixels should be

considered for this purpose corresponding to 57,600
observations. Operating on variance matrices with
57,600 × 57,600 entries in the Kalman filtering procedure

is impossible. A modified procedure that directly estimates
the Kalman gain may be a possible solution to this problem.

With respect to the runoff forecasting models, improved

forecasts for the bigger catchment can very likely be obtained
by applying a more elaborated model structure that accounts,
for example, for effects such as overflows. Further, im-
provements could be obtained by modelling prediction

uncertainties depending on rainfall characteristics. These
characteristics should aim to identify convective events as
these imply the highest forecast uncertainties. Using these

methods we aim to provide forecasts that clearly improve
decision making in real time control of sewer networks.
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