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a  b  s  t  r  a  c  t

Occupancy  modeling  is  a necessary  step  towards  reliable  simulation  of  energy  consumption  in  buildings.
This  paper  outlines  a method  for fitting  recordings  of  presence  of  occupants  and  simulation  of  single-
person  to multiple-persons  office  environments.  The  method  includes  modeling  of  dependence  on  time
of day,  and  by  use  of a filter  of  the observations  it is able  to capture  per-employee  sequence  dynamics.

Simulations  using  this  method  are  compared  with  simulations  using  homogeneous  Markov  chains  and
show  far  better  ability  to  reproduce  key  properties  of  the  data.

The method  is  based  on inhomogeneous  Markov  chains  with where  the  transition  probabilities  are
estimated  using  generalized  linear  models  with  polynomials,  B-splines,  and  a filter  of passed  observations
as  inputs.  For  treating  the  dispersion  of the  data  series,  a hierarchical  model  structure  is used  where  one
model  is for  low  presence  rate,  and  another  is for  high  presence  rate.
. Introduction

Occupants interact with the indoor environment through heat
nd carbon dioxide emission, switching lights on/off, opening win-
ows, etc. Occupancy profiles are therefore a necessary input to
uilding simulation models that include indoor environment vari-
bles, ventilation loads, electric power consumption, etc. The most
ommon way of considering occupancy in simulation tools is by
sing, and if necessary repeating, one static occupancy profile [1,2].
ypically, the used profile is constant for weekdays and weekends,
espectively. However, occupants do not arrive in buildings or leave
uildings at fixed times. A study by [3] reported that on average the
ffices were occupied 46% of the time, which is supported by the
tudy by [4] where it was found that only half of the work day was
pent at the work station. Therefore building systems controlled
y occupant presence have shown great energy saving potential in
ffice buildings.

Recently, occupants presence models have been developed by
5,4,6–8]. These models include behavior of occupants based on

mpirical data. Refs. [6] and [9] both developed occupant presence
odels as a first order Markov chain. Wang’s data fits well with

he exponential distribution when observing individual offices and
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vacant intervals. However the exponential model was  not validated
for occupied intervals. Ref. [4] considered occupant presence as an
inhomogeneous Markov chain interrupted by occasional periods of
long absence. By using a profile of probability of presence as input to
a Markov chain they were able to reproduce intermediate periods
of presence and absence distributed exponentially with a time-
dependent coefficient as well as fluctuations of arrivals, departures
and typical breaks. They defined a parameter called the “parameter
of mobility”. This parameter indicates how much people move in
an out of the zone, by correlating the tendency of coming to work
with the tendency of leaving.

Ref. [5] looked at occupancy based on more detailed prior
knowledge about time consumption on different tasks in a working
day. As input to their model they included information on the inter-
mediate activities of the occupants such as ‘receiving unexpected
visitor’, ‘walking to printer’, and ‘having lunch’. They were able to
simulate occupancy patterns using a probabilistic method for dif-
ferent intermediate activities. The model by [5] is a step towards a
more behavioral approach to simulating occupancy.

The focus of the study presented in this paper is to develop
a model for presence of occupants for simulation of single per-
son presence sequences in an office environment. The study seeks
answers to the following questions:
• How can the dependence of the tendency of being present on the
time of day be modeled?

dx.doi.org/10.1016/j.enbuild.2013.10.001
http://www.sciencedirect.com/science/journal/03787788
http://www.elsevier.com/locate/enbuild
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Nomenclature

AIC Akaike information criterion
BIC Bayes information criterion
HOR high occupancy rate
LOR low occupancy rate
rmse root mean square error
� a time stamp in continuous time
t a time stamp in continuous time
T maximum of t, i.e. t ∈ [0, T]
n a time stamp in discrete time
N maximum of n, i.e. n ∈ {0, a, . . .,  N}
{Xn} a random process in discrete time
Xn the state of the random process {Xn} at time n
xn the observation of the random process {Xn} at time

n
X(i) the ith sequence of observations
pn ∈ [0, 1] the unconditioned probability of Xn = 1
A a matrix
AT A transposed
M number of states in a Markov chain
I the characteristic function
Q the number of sequences of observations
log : R  → R  the natural logarithm
N  the set of natural numbers, {1, b, . . . }
i, j, k ∈ Z integers
�i the mean of the ith sequence of observations

 ̨ the intercept in the linear domain of the generalized
linear model

ˇi the weighting of the ith basis spline in the linear
domain of the generalized linear model

�i the weighting of the ith power of time of day in the
linear domain of the generalized linear model

� the weighting of the exponential smoothing in the
linear domain of the generalized linear model

� the parameter for the exponential smoothing filter
�n the value of the exponential smoothing filter at time

step, n
� a parameter vector

•
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Xn−1 Xn Xn+1

Fig. 1. Illustration of dependence in a Markov chain. The Markov condition says that
the  distribution of future states (here Xn+1 and on) conditioned on the present state

Often the transition probabilities are represented in a probability
Can model dependence based on past behavior improve predic-
tions?

The aim is to present a framework for modeling occupancy
n an office environment and then apply it to fitting data that is
elieved to be representative. The focus will be on modeling what
an be considered “typical” occupant presence sequences, where
typical” is to be judged from data. Sequences of very little pres-
nce are expected to be frequent because of vacation, sickness,
tc. Sequences of significantly more presence than “typical” will be
mitted. The focus is on single-person simulation, and correlation
tructures in data will not be modeled.

The outcome is techniques for an occupancy simulation model
hat can be used in building simulation programs when simu-
ating demand responsive systems such as lighting or ventilation
ystems.

. Methods
In this section, the data collection method and the mathematical
ramework to be used in the analysis will be described.
(Xn) and all past states (up to Xn−1) is the same as the distribution of future states
that are only conditioned on the present state. Therefore, in the graph, Xn−1 and Xn+1

are only connected through Xn .

2.1. Data collection

Occupancy patterns have been measured in an office building
in San Francisco, CA. Data comes from ballast status records in the
control system and have been registered every 2 min. If an occupant
is present at the workspace, the lamp is switched on, and the bal-
last status is on. Once the workspace is unoccupied the lights drop
to preliminary power and are turned off after a delay of 20 min.
The occupants cannot override anything manually. The data col-
lected have been corrected for the delay by setting the last 20 min
of intervals of “presence” to “absence”. However, absences shorter
than 20 min  have not been encountered because of the delay in the
equipment.

Data from 86 workspaces were collected, out of which 29
were unoccupied or occupied by interns. Only data from the 57
workspaces that have been occupied by full-time staff for the entire
measurement period is used.

The model fitting is based on full days in September and
December 2009 and January 2010; 16 days in total. No data points
are missing.

2.1.1. Description of models
All models in the present work are in discrete time. Let t ∈ [0,

T] be a continuous time scale. Choose a natural number, N, and
let � : = T/N. Then tn = n�, n ∈ {0, 1, . . .,  T/�} is a discretization of t
with sample period �. The sample period is equal to the measuring
period, 2 min  in this work.

The notation Xn is introduced as shorthand for the state of the
discrete-time random process {Xt} at time tn. In other words, Xn

refers to {Xt} at time t = n�, in this case n · 2 min.

2.1.1.1. Markov chains. A Markov chain is a time series that meets
the Markov condition stating that conditioned on the present state,
the future is independent of the past [10]. Let 	 represent the set of
possible states of X. Then, in discrete time, {Xn} is a Markov chain
if

∀k ∈ N  : n + k < N, ∀s ∈ 	 :

P

(
Xn+k = s

∣∣X0, X1, . . .,  Xn

)
= P

(
Xn+k = s

∣∣Xn

) (1)

This is illustrated in Fig. 1.
A Markov chain with M states is completely characterized at

time n by the probabilities of transitions to all states:

PXn+1 = j | Xn = i, i, j ∈ {1, . . .,  M}  (2)

This means that the transition probabilities contain the distribu-
tions of the transitions from the states in the Markov chain. Hence,
for each state they sum to one:

∀i ∈ {1, . . .,  M},  ∀n ∈ {1, . . .N} :
M∑

j=1

P  (Xn+1 = j | Xn = i) = 1
(3)
transition matrix.
Because of the constraint in Eq. (3), at each time step the tran-

sition probabilities have M − 1 degrees of freedom for each state,
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L(p; xn) = PXn = xn =
p, xn = 1

(9)

Xn−1 Xn Xn+1

Λn−1 Λn Λn+1
ig. 2. Illustration of dependence in a Markov chain, {Xn} with a covariate, {Zn}. The
nput process is a deterministic process which is assumed to be known.

orresponding to (M − 1)M in total for each time step. When applied
o binary data, M = 2, and hence the model has two  degrees of
reedom at each time step. If the transition probability matrix is
onstant, i.e. 
(n) = 
, 
 ∈ R

M × R
M the Markov chain is said to be

omogeneous. A homogeneous Markov chain has (M − 1)M degrees
f freedom.

.1.1.2. Two-state Markov chains with covariates. Covariates in
arkov chains with only the two states, 0 and 1, can be modeled as

ogit
(
P

(
Xn+1 = 0

∣∣Xn = 0
))

= Z1,n�1, �1Z1,n ∈ R
p (4a)

ogit
(
P

(
Xn+1 = 1

∣∣Xn = 1
))

= Z2,n�2, �2Z2,n ∈ R
q (4b)

here the logistic function denoted logit is defined as

ogit :]0,  1[→ R, logit(x) = log
(

x

1 − x

)
(5)

nd log is the natural logarithm. �1 and �2 are parameter vec-
ors while Z1 and Z2 are design vectors. PXn+1 = 1 | Xn = 0 and
Xn+1 = 0 | Xn = 1 are calculated by application of Eq. (3). This for-
ulation has the advantages that the parameters are unconstrained
hile the resulting probabilities span and never exceed ]0, 1[. This

s a generalized linear model [11] for binomial data, and logit is the
anonical link function which maps from the full range of the real
umbers into ]0, 1[. This model has p + q free parameters.

Z is a design matrix that can contain any observable real input.
ere, functions of time will be used. One design matrix could be

T = (1,  n, n2) (6)

here ZT denotes Z transposed. This would result in a second order
olynomial of time to be passed through the logistic function. In
6), 1 means that an offset is included in the model (for n = 0), and
he parameter representing this offset is denoted ˛.

The dependence of {Xn} on past values and on the exogenous
rocess is illustrated in Fig. 2. Since Eqs. (4) describe transition
robabilities which vary with some exogenous process, this Markov
hain is inhomogeneous. When dependence on time of day is used,
he parameter in the linear domain of the generalized linear models
ill be denoted �i where i is the power of the time of day.

Generalized linear models are implemented in R and can be
tted using the glm function.

.1.1.3. Natural splines. Splines are piecewise polynomial func-
ions. In this work, B-splines with natural boundary conditions are
sed. These are piecewise third order polynomials with the bound-
ry condition that the second derivatives are zero at the end-points
12]. The polynomials are between knots for which number and
ositions have to be chosen. In this work, knots are always equidis-
antly spread.

In R, the basis functions of natural splines can be calculated using
he splines package. By using the basis functions in the design
atrix, splines are fitted as input to the generalized linear model.
Where natural splines are used in the general linear models, the

arameters in the linear domain are denoted ˇi where i means that
t relates to the ith basis function.
Fig. 3. A Markov chain with exponential smoothing as covariate in the transition
probabilities.

2.1.1.4. Exponential smoothing. Exponential smoothing is a low-
pass filter. It is a weighted average, with the weights decaying
exponentially with time difference. The speed of the decay is con-
tained in the only parameter, � ∈ [0, 1]:

�n = �Xn + (1 − �)�n−1 (7)

Since {�n} is a weighted average of {Xn}, it has the same range as
{Xn}.

In the framework of Eqs. (4), the design matrix for a model using
exponential smoothing and no covariates is

Zn = (1,  �n−1)T (8)

Fig. 3 is a graph of the information flow using exponential smooth-
ing and no covariates. As seen from Fig. 3, the Markov condition is
still respected when using the exponential smoothing as input as
long as the most recent, and only the past states of {Xn} are used in
the design matrix as in Eq. (8). Notice that the exponential smooth-
ing adds two  parameters to the model, one is the exponent, �, the
other is the parameter in the linear domain of the generalized linear
model. The latter is denoted � .

Finally, both filtered states and exogenous processes can be used
in the design matrix. A graph of this model is shown in Fig. 4. The
design matrix can now include both a column with ones, poly-
nomial functions of time of day, basis splines of time of day, and
exponential smoothing of the observations.

2.1.2. Model performance assessment
The model estimation is based on the maximum likelihood prin-

ciple. Let Xn be 1 for occupant presence, 0 for occupant absence
at time n. Assume that it follows the Bernoulli distribution with
parameter, p, the probability of Xn = 1. Then the likelihood function
of p given the observation, xn, is:{

1 − p, xn = 0
Zn−1 Zn Zn+1

Fig. 4. A Markov chain with an exogenous process and exponential smoothing as
covariate in the transition probabilities.
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he joint likelihood of observations x1, x2, . . .,  xN is the product of
he individual likelihood values:

(p; x(N)) =
N∏

n=1

L(p; xn) (10)

he maximum likelihood estimate of p refers to the value of the
arameter that maximizes the likelihood function.

ˆ(x(N)) = argmaxpL(p; x(N)) (11)

ere, p can also be a function of other parameters, �. Then the max-
mum likelihood estimate of � is parameters that maximizes the
ikelihood function.

ˆ(x(N)) = arg max�L(p(�); x(N)) (12)

nstead of the likelihood function itself, the logarithm of the like-
ihood function, simply called the log-likelihood and denoted �,
s often used. This has the advantage that the joint log-likelihood
unction is a sum instead of a product:

�(p(�); x(N)) = log

(
N∏

n=1

L(p(�); xn)

)

=
N∑

n=1

log
(
L(xn; p(�))

) (13)

ince the natural logarithm is an increasing function of all positive
umbers, the log-likelihood can be maximized just as well as the

ikelihood itself.
In a homogeneous Markov chain, the transition probabilities can

e estimated in the same way. The transition from i to j is a Bernoulli
xperiment that happens with probability PXn+1 = j | Xn = i. Notice
hat the likelihood function of the conditional probability in (10)
hould only be based on the data where Xn = i.

For an inhomogeneous Markov chain, a parametric relation over
ime can be determined using parametric expressions of the tran-
ition probabilities as in (12).

.1.2.1. The estimation routine. For a given smoothing parameter, �,
or the exponential smoothing (7), the following steps are carried
ut.

 Exponential smoothing is calculated for the whole data sequence
using (7).

 Parametric expressions (basis splines or other polynomial
expressions) of time of day are calculated.

 The design matrix is formed by exponential smoothing (one col-
umn) and polynomial relations (several columns, for splines, one
less than the number of knots).

 The parameters in the general linear model are fitted using glm
in R.

he log-likelihood value of this total model is used as the objective
unction in an optimization algorithm. For the optimization, the
mplementation of the Brent algorithm in optimize in R is used
13].

.1.2.2. Information criteria. For testing models against each other,
ikelihood-ratio tests can be used if the models are nested (one

odel can be obtained by equaling parameters in the other to zero).
ince change of positions of the spline knots leads to models that are
ot sub-models of each other (not nested), an information criterion
s needed to compare the performance of different models.
The Akaike information criterion (AIC) is a popular choice of

nformation criterion [14]. For the model, S, it is given by

IC(S) = −2 · �S + 2 · k (14)
uildings 69 (2014) 213–223

where �S is the log-likelihood value of the parameters of S at the
maximum likelihood estimate. k is the number of parameters in
the model. However, it may  be an advantage to use the Bayesian
information criterion (BIC) which takes the amount of data into
account.

BIC(S) = −2 · �S + log(N) · k (15)

where N is the number of data points. In this work, BIC is used for
model choice.

3. Results

3.1. Data overview and preparation

Data recordings for every 2 min  from 57 sensors over 16 full
days were considered. The first records were from August 2009,
the last from January 2010. The time stamps in the data files were
in PST/PDT (Pacific Standard Time/Pacific Daylight Time). Working
hours were assumed to follow local time. Therefore “time of day”
is used for modeling referring to the local time zone, i.e. PST/PDT.

3.1.1. Choosing periods to model
It was investigated if some times of the day, some sensors, or

even whole days should be skipped. The total number of activated
sensors was  inspected throughout each of the available days to
ensure that none of them were holidays. The total number of occu-
pants was  plotted for all of the 16 considered days in the upper
region of Fig. 5. Two days look a bit different than the rest with
lower occupancy in the afternoon, but none of the days were so dif-
ferent that they could be considered non-working days. They are a
Tuesday and a Friday and hence not one day of the week that could
be different from the others. Apart from these 2 days where there
is slightly lower afternoon occupancy, the days are quite similar.
All days were kept for the analysis.

Narrow spikes of high occupancy, even after 8 p.m., are seen
in many – if not all – of the sequences of total occupancy. This
means that the status of the sensors are correlated. The spikes are
unlikely to be caused by employees coming to and leaving their
desk but rather by one or more persons activating several sensors.
It is known that a guard walks through the building every night and
this could be the cause of some of these spikes. Since these spikes
are likely not to caused by usage of the workspaces, they are not of
considered particularly interesting in this work.

The lower region of Fig. 5 is a boxplot of total occupant presence
in the building grouped on hour of the day. It is seen that until 6 a.m.,
the activity is very close to zero, except for between 5 a.m. and 6 a.m.
where there is a slight activity on some of the days. From between
6 a.m. and 7 a.m. to between 10 and 11 a.m. the activity increases
to around 30 simultaneous positive measurements. From between
10 and 11 a.m. to between noon and 1 p.m. the total occupation
decreases to slightly more than 20 as median. This drop could be
explained by a lunch break. The activity increases until between
2 and 3 p.m. after which it starts dropping. After between 3 and
4 p.m. the activity drops quickly until between 6 and 7 p.m. where
the median is below 5 sensors again. Also, from this plot it is clearly
seen that the many narrow peaks in occupancy after 7.30 p.m. are
caused by relatively few outliers from the generally low occupancy.
It is seen that the variance of the occupancy is larger in the afternoon
than in the morning. Time intervals where the occupancy is small
were left out, and based in Fig. 5, only model occupant presence
from 6 a.m. to 7 p.m. were included in the model. Only this part of
data is considered from this point.
3.1.2. Identifying outlier employees
It was  then checked if data from some sensors was significantly

different from the rest and should be considered outliers. It was
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Fig. 5. Occupant presence versus time of day. The upper region shows the total number of active sensors in the office versus time of day for the 16 days considered. The
lower  region shows a boxplot summary of the distribution of number of present occupants, aggregated by hour of the day. The vertical green bars show the limits of the time
of  day kept for modeling. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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xpected that single sensors would be inactive almost throughout
hole days because of employees being away. A boxplot of the
ean activity over each day for each sensor is shown in Fig. 6. The

istribution of the daily means of the different sensors is quite dif-
erent, both in medians and in variance. Many days of low occupant
resence are seen, and also workspaces with generally very low
ccupant presence. This seems to be too many to simply disregard
hem as outliers and will be further investigated below. However, a
ew sensors have very high occupancy (6, 20, 26, 56, 57) and some
f these (especially 6, 20, and 56) have low variance in occupancy.
hese could be located in areas that are passed by other employ-
es throughout the day. They are considered significantly different

rom the rest. The vertical lines at the upper edge of the plot show
he sensors that were left out.

In the data modeling description, the data considered is stripped
rom the outliers described here.
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Fig. 6. Distribution of daily occupant presence for ea
3.2. A hierarchic model

To determine a threshold of when to consider a sequence of
measurements from one day as a working day or not, the distribu-
tion of the mean occupancy throughout a whole day of all sensors
is considered. A histogram of this is seen in Fig. 7. There is a high
density close to zero, and then the density is generally decreasing
until mean occupant presence of a bit less than 0.2. It could be a
mixture of one distribution with mode close to zero (not at work)
and another with mode close to 0.6 (a work day). Based on this it
is decided to make a threshold at a mean of 0.2 activity for a day-
sequence. This corresponds to 2.6 h of activity. Sequences with less

occupancy than 20% (from 6 a.m. to 7 p.m.) will be used to fit a low
presence rate model,  sequences with more than 20% presence are
used to fit a high presence rate model.  This is done after removal
of the outliers detected in Section 3.1. The densities in Fig. 7 are

30 34 38 42 46 50 54

loyee

ch sensor. Only 6 a.m. to 7 p.m. is considered.
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The model of the presence of one employee becomes a hierar-
hic model,  see Fig. 8. With a certain probability, PHPR, the employee
s modeled with a model describing occupant presence patterns
ith a mean presence higher than 0.2, whereas another model
ith mean presence lower than 0.2 will be used with probability

 − PHPR. The model of particular interest in the present paper is the
odel describing presence – the “high presence rate model”. Some

Initializ e
model

Low/high
occupant
presence
mean?

Low
occupancy
rate model

High
occupancy
rate model

Occupant
presence
sequence

1 − PHPR PHPR

ig. 8. The hierarchic structure of the model. With probability P̂HPR an occupant
resence sequence is generated with the high presence rate model.
 groups the different series fall into. (For interpretation of the references to color in

key properties of the partitions of the data are shown in Table 1.
The procedure of estimating this model is outlined. For the low-
presence sequences, the same is procedure has been carried out
and the results will be given.

The probability, PHPR was  estimated as

P̂HPR = 1
Ns

Ns∑
s=1

I(�s > 0.2) ≈ 0.686 (16)

where �s is the mean presence in the sequence, s.

�s = 1
N

N∑
n=1

X(s)
t (17)

3.3. Initial state

Since inhomogeneous processes do not have steady state prop-
erties, it was decided to base the initial conditions on the expected
occupancy presence at the start of the simulations (6 a.m.). The
expected presence was  estimated for the HPR and the LPR indepen-
dently as the mean presence of the occupants in the data sequences
for the HPR and the LPR group, respectively. A Bernoulli experiment
was then carried out to start each simulation in either “absence” or
“presence” for each simulation. The mean value of this Bernoulli
experiment was  either p̂0,LPR = 0 or p̂0,HPR ≈ 0.045.

3.4. High occupancy rate model

Two different events must be described, namely the transition
from absent (0) to present (1) and from present to absent. Different
models will be applied, their performances assessed, and the best
one will be picked.

For every 2-min interval, the conditional probability of a transi-
tion to 1, given that 0 is observed was estimated. This is an estimate
for a time of day, n. These local estimates are shown as points in
Fig. 9. Also fits of generalized linear models with splines of 11 knots
(10 basis splines) and different exponential smoothing levels are
shown. The range of the exponential smoothing is the range that

the model can take for this data. Because of the ten observations of
absence which will always follow a sequence of presence, this inter-
val is [0, 0.102]. The tendency to start working is small at 6 a.m. and
it only slowly increases the first hour. Then, from 7 a.m. to 9 p.m.,
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Table  1
Overview of the partitioning of the occupant presence sequences.

Group Number of sequences Mean Variance of mean of sequences Min. mean of sequences Max. mean of sequences

HPR 571 0.521 0.018 2.05 · 10−1 0.836
LPR  260 0.031 0.002 0 0.197
Outliers 80 0.672 0.024 3 · 10−3 0.964

Total  911 0.394 0.068 0 0.964
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Table 4 shows an overview of the aggregated performance

(all transitions – from absence as well as presence) of the best

Table 2
Parameter estimates in the HOR model of transitions from occupant absence to
presence, their confidence intervals, and p-values for the test of the hypothesis that
the individual parameters are zero.

Term Estimate 2.5% 97.5% Pr (>Chi)

 ̨ −4.56 −4.83 −4.31
ˇ1 1.88 1.58 2.19 0.000
ˇ2 1.50 1.08 1.92 0.000
ˇ3 2.03 1.65 2.41 0.000
ˇ4 0.71 0.34 1.09 0.000
ˇ5 2.73 2.35 3.11 0.000
ˇ6 0.55 0.13 0.97 0.010
ˇ7 2.24 1.84 2.64 0.000
ˇ −0.78 −1.19 −0.38 0.000
ig. 9. Two-minute estimates of the probability of occupancy for an employee at the
ith  increasing probability of starting working.

his tendency grows rapidly. The growth is then slower but persists
ntil around 10.30 a.m. where it starts decaying from about 7%. A
valley” is then seen over lunch time at around twelve. The global
aximum is seen just before 2 p.m. after which it drops for a small

alley before a local peak at 4 p.m. From there, it drops again and
pproaches zero at 7 p.m.

Similar estimates of local conditioned probabilities have been
ade for transitions from presence to presence. These are shown

n Fig. 10 together with generalized linear models based on 8
nots (7 basis splines) and exponential smoothing at different lev-
ls. The smoothing levels here range from 0.186 corresponding
o the lowest possible level given that the process is in “pres-
nce” to 1 – corresponding to having been in present in all history.
he main tendencies are that given the smoothing level, the ten-
ency to remain at one’s work desk is quite constant except
or during lunchtime and after around 3 p.m. where it drops
uickly.

The decision on a model structure is based on BIC. BIC values
or the different models applied are plotted in Fig. 11. A large gain
s seen in going from using homogeneity or a 1st order polyno-

ial to at least a third order polynomial or splines. The increase in
IC between these models could be because of a suboptimal posi-
ioning of the knots. The exponential smoothing improves all the

odels implemented measured on BIC. The best model is found to
e based on a spline with 11 knots and the exponential smooth-

ng. This gives 13 parameters in total. Table 2 shows the parameter
stimates in the chosen generalized linear model of the probability
f occupancy at time n + 1 conditioned that an employee is idle at
ime n.

Using likelihood-ratio tests, it was checked that all parame-

ers in this model are significant (p-values shown in Table 2).
he exponential smoothing parameter is 0.205. The glm param-
ter estimate related to the exponential smoothing is 8.4. Since
here will never be a switch back from 0 to 1 after less
 time step given that he or she is absent. The smoothing level ranges from 0 to 0.102

than 10 zeros, the exponential smoothing level cannot exceed
1 · (1 − 0.205)10 ≈ 0.1.

The same analysis has been carried out for modeling the proba-
bility of occupancy at time n + 1 given that the employee is occupant
at time n. The improved model found here is a generalized linear
model with an intercept and 5 basis spline functions. Exponential
smoothing did not improve this model significantly. The resulting
parameter estimates in the generalized linear model are shown
in Table 3. It is seen that some p-values (for the likelihood-ratio
tests in which the parameters are zero) are large here, meaning
that at least one spline basis function is insignificant. This can
occur because the knot placements are not optimized but deter-
mined to be equidistant, and the number of knots is decided from
8

ˇ9 −0.77 −1.44 −0.09 0.027
ˇ10 −1.26 −1.72 −0.83 0.000
�  7.67 6.40 8.93 0.000
�  0.19
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Fig. 11. BIC for different models applied to the transitions in the hig

measured on BIC) of the different types of models that were applied
n the high occupancy rate data. It is seen that the inhomogeneous

odels outperform the homogeneous ones measured on bias and

mse, and that the exponential smoothing further increases the
erformance.

able 3
arameter estimates in the HOR model of transitions from occupant presence to
ccupant presence, their confidence intervals, and p-values for the test of the
ypothesis that the individual parameters are zero.

Term Estimate 2.5% 97.5% Pr (>Chi)

 ̨ 1.76 1.38 2.17
ˇ1 0.66 0.25 1.04 0.002
ˇ2 −1.19 −1.68 −0.72 0.000
ˇ3 0.32 −0.12 0.74 0.157
ˇ4 −0.08 −0.55 0.37 0.729
ˇ5 −1.46 −1.78 −1.14 0.000
ˇ6 −2.22 −3.14 −1.34 0.000
ˇ7 −2.02 −2.34 −1.69 0.000
�  2.82 2.68 2.97 0.000
�  0.20
1 1 1 1 1 1 1 1 1 1

sence rate part of data. 0 represents absence, 1 presence in legends.

3.5. Low occupancy rate model

The same procedure as for the high occupancy rate model
has been carried through to find a low occupancy rate model. In
this case, the exponential smoothing was not found significant to
include in the generalized linear model. For the model of the prob-
ability of presence at time n + 1 given that the occupant is idle at

time n, a generalized linear model based on a spline and a total of
six parameters was found to perform best. The parameter estimates
are listed in Table 5.

Table 4
Performance measures for the best of each type of the models applied on the high
occupancy rate part of data. The inhomogeneous Markov chain using exponential
smoothing has both the better rmse and bias.

HOR Model k rmse Bias log Lik

Hom. MCs  4 0.146 3.96 · 10−11 −22875
Inh.  MCs 18 0.145 −1.73 · 10−14 −21711
Inh.  MCs, e.s. 23 0.144 9.92 · 10−15 −21087
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Table  5
Parameter estimates in the LOR model of the probability of presence at n + 1 given
absence at n.

Term Estimate 2.5% 97.5% Pr (>Chi)

 ̨ −6.69 −7.31 −6.13
ˇ1 2.03 1.47 2.63 0.000
ˇ2 1.33 0.61 2.11 0.000
ˇ3 3.18 2.69 3.68 0.000
ˇ4 2.58 1.25 4.02 0.000
ˇ5 −1.93 −2.59 −1.32 0.000

Table 6
Parameter estimates in the LOR model of the probability of presence at n + 1 given
presence at n.

Term Estimate 2.5% 97.5% Pr (>Chi)

 ̨ −2.88 −4.49 −1.26
�1 0.66 0.39 0.93 0.000
�2 −0.03 −0.04 −0.02 0.000
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�  0.32 0.13 0.51 0.001
�  0.59

For the modeling of the probabilities of occupancy at time n + 1
iven occupancy at time n, the chosen generalized linear model is
ased on a second order polynomial and no exponential smoothing.
he parameter estimates are listed in Table 6.

Table 7 lists aggregated performance measures of models on the
ow occupancy rate part of data. Again the inhomogeneous Markov
hains perform better when measured on bias and rmse and the
erformance is further improved by adding exponential smoothing.
owever, the latter has little effect on the low occupancy rate data.

n this model, exponential smoothing is only used on the transitions
rom presence, see Tables 5 and 6.

. Simulations

The estimation was based on data from a 16-day period. The
stimated models were then used to simulate a new 16-day period.
hese are simulations of the full system as sketched in Fig. 8 for as
any occupant day sequences as available in data after omitting

utliers. This corresponds to monitoring 52 employees for 16 days,
esulting in 832 sequences in total. As in Fig. 8 each sequence is sim-
lated with the high occupancy rate model with probability P̂HPR
see Eq. 16), and with the low occupancy rate model with proba-
ility 1 − P̂HPR. This gave 565 sequences simulated with the high
ccupancy rate model and 267 simulated with the low occupancy
ate model. Once the choice between LOR and HOR has been made,
he initial value of the sequence is determined by a Bernoulli experi-

ent. In the LOR model, the mean value of the Bernoulli experiment
s the average of the LOR group at 6 a.m., and for the HOR model the

ean value of the Bernoulli experiment is the average of the HOR
roup at 6 a.m.

The upper plot in Fig. 12 shows the sequences of total occupancy
ersus time of day for the simulated data using the model chosen

n Section 3. This is to be compared with the plots in Fig. 5. The
imulations all start with low occupancy (due to initial conditions),
hey have a peak before lunch, and one after. At 7 p.m. the occupant

able 7
erformance measures for the applied models on the low occupancy rate part of
ata. The inhomogeneous Markov chain without exponential smoothing has both
he  smallest rmse and the smallest bias.

LOR model k rmse bias log Lik

Hom. MCs  2 0.112 −4.10 · 10−11 −5875
Inh.  MCs  9 0.111 −1.70 · 10−5 −5734
Inh.  MCs, e.s. 11 0.111 −3.43 · 10−4 −5710
uildings 69 (2014) 213–223 221

presence has dropped close to zero. This general tendency captures
the tendency seen in the data very well. However, the data seems to
vary slightly more, especially after the lunch break, mainly because
of the two days discussed in Section 3.1.

The lower plot in Fig. 12 shows the mean of total occupant
presence over the day and an estimated confidence interval for
the total simulated occupant presence. The statistics are shown for
the data series, the homogeneous Markov chain simulations (both
for LOR and HOR), and the inhomogeneous MCs  with and with-
out exponential smoothing. Whereas the Markov chain due to the
homogeneity does not capture the dependence of time, the two
inhomogeneous models both have this ability. It is seen that the
exponential smoothing does not have a big influence on the mean
occupancy over the day. This is expected as exponential smoothing
is a filter that influences the dynamics at per-employee level. Hence
exponential smoothing is not important for mean value consider-
ations for large systems. From the confidence intervals, it is again
seen that in the afternoon, the variance in total occupancy is larger
for the data than for any of the models.

The distribution of the simulated occupancy for employees
throughout single days is shown in Fig. 13. This should be com-
pared with Fig. 7. It is seen that the fitted LOR model tends to give
fewer days of almost no occupancy and fewer days with occupancy
over 0.1. The HOR model seems to fit the distribution in the data
nicely. However, the tails of the distribution are slightly longer than
what is seen in the data.

5. Discussion

A central assumption in this work is that the ballast status
records are representative for each individual present. The valid-
ity of this assumption will depend on the office environment. But
for the application of evaluating consumption which is controlled
using passive infrared sensors this assumption is less important,
since the data reflect activation of such sensors (apart from the
delay on the turning off).

The outlined method clearly demonstrates its ability to model
the variation in occupants’ transitions between present and absent.
However, splines and polynomials are only examples of how this
can be done. Kernel smoothing provides other methods which
could also be used.

Describing the variation of the transitions over the day is one
problem, describing the per sequence dynamics is another. Using
exponential smoothing of the occupant presence sequences signif-
icantly improved the prediction ability of the model, especially for
the high occupancy rate data. Only this one method for describing
the variation was  tried, and others may  do just as well or better.
This result however shows that there is a need for modeling the
per sequence dynamics if reliable single-occupant sequences are
wanted.

The idea of using exponential smoothing comes from reading
the work of [15] where exponential smoothing of observations is
used as input in the model of the transition probabilities in a hidden
Markov chain. Such a model was  also tried on this data, but the state
dependent distributions turned out to be Bernoulli distributions
with practically certain success. This means that the Markov chain
is practically not hidden. Hence the idea of directly observing the
Markov chain. However, this limits the model framework to only
two states. It is possible that for other data sets, more (hidden)
states would give a better fit. Such states could be interpreted as

“meeting”, “short break”, “gone home”, etc. These would then tend
to lead to absence of different lengths.

This method could be directly used to simulate occupant pres-
ence profiles in a building simulation program. However, more
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Fig. 12. Simulation of total occupant presence for a 16-day period. All employees on all days are independently simulated using the model structure as in Fig. 8. The upper
plot  shows the sequences simulated using the models chosen in Section 3, and the lower plot shows mean values and confidence intervals over the day for simulations using
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0
20

40
60

80
10

0
12

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.

02
0.

05
0.

08
0.

11
0.

14

occu 

N
um

be
r

of
da

ys

Fr
ac

ti
on

of
to

ta
l
nu

m
be

r
of

da
ys

Low presence rate
High presence rate

ts are

d
f

m
d

u
w
t

6

m
b
t
o
o
t
e

Mean

Fig. 13. Histogram of fraction of time on a day that occupan

ata must be analyzed in order to provide good standard values
or different kind of office environments and other uses.

In general the choice of model depends on the data set. Before
ore general conclusions can be drawn on the subject, different

ata sets from different sources must be analyzed.
Only independent single-occupant profiles were fitted and sim-

lated. Correlations between occupants were not studied, neither
ere day-to-day correlations for single occupants. Depending on

he application these correlations may  be important.

. Conclusions

Occupant presence patterns for employees in an office environ-
ent have been modeled based on data collected from electrical

allasts triggered by passive infrared sensors. After compensa-
ion for a delay in switching off the ballasts and removal of

utliers, data was divided into “low occupancy rate” and “high
ccupancy rate” patterns which were fitted independently and
he probability of activation of the two resulting models was
stimated.
pancy

 present in simulations using the model chosen in Section 3.

By use of generalized linear models based on natural splines
and exponential smoothing of observations, the daily patterns were
fitted. By use of the fitted models, new occupant presence patterns
were simulated, and they demonstrated similar mean occupancy
over the day, and the distribution of the occupancy per day had
the same two-peak property as the data. The mean occupancy per
versus time-of-day fit using homogeneous Markov chains did not
capture the two-peaks tendency with a drop around lunch time and
the drop in the afternoon.

While using exponential of the observations as a covariate in
the Markov chains did not seem to have any large effect on the
dependency of the time of day, it significantly improved the one-
step predictions. This is thought to reflect an improved model of
the dynamics of the sequences.

The outlined method can be used for generating reliable occu-
pant presence sequences and can be included in building simulation

tools. Some objectives for further studies of the subject were given,
and they include modeling of modeling of data from different
environments, and modeling of correlation structures between
occupants and/or between days.
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