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The combination of electric vehicles and renewable energy is taking shape as a potential driver for a
future free of fossil fuels. However, the efficient management of the electric vehicle fleet is not exempt
from challenges. It calls for the involvement of all actors directly or indirectly related to the energy
and transportation sectors, ranging from governments, automakers and transmission system operators,
to the ultimate beneficiary of the change: the end-user. An electric vehicle is primarily to be used to sat-
isfy driving needs, and accordingly charging policies must be designed primarily for this purpose. The
charging models presented in the technical literature, however, overlook the stochastic nature of driving
patterns. Here we introduce an efficient stochastic dynamic programming model to optimally charge an
electric vehicle while accounting for the uncertainty inherent to its use. With this aim in mind, driving
patterns are described by an inhomogeneous Markov model that is fitted using data collected from the
utilization of an electric vehicle. We show that the randomness intrinsic to driving needs has a substan-
tial impact on the charging strategy to be implemented.
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1. Introduction

Electric vehicles (EVs) are emerging as a sustainable and
environmentally friendly alternative to conventional vehicles,
provided that the energy used for their charging is obtained from
renewable energy sources. The energy generated from renewable
sources such as sunlight, wind and waves is, however, dependent
on weather conditions. As a consequence, the electricity produc-
tion from these sources is inherently uncertain in time and quan-
tity. Furthermore, electricity has to be produced and consumed
at the same time, as the large-scale storage of the energy generated
is, still today, very limited. As a result, the energy obtained from
renewables may be wasted in times when the demand for electric-
ity is not high enough to absorb it, with a consequent detrimental
effect on the profitability of renewables. Since the battery in an EV
is basically a storage device for energy, the large-scale integration
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of EVs in the transportation sector may contribute to substantially
increasing the socioeconomic value of an energy system with a
large renewable component, while reducing the dependence of
the transportation sector on liquid fossil fuel.

For this reason, EVs have received increased interest from the
scientific community in recent years (detailed literature reviews
of the state of the art can be found in [1,2]). Special attention has
been given to the analysis of the effect of EVs integration on the
electricity demand profile [3,4], emissions [5] and social welfare
|6-8], and to the design of charging schemes that avoid increasing
the peak consumption [9,10], help mitigate voltage fluctuations
and overload of network components in distribution grids [11],
and/or get the maximum economic benefit from the storage
capability of EVs within a market environment, either from the
perspective of a single vehicle [12,13] or the viewpoint of an aggre-
gator of EVs [14,15]. In all these publications, though, and more
generally in the technical literature on the topic, the charging
problem of an EV is addressed either by considering deterministic
driving patterns, when the focus is placed on the management of a
single vehicle, or by aggregating the driving needs of different EV
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users, when the emphasis is on modeling a whole fleet of EVs. This
aggregation, however, obscures the dynamics of each specific
vehicle. Likewise, the deterministic driving patterns of a single
EV are often based on expected values or stylized behaviors, which
fail to capture important features of the charging problem such as
the daily variation in the use of the vehicle or potential user
conflicts in terms of not having the vehicle charged and ready for
use. A stochastic model for driving patterns provides more insight
into these aspects and becomes fundamental for applying a charg-
ing scheme in the real world. Despite this, the stochastic modeling
of driving patterns has received little attention from the scientific
community, as pointed out in [1]. We mention here the research
work by [16], in which they aim to capture the uncertainty intrin-
sic to the vehicle use by means of a Monte Carlo simulation
approach. They assume, however, an uncontrolled charging
scheme.

The work developed in this paper departs from the following
two premises:

1. The primary purpose of the battery of an EV is to provide power
to drive the vehicle and not to store energy from the electricity
grid. Consequently, it is essential that enough energy is kept in
the battery to cover any desired trip. This calls for a decision
tool that takes into account the driving needs of the EV user
to determine when charging can be postponed and when the
battery should be charged right away.

2. The complexity of human behavior points to a stochastic model
for describing the use of the vehicle. In turn, this stochastic
model should be integrated into the aforementioned decision
tool and exploited by it.

That being so, this paper introduces an algorithm to optimally
decide when to charge an EV that exhibits a stochastic driving pat-
tern. The algorithm builds on the inhomogeneous Markov model
proposed in [17] for describing the stochastic use of a single vehi-
cle. The model parameters are then estimated on the basis of data
from the use of the specific vehicle. The approach captures the
diurnal variation of the driving pattern and relies only on the
assumption that the EV-user’s driving habits can be explained
and modeled as a stochastic process, more particularly, as an inho-
mogeneous Markov chain. This makes our modeling approach
noticeably general and versatile. Our algorithm thus embodies a
Markov decision process which is solved recursively using a stochas-
tic dynamic programming approach. The resulting decision-
support tool allows for addressing issues related to charging,
vehicle-to-grid (V2G) schemes [12,18], availability and costs of
using the vehicle. The algorithm runs swiftly on a personal com-
puter, which makes it feasible to implement on an actual EV.

The remainder of this paper is organized as follows: In Section 2
the stochastic model for driving patterns developed in [17] is
briefly described, tailored to be used in the present work, and ex-
tended to address the problem of driving data limitations through
hidden Markov models. Section 3 introduces the algorithm for the
optimal charging of an EV as a Markov decision process that is
solved using stochastic dynamic programming. Section 4 provides
results from a realistic case study and explores the potential
benefit of implementing V2G schemes. Section 5 concludes and
provides directions for future research within this topic.

2. A stochastic model for driving patterns

In this section we summarize and extend the stochastic model
for driving patterns developed in [17]. We refer the interested
reader to this work for a detailed description of the modeling
approach.

2.1. Standard Markov model

A state-space model is considered to describe the use of the EV.
In its simplest form, it contains two states, according to which the
vehicle is either driving or not driving. A more extensive version of
the model would include a larger number of states which could
capture information about where the vehicle is parked, how fast
it is driving or what type of trip it is on. The basics of the general
multi-state stochastic model are described in this section, includ-
ing how to fit a specific model on an observed data set.

Let X;, where t € {0,1,2,...}, be a sequence of random variables
that takes on values in the countable set S, called the state space.
Denote this sequence as X. We assume a finite number, N, of states
in the state space. A Markov chain is a random process where fu-
ture states, conditioned on the present state, do not depend on
the past states [19]. In discrete time X is a Markov chain if

p(XH,] = k‘XO = XO, e ,Xt == Xt) = P(XH,] - k|Xt = Xt) (1)

forall t > 0 and all {k,xo,...,x:} €S.
A Markov chain is uniquely characterized by the transition
probabilities, py(t), i.e.

Pi(t) = P(Xei1 = k|X: = ). (2)

If the transition probabilities do not depend on t, the process is
called a homogeneous Markov chain. If the transition probabilities
depend on t, the process is known as an inhomogeneous Markov
chain.

When it comes to the use of a vehicle, it is appropriate to as-
sume that the probability of a transition from state j to state k is
similar on specific days of the week. Thus, for instance, Thursdays
in different weeks will have the same transition probabilities. For
convenience we further assume that all weekdays (Monday
through Friday) have the same transition probabilities. In other
words, we consider that the transition probabilities of the inhomo-
geneous Markov chain vary within the day, but not from day to
day. These assumptions can be easily relaxed or interchanged with
other assumptions and as such, are not essential to the model.
With a sampling time in minutes, and taking into account that
there are 1440 min in a day, this leads to the assumption:

Pi(t) = P (t + 1440). 3)

This assumption implies that the transition probabilities, de-
fined by (2), are constrained to be a function of the time, s, in the
diurnal cycle. Let the matrix containing the transition probabilities
be denoted by P(s). This matrix characterizes the driving pattern of
the specific vehicle under consideration using N states. It has the
form:

P1i(S)  P12(s) Pin(s)
P21(S)  Paa(s) Pan(s)

P(s) = . . . (4)
Pni(S) Pn2(S) P (S)

where p;(s) =1 - ZIN:l.i#jpji'

Now let nj(s) define the number of observed transitions from
state j to state k at time s. From the conditional likelihood function,
the maximum likelihood estimate of p;(s) for the inhomogeneous
Markov chain can be found as:

5 (s) = k() 5
pjk( ) Zgzlnjk(s) ( )

A discrete time Markov model can be formulated based on the
estimates of P(1),P(2),...,P(1440). One apparent disadvantage
of such a discrete time model is its huge number of parameters,
namely N x (N —1) x 1440, where N x (N — 1) parameters have
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to be estimated for each time step. Needless to say, the number of
parameters to be estimated increases as the number of states
grows. We refer to [17] for further details on techniques to reduce
the number of parameters to be estimated for each time step for
models with more than two states. Another problem is linked to
the number of observations available to properly carry out the esti-
mation, i.e. if -} ;1 (s') = 0 for some s/, then py(s') is undefined.

To deal with the large number of parameters as well as unde-
fined transition probability estimates, B-splines are applied to cap-
ture the diurnal variation in the driving pattern through a
generalized linear model. The procedure of applying a generalized
linear model is implemented in the statistical software package R
as the function gim (-). For a thorough introduction to B-splines
see [20] and for a general treatment of generalized linear models
see [21]. Next we elaborate on how the fitting of the Markov chain
model works in our particular case.

Each day, at a specific minute, a transition from state j to state k
either occurs or does not occur. Thus for every s on the diurnal cy-
cle we can consider the number of transitions to be binomially dis-
tributed, i.e. ny(s) ~ B(z;(s), pj(s)), where the number of Bernoulli

trials at s, given by z;(s) = Zﬁzlnﬂ((s), is known and the probability
of success, pj(s), is unknown. The data can now be analyzed using
a logistic regression, which is a generalized linear model [21]. The
explanatory variables in this model are taken to be the basis func-
tions for the B-spline. The logit transformation of the odds of the
unknown binomial probabilities are modeled as linear combina-
tions of the basis functions. We model Yj.(s) = nj(s)/zj(s) and in
particular, we are interested in E[Yji(s)] = py(s).

As the basis functions for the B-spline are uniquely determined
by the knot vector 7, deciding the knot position and the amount of
knots is important to obtain a good fit for the model. Here we pro-
ceed as follows: First a number of knots are placed on the interval
[0,1440], with one at each endpoint and equal spacing between
them. Denote this initial vector of knots by 7i,;. The model is then
fitted using the basis functions as explanatory variables. Next, the
fit of the model between the knots is evaluated via the likelihood
function and an additional knot is placed in the center of the inter-
val with the lowest likelihood value. The new knot vector is then
given by 7. We repeat this procedure until the desired number
of knots is reached. To determine the appropriate number of knots
and avoid over-parametrization, on the basis of a likelihood ratio
principle, we test that adding a new knot does significantly im-
prove the fit.

2.2. Hidden Markov models

Standard Markov models can only include states that are explic-
itly recorded in the data. Thus, if the data only provides informa-
tion on whether the vehicle is either driving or not driving, the
standard Markov model is restricted to having two states: driving
or not driving. Standard Markov models also result, by default, in
the time spent in each state being exponentially distributed,
although it may be with time-varying intensity. Accordingly, in a
standard Markov model, the time until a transition from the cur-
rent state to another does not depend on the amount of time al-
ready spent in the current state. In the case of a vehicle, this
implies that the probability of ending a trip does not depend on
the duration of the trip so far. This seems unrealistic for a model
capturing the actual use of a vehicle.

To overcome these limitations, we can use a hidden Markov
model, which allows estimation of additional states that are not di-
rectly observed in the data. In fact, we can estimate these states so
that the waiting time in each state matches that which is actually
observed in the data. Adding a hidden state is done by introducing
a new state in the underlying Markov chain. The new state,

however, is indistinguishable from any of the previously observed
states. This allows for the waiting time in each observable state to
be the sum of exponential variables, which is a more versatile class
of distributions. It is worth insisting that the use of hidden Markov
models is justified here to address insufficient state information in
our data, which only include whether the vehicle is driving or not
driving. Indeed, the same results could be obtained using the
underlying Markov chain without hidden states, provided that
the hidden states could be observed. In practice, though, more de-
tailed driving data (e.g. including driving speed and/or location of
the vehicle) could be available once the actual implementation is
made on a vehicle, which in turn would avert the need for a hidden
Markov model. For a detailed introduction to hidden Markov mod-
els, see [22], where techniques and scripts for estimating parame-
ters are also provided.

The hidden Markov model consists of two parts. First, an under-
lying unobserved Markov process, {X;:t=1,2,...}, which de-
scribes the actual state of the vehicle. This part corresponds to
the Markov model with no hidden states as described previously.
The second part of the model is a state-dependent process,
{Z;:t=1,2,...}, such that when X; is known, the distribution of
Z, depends only on the current state X;. A hidden Markov model
is thus defined by the state-dependent transition probabilities,
Pj(t), as defined for the standard Markov chain and the state-
dependent distributions given by (in the discrete case):

da(t) = P(Ze = 2|X, = k). (6)

Collecting the d(t)’s in the matrix D(z,), the likelihood of the
hidden Markov model is given by:

Lr = oD(21)P(2)D(z3), ..., P(T)D(z1), (7)

where § is the initial distribution of X;. We can now maximize the
likelihood of observations to find the estimates of the transition
probabilities between the different hidden states.

2.3. Fitting the Data

The data at our disposal is from the utilization of a single vehicle
in Denmark in the period spanning the six months from
23-10-2002 to 24-04-2003, with a total of 183 days. The data is
GPS-based and follows specific cars. One car has been chosen and
the model is intended to describe the use of this vehicle accord-
ingly. The data set only contains information on whether the
vehicle was driving or not driving at any given time. No other infor-
mation was provided in order to protect the privacy of the vehicle
owner. The data is divided into two periods, a training period for
fitting the model from 23-10-2002 to 23-01-2003, and a test period
from 24-01-2003 to 24-04-2003 for evaluating the performance of
the model. The data set consists of a total of 749 trips. The time
resolution is in minutes.

We shall consider a model with one not driving state and two
(hidden) driving states. In other words, one can observe whether
the vehicle is driving, but cannot identify which type of driving state
the vehicle is in. Besides, the hidden driving states are not directly
interpretable from the data. In practice, they could correspond to
driving in different environments (urban/rural) or at different
speeds. Be as it may, the inclusion of the hidden structure allows
for the probability of ending the current trip to depend on the time
since departure, as the vehicle may pass through different driving
states before ending the trip. We then compute the transition
probability between the hidden states in such a way that the
resulting probability distribution of the trip duration follows the
one reflected in the data. Furthermore, to fit the model to the data,
we assume that only the transition probability from the not driving
state depends on the time of day. This is done to reduce the
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complexity of the estimation procedure, as it is cumbersome to
estimate the time-varying parameters of a hidden Markov model.

We now elaborate on the fitting of the hidden Markov model,
which is split into estimation of its time-varying and time-invari-
ant parameters.

2.3.1. Fitting time-varying parameters

We need to estimate the probability of a transition from the
vehicle being parked to a driving state. We denote this transition
estimate by ps.(s). It holds that p;.(s) = 1 — p11(s). Since both the
parked state and the transitions from it are directly observable in
the data, we can use the procedure described in Section 2.1 to esti-
mate pq.(S).

The data have been divided into two main periods: weekdays
and weekends. The observed number of trips starting every minute
for the weekdays is displayed in Fig. 1. A high degree of diurnal
variation is found, with a lot of trips starting around 06:00 and
again around 16:00. Also, there are no observations of trips starting
between 00:00 and 05:00. Other patterns are found for weekends,
but as these do not involve any methodological difference, we limit
ourselves to trips starting on weekdays. Annual variations may also
be present, however the limited data sample does not allow for
capturing such seasonality.

The plot in Fig. 2 illustrates the estimate of p;.(s) using B-splines
with eight initial knots placed uniformly on the interval and 22
knots in total.

2.3.2. Fitting time-invariant parameters

The time-invariant parameters are to be estimated so that an
appropriate probability distribution is fitted to the duration of
the trips. The time-invariant parameters are estimated by maxi-
mizing the likelihood given in (7). For a given number of driving
states, the transition probabilities can be estimated using the ap-
proach in [22]. Once a model with N states is fitted, we can test
if adding an additional state significantly improves the fit. As a
model with N states is a sub-model of one with N+ 1 or more
states, we increase the number of states until no significant
improvement test is observed according to the likelihood ratio.

Fig. 3 represents the histogram of the empirically observed trip
lengths along with the theoretical density function of the trip
lengths obtained from the fitted model. We use a model with
two driving states, as no significant improvement is found beyond
this number. Notice that the distribution of the empirically ob-
served trip lengths is adequately captured by the hidden Markov
model, although the number of observed trips in the range from
10 to 20 min has a higher prevalence than the fitted distribution.
In practical applications, more information could be available to
model the behavior of the vehicle (e.g. its location and speed),
which should facilitate the modeling of the driving patterns.

In the following section, the algorithm for optimally charging
the EV is presented. The optimization algorithm makes use of the
transition probabilities characterizing the stochastic model for

the driving patterns. Thus, the optimization algorithm is designed
to handle the stochastic nature of the driving needs.

3. A stochastic dynamic programming problem

The problem of charging an EV can be posed as a conflict be-
tween two opposing objectives. The end-user desires to have the
vehicle charged and ready for use at his/her discretion, while also
minimizing the costs of running the vehicle. Demand for electricity
varies over the day and so does the electricity generated from
renewable sources. This introduces a varying energy price which
can make it beneficial for the end-user to postpone charging his/
her vehicle. This means the user is faced with the problem of post-
poning charging to minimize costs or to charge right away so as to
maximize the availability of the vehicle.

Only the procurement cost of the electricity that is needed to
charge, and thus run, the vehicle is considered. That is, we do not
take into account investment or maintenance costs. However, we
also add a penalty term to the electricity procurement cost that
is used (by the EV owner) to control the level of availability of
the EV (the higher this penalty, the lower the probability of run-
ning out of battery during a trip). Conceptually, the penalty term
can be understood as the economic value the EV owner places on
being able to complete a plausible trip. Finally, note that the elec-
tricity procurement cost can be negative under a V2G scheme and
that maintenance costs (such as those related to battery wear) may
have a non-trivial effect on the optimal charging strategy. The
analysis and valuation of this effect, however, is left for future
work.

The algorithm for optimal charging of the EV is formulated as a
stochastic dynamic programming problem. We first define the rel-
evant parameters and variables, and then the state-transition and
objective function.

3.1. Parameters

Umax Maximum rate of charge of the battery (kW)

Ui, Mminimum rate of charge of the battery (kW)

emax maximum storage level of the battery (kW h)

emin Minimum storage level of the battery (kW h)

At time varying electricity price (€/MW h)

¢ penalty for violating (unserved) driving needs (€/h)
e charging efficiency of the battery

M4 discharging efficiency of the battery

Vi average speed when the vehicle is in use in state i
(km/h)

drive efficiency in state i (kW h/km)

battery capacity (kW h)

conversion factor from minutes to hours i.e. & = (60)~!
(h/min)

B time discount factor

SIS

Trips starting at a
given minute
2 3 4567
1

1
1

A~

T T
03:00 08:00

T T T
13:00 18:00 23:00

Fig. 1. Number of trips starting at a certain minute of the day, cumulated for the first 66 weekdays.
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Fig. 2. p1.(s) based on the B-splines and the logistic regression, plotted as the black line over the estimates p;.(s) from (5), in gray. The red bars indicate the knot positioning.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The empirical distribution of the trip lengths, shown as the histogram bars,
and the theoretical density from the fitted model, shown in red, obtained via Monte
Carlo simulation and the subsequent kernel density estimation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

The maximum rate of charge, unax, reflects a power limit on the
electric sockets in a residential household or a technical constraint
due to thermal limits on the battery (as batteries generate heat
when charged). The minimum rate of charge on the battery, tum;n,
reflects that the battery may be limited to only charging i.e.
Umin = 0 or that discharging the battery is allowed so as to inject
power into the grid, i.e. Uy, < 0. The bounds on the storage limits
on the battery, en.x and e, reflect the storage capacity of the bat-
tery. These limits can also be altered to restrict life-cycle degrada-
tion of the battery. The penalty ¢ is the inconvenience cost incurred
if the vehicle cannot comply with the driving needs. As seen later,
this penalty determines the trade-off between the electricity pro-
curement cost and the availability of the EV to cover a plausible
trip. The ultimate aim of the penalty is to model the degree of flex-
ibility of the EV user (the higher the penalty, the less flexible the EV
user is). The penalty cost is expressed in €/h, indicating how much
the EV-user values (in monetary terms) having to postpone a trip
one hour because the EV is not available for driving. Therefore,
the value of this penalty cost should be set by the EV-user in accor-
dance with his/her economy, driving needs, and attitude towards
risk. Parameters 7. and 7, represent the efficiency losses from bat-
tery charging and discharging, respectively. The constant z; is the
average speed of the vehicle, when the vehicle is in state i, keeping
in mind that the modeling framework is general enough to capture
multiple different driving states, say urban and rural. The driving
efficiency, w;, captures the performance of the vehicle in driving
state i. The constant « is the total energy capacity of the battery.
The parameter w is used as a conversion factor from hours to min-
utes, as the model inputs are in hourly values and the model is run
in 1-min time steps.

3.2. State variables

e: total energy stored in the battery at the beginning of
minute t (kW h)
X desired driving state, where x; € {1...N}

We assume that variable x, is exogenously given by the inho-
mogeneous Markov model described in Section 2. Variable e, is
the energy stored in the battery. We define a state variable at time
t as S¢ = (er,x:). Notice that, as the driving state is exogenously
given, it does not depend on e; and thus the vehicle is allowed to
be in a driving state even though there is no energy on the battery.
Logically this is not feasible. Consequently, we refer to x, as the
desired driving state, since it can only be reached if there is enough
charge on the battery. To cope with this issue, we first define the
set, Sp, as the collection of states that x, can take where the vehicle
is driving. Then we define the auxiliary variable x{ as the actual
driving state, i.e.,

x“:{] if e = emin AX: € Sp 8)
t x; else.

Notice that x; and x¢ differ only when there is not enough charge to
complete the desired trip. State 1 denotes the parked state. There-
fore, according to (8) the vehicle is forced to stop when there is
not enough charge on the battery to drive any further. Note that
S: implicitly includes x? as a state, inasmuch as x? is derived from
X, and e,.

3.3. Decision (action) variables

u, desired energy charged into (or discharged from) the
battery in minute t (kW)

As for the driving state, we define an auxiliary charging variable
u?, which is the actual energy charged into the battery, since the
vehicle is unable to charge when it is in use. The new variable u
is then defined as follows:

a _
u, =

9

0 ife>emnAX €S
u, else.

Thus u¢ is zero when the vehicle is actually driving, and equal to
u, otherwise. Again, if both the state S, and the desired energy
charged u, are known, the actual energy charged u? follows implic-
itly from these.
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3.4. State transition function

The driving state variable x, evolves randomly according to the
inhomogeneous Markov model described in Section 2. The state-
transition function for the storage level of the battery can be ex-
pressed as:

1 N
€1 =€ + <”lcﬂ {ur=0} + n_dﬂ{ug<o}> wuf — pesiy Vit (10)
i1

Eq. (10) describes the dynamics of the energy stored in the battery.
It defines the storage level at time t + 1, e;,1, as the storage level at
time t, e;, plus the net energy charged into the battery and minus
the energy that is used to drive the vehicle, which is determined
by the random state variable x,. Note that e,,; is written as a func-
tion of e;, x? and u?. Nevertheless, because x? and u¢ are functions of
et, X; and u,, the energy stored in the battery at time t + 1, e, could
also be written as functions of these. This, however, would compli-
cate the formulation and for this reason it is omitted here.

An interesting case is when the EV-user desires to drive a trip
that cannot be covered by the energy presently stored in the bat-
tery. In the model, the user starts the trip disregarding the that
there is not enough energy on the battery and is thus forced out
into a charging-discharging process until the destination is
reached. Every time the battery is drained in the process, an
unavailability event occurs and the penalty is paid. What is impor-
tant here, though, is that this charging-discharging process yields
the same aggregate penalty as if the user were to charge the vehi-
cle to the required level before embarking on the trip.

3.5. Constraints

The desired charging of the battery is limited to being within
the bounds for the rate of charge:

Umin < Ut < Umax- (11)

The storage level on the battery is similarly constrained to being
within the storage limits of the battery:

€min < €t < €max- (12)

3.6. Objective function

The revenue at time period t is given by:
Re(St, ur) = —Acuf — Vixes) eo—emn} OP- (13)

The first term, Z,wu?, is the cost incurred from charging the
vehicle. The second term, 1x,csp.e—e,;,} V¢, iS the penalty incurred
when the user desires to use the vehicle, but he/she cannot do
so, because there is not enough energy stored in the battery. Note
that this happens precisely when x; # x{. Note also that the reve-
nue is equal to the sum of the costs and the penalty with a negative
sign.

The revenue at the end of the optimization horizon, i.e. at time
T, is given by:

1 T
Rr(Sr) = nzer TZ;‘" (14)
t=1

This equation sets the terminal revenue as the profit that could be
made by selling the remaining energy in the battery at the average
observed price. One could argue for the use of other terminal con-
ditions: For example, we could replace %Z[T:]).t in (14) with either
Jr or max.{/}. However, we find it more appropriate to use
%Z[T:lxlr, as this reflects the average economic value of the energy
remaining in the battery at t = T if history repeats itself. Besides,
%Zlezlt constitutes a better prediction of the future electricity price

than 4r, and max{/;} would probably lead to an over-estimation of
the economic value of the leftover energy, since the battery cannot
be fully discharged instantly, even if the maximum electricity price
encourages the EV user to do so. A terminal condition is important
in obtaining a solution for this problem, as this condition provides
the starting point from which the resulting stochastic dynamic pro-
gramming model is solved using backward induction [23]. How-
ever, as explained later, the proposed algorithm is to be applied
within a rolling-horizon decision-making process, and as a result,
the impact of the terminal condition on the charging pattern is
conveniently lessened.

Let U; denote the set of feasible decisions according to
Eqgs. (8)-(12), when the system is in state s. Let IT denote the set
of all feasible policies. A policy, 7, is a collection of decisions
ul(s) € Us, spanning the horizon from t = 0 to t = T and all states
S;. Thus for each t and each state S;, € IT will contain the action,
uZ(S;), under the policy 7. For each 7 € IT, we can now define the
total expected revenue of that policy from time ¢t to T as:

]?(St) =L [ZRI(Sn U?(ST))

S[:|7 (15)

where T is the optimization horizon. The objective is then to find a
policy, 7*, that satisfies:

J7(S) = sup J7 (S, (16)
nell
forall0 <t <T.

3.7. Solution algorithm

Finding an exact solution to the problem stated in (16) will be
difficult in general due to the randomness and the continuous nat-
ure of states and decisions. As the decision at time t depends on the
decisions and the values of random variables in previous time peri-
ods, the problem grows exponentially as the number of time steps
is increased. In order to capture the actual driving patterns and to
integrate them into the model in a sensible manner, it is essential
that the time resolution is high (1-min or 5-min intervals). Due to
the fluctuating electricity price and the diurnal variation in the
driving pattern, the horizon should be a minimum of one-day
ahead. If this is to be accomplished, an exponential growth of the
problem is not viable.

Instead we solve the problem by discretizing states and deci-
sions. This yields a discrete stochastic dynamic programming prob-
lem that is solved using backward induction and Bellman'’s
principle of optimality. As the driving states are already discrete,
the level of energy in the battery and the decision variable u, re-
main to be discretized. Suppose that the energy stored in the bat-
tery e, is discretized into M states and there are N driving states.
This yields a total of N x M possible state values for each time step.
We define I, as~the index set of possible values that the discretized
state variable, S;, can take on. We now define the Bellman equation
for the problem stated in Eq. (16) as

VeS) = max {Ri(Se, i) + BE [Verr (Sen)IS:] | (17)
i eU(St)
= max CR(Se @)+ Y PiSLalSOVer(Sia) oo (18)
reU(Se) il

where S, is the set of discretized values of S, and U(S,) is the set of
discretized possible actions in state S,. As the exogenous random
variable X; is defined by a Markov chain, the Bellman equation in
Eq. (18) represents a Markov decision process, which can be solved
using backwards induction, as sketched in Table 1.
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Table 1
Pseudocode using backwards induction to obtain the optimal policy ©* as the
collection of uy,.

Backwards Induction Pseudocode

1 Initialize: The terminal value is defined as VT(ET) = RT(ET) given by (14)
2: fort=T-1to0do:

3: for s € I; do:
4

5, = argmax, g {Re(s,ie) + B i, Pelils)Vern ()}

5: Vie(s) = Re(s,Use) + B iy, Pe(ils)Ver (i)
6: end s for
7: end t for

Using the algorithm in Table 1, we find the optimal discretized
policy 7* as the collection of i}, indicating when and how much to
charge, depending on both the time ¢t and the pair s of driving and
battery states.

It is advisable to run the algorithm over a long horizon, say two
days, to incorporate the diurnal variation in the driving pattern and
in the energy price. In addition, the longer the horizon covered by
the optimization process, the smaller the influence of the terminal
condition. Indeed, we propose to re-run the algorithm in Table 1
for every time step, with a horizon that is extended accordingly,
following a rolling-window process.

4. Results and discussion

In this section the model has been implemented and run for an
electric vehicle with characteristics similar to those of a Nissan
Leaf. The data at our disposal only includes two states, driving
and not driving. We consider a Markov model with three states;
one time-varying not driving state and two time-invariant driving
states. Model results are compared with those obtained from
“rule-of-thumb” policies to assess the economic performance of
the proposed decision-support tool. We first present an in-sample
study with the model fitted to the training set, which serves to
illustrate its main features. We then carry out an out-of-sample
study to evaluate the performance of the model on the test set.
For simplicity, we assume that the vehicle is plugged into the elec-
tricity grid when not driving.

4.1. Model characteristics

We consider an EV with a battery capacity x = 24 kW h and an
average consumption of g; = 0.20 kW h/km. The entire battery
capacity is assumed to be available for use, i.e. en.x =24 KW h
and e, = 0 kW h. We also consider that the vehicle is mainly to
be employed in an urban driving cycle with an average speed of
v; = 40 km/h, including stopping for red lights and congestion.
This yields a range of 120 km on one charge, a drive time of 3 h,
and an average power consumption of 8 kW. Regarding the charg-
ing, we assume a maximum charging capacity of um.x = 4 kW (typ-
ical maximal power infeed to a residential household). In the base
case the vehicle is not allowed to discharge power back into the
grid, i.e. umin = 0 kW. This case is subsequently extended to allow
for discharging via a V2G scheme with u,;, = —4 KW. The charging
efficiency parameters are 7¢ = n¢ = 0.9. On the basis of these char-
acteristics, the vehicle resembles the Nissan Leaf, which is one of
the top selling EVs in the world (as of January 2013).

We consider an optimization horizon covering 48 h in advance
to incorporate the diurnal variation in the energy price as well as in
the driving pattern. Furthermore, as already explained in Section
3.7, the relatively long horizon is used to decrease the influence
of the terminal condition on the optimal charging scheme, which
is gradually obtained from the rolling-window process. The time

resolution in the model is in minutes, which yields a total of
2880 time steps. A 1-min time resolution is chosen to adequately
model the use of the vehicle. As we consider a horizon of 48 h,
the discount factor is set to 8 = 1. The state variable for the energy
charged on the battery is discretized into 360 different states. Like-
wise, the state variable for the use of the vehicle has three states
(one not driving and two driving states). Therefore, the model relies
on 3 x 360 different states for each time step. In the base case,
where only charging is allowed, the vehicle charges at either full
rate or not at all, thus the decision variable u, can only take on
two different values. The optimal solution is found in less than a
minute on a personal computer with a 2.70 GHz processor and
8.0 GB RAM, which is satisfactory. The model can be straightfor-
wardly modified to work with 5-min or 10-min time resolution
with a view to further decreasing the solution time. Also, the dis-
cretization of the energy charged on the battery can be coarser.
This may be useful if the model is extended with more driving
states, or the model has to be implemented with less computing
capacity, or if the optimization horizon has to be extended. How-
ever, as the model run-time is quite small, such efforts have not
been pursued. We notice that the model is parameterized in terms
of the penalty in €/h, ¢, incurred when the vehicle does not have
enough energy in the battery to complete the desired trip. This
can also be seen as a risk-aversion parameter, where the risk of
not completing a trip is weighed against minimizing the costs of
driving.

With regard to the electricity price, we use the Nordpool DK1
spot-price historical series. We consider that the EV charging con-
troller receives a 48-h price forecast from, for example, a distribu-
tion system operator (DSO). The Nordpool spot price is determined
each day in blocks of 24 hourly values and is made public at noon
the previous day. Therefore we assume that the risk associated
with the volatility of the electricity price is handled by the DSO
or some other intermediary, but not by the end-consumer. Besides,
the 48-h price forecast may be updated, if appropriate, every time
(every minute) the model is re-run as part of the rolling-window
process.

4.2. In-sample study

Next we use the training data set defined in Section 2.3 to esti-
mate the transition probability matrix of the inhomogeneous hid-
den Markov model that we use to describe the driving patterns, as
explained in Sections 2.1 and 2.2. Then we simulate plausible driv-
ing scenarios based on this model and evaluate the performance of
the proposed decision-support tool for optimal charging on these
scenarios. Therefore, the analysis carried out here is in-sample,
i.e. it assumes that the fitted stochastic model for driving patterns
perfectly captures the actual nature of the use of the vehicle. The
purpose of this study is then to illustrate the main features of
the proposed decision-making tool. First, we analyze schemes
where only charging is permitted. Then we consider V2G schemes
[12,18], where the vehicle is permitted to supply power from the
battery to the grid. We use electricity prices from 00:00 on the
25-01-2012 to 00:00 on the 29-01-2012.

4.2.1. Charging-only schemes

Fig. 4 shows the estimated time-varying probability of starting a
trip, the electricity price, and selected values for the optimal policy
7t*, which defines the appropriate charging action to be undertaken
given the state S, and the time ¢, i.e., the optimal policy indicates
whether the EV should be charged or not at time t given the energy
level of its battery at that time t. The optimal policy may take val-
ues in the set {1, 0} for charging and not charging, respectively. In
Fig. 4 the battery state is indicated on the vertical axis for different
levels of charge, expressed as a percentage of the battery capacity
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Fig. 4. From top to bottom: time-varying probabilities of starting a trip, electricity price, and 7* for different levels of charge on the battery and penalty ¢ = 10 €/h.

emax- The time is indicated on the horizontal axis. Additionally, note
that Fig. 4 only shows the charging decisions for when the vehicle
is not driving, as we assume that it is not possible to stop a trip and
recharge, unless the battery is fully depleted. It is important to
stress that Fig. 4 shows a single run of the optimization algorithm.
The difference between this snap-shot of the algorithm and the
rolling window process will be illustrated subsequently.

It can be observed from this figure that if the energy level of the
battery is 5%, the optimal decision is to always charge, except in
those time periods when the probability of driving is low and the
electricity price is particularly high. In contrast, if the energy level
of the battery is 50%, the vehicle is only charged when the energy
price is comparatively low. This charging policy becomes more ex-
treme as the level of charge approaches 100%. Indeed, if the energy
level of the battery is equal to 95% of enax, the EV is only charged in
those time periods where the energy price is expected to reach its
lowest values.

In reality, the proposed charging algorithm is to be used follow-
ing a rolling-horizon process, which allows for updating the energy
price forecast and reducing the effect of the terminal condition on
the optimal policy, as highlighted next. In Fig. 5 the results yielded
by the algorithm when implemented over a fixed two-day horizon
are compared to those obtained considering a two-day rolling-
horizon. In the rolling-horizon optimization, the model is rerun
every hour and the optimal policy updated accordingly. The roll-
ing-horizon is kept fixed to two days in advance, and consequently
we use energy prices from 00:00 on the 25-01-2012 to 00:00 on
the 29-01-2012, that is, four days in total. From Fig. 5 we see that
there are only slight deviations between the rolling horizon and
the fixed horizon procedures within the first day. On the second
day, however, we begin to see deviations that go beyond a single
spike. As the time approaches time T, more discrepancies are
observed between the two models, indicating that the terminal
condition has an impact on the optimal charging policy. However,
this impact is mostly confined to the last time periods of the 48-h

optimization horizon, and therefore implementation of the pro-
posed algorithm in a rolling-horizon fashion can reduce, if not
completely eliminate, this effect.

To illustrate the actual implementation of an optimal policy 7*,
we run the following simulation process. First, 7* is computed and
defined for different values of the penalty ¢. Second, a plausible
realization of the driving pattern is simulated and the correspond-
ing time evolution of the level of charge on the battery is deter-
mined according to this realization and the optimal policy 7*.
The results of such a simulation are shown in Fig. 6. It can be seen
that as the penalty increases, the level of charge on the battery is
correspondingly higher, conditional on the same realization of
the driving pattern.

Another promising aspect of EVs is the possibility of supplying
power into the grid at times of high demand. This is investigated in
the following section.

4.2.2. Vehicle-to-grid schemes

Allowing for the vehicle to supply power from the battery into
the grid has the potential to help mitigate the effects of peak power
demand. This operation mode is usually referred to as a Vehicle-to-
Grid (V2G) scheme. A V2G scheme is investigated here from the
perspective of a single vehicle.

Implementation of the V2G scheme is by setting tmy;, to —4 kW
and keeping all other parameter values unchanged. The optimal
policy, T},¢, obtained by implementing a V2G scheme for a penalty
value of ¢ = 10 €/h, is shown in Fig. 7, which is similar to Fig. 5, ex-
cept that the optimal policy may take values in the set {1,0,—1}
for charging, not charging, and discharging, respectively. Observe
that when the energy level in the battery, e, is low, the optimal
policy, Tj,¢, basically consists in charging at almost every time ¢,
except in those periods with electricity prices at their peak and a
low probability of driving. As the energy level in the battery in-
creases, the policy changes to supplying power into the grid at
the price peaks and to charging at the price valleys. The proposed
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Fig. 6. Top: realization of the driving pattern. Bottom: the corresponding charge on the battery in percent for different penalty values when implementing 7*. The lightest
blue line refers to the lowest penalty and the penalty increases with the darker shades of blue. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

V2G algorithm thus weighs the costs associated with running out
of charge on the battery against the gains from delaying charging
to when the energy price is low and the gains from supplying
power into the grid when the energy price is high. Also in Fig. 7,
notice that the optimal policy shows some “spikes” where the opti-
mal decision is changed from charging to not charging for a short
time. This is linked to the fact that the electricity price traded on
Nordpool is in hourly time resolution, and therefore the price
changes only every hour and the corresponding price change
may be large. As the vehicle decides the appropriate action for
every minute, it is able to exploit this in its charging strategy.

4.3. Out-of-sample study

We now evaluate the model performance on the test data set
defined in Section 2.2. Therefore, we provide results from testing

the optimal charging policies on the actual utilization of the
vehicle in the second half of the data period. This study is thus per-
formed out of sample. We use actual electricity prices that were
observed in the Danish area DK1 of the Noordpool market during
the time period spanning from 00:00 on 01-01-2011 to 00:00 on
08-03-2011. Consequently, this study seeks to estimate how much
it would have cost to run an electric vehicle in DK1 during such a
time period, given the driving patterns analyzed in Section 2 and
on the assumption that the electric vehicle is directly exposed to
the DK1-market prices (e.g., through the DSO, a retailer or an
aggregator).

Fig. 8 shows the state of charge of the battery for different
charging policies. Note that this figure is analogous to the bottom
plot of Fig. 6, except that different charging policies are considered
and the time shown is 65 days. In particular, the top graph in Fig. 8
is obtained using the proposed decision-support tool to find the
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Fig. 8. State of charge in % for different charging policies, from top to bottom: Optimized charging with ¢ = 10 €/h (with only charging allowed), naive charging, night charging

and low-price charging.

optimal policy for charging (V2G operation mode is not permitted).
The lower three graphs represent different rule-of-thumb policies.
We refer to the first one as “naive charging”, according to which
the vehicle is charged immediately upon being parked. The second
to last is called “night charging”, and entails charging the vehicle at
night between 10 pm and 6 am or if the charge on the battery is
below 50%. The last one is “low price charging”, under which
the vehicle is charged if the electricity price is in the lowest

20%-quantile of the price distribution for the next 24 h or if the
charge on the battery is below 50%. From Fig. 8, notice that none
of the strategies empties the battery at any time.

Fig. 9 is similar to Fig. 8, except that in this case the V2G oper-
ation mode is allowed. The optimal charging policy is compared to
two other rule-of-thumb policies in which V2G is permitted. We
refer to these two rule-of-thumb policies as “unbounded” and
“bounded” V2G schemes. In the unbounded V2G scheme, the



E.B. Iversen et al./Applied Energy 123 (2014) 1-12 11

E.Optim
60

E.bounded

i
|

]
A
!

E.unbounded
6!

Fig. 9. State of charge in % for different charging policies, from top to bottom: Optimized charging with ¢ =10€/h (with V2G charging allowed), rule-of-thumb V2G

unbounded, rule-of-thumb V2G bounded.

vehicle is charged if the electricity price is in the lowest 30%-quan-
tile of the price distribution for the next 24 h and discharged if the
electricity price is above the 90%-quantile. The bounded V2G
scheme works the same as the unbounded one, except for the fact
that in the former the vehicle is also charged if the energy level of
the battery goes below the 25% of its maximum capacity.

Comparing Figs. 8 and 9, it is seen that the total battery capacity
is exploited when using a V2G scheme. This has the side effect of
the battery being depleted at some times during the day. Conse-
quently, the vehicle is not able to cover the user’s driving needs,
should the user desire to drive. This can, however, easily be
mitigated by setting an artificial limit on how much the battery
can be depleted. In practice, this is done by setting e,;, in Eq.
(12) higher than the actual minimum storage level of the battery.

Table 2 compares the costs and availability of the vehicle under
the different charging policies. We consider the average daily cost
of running the vehicle in € and the number of events where the
vehicle is not able to cover the user driving needs counted over
the 65 days that the test data set spans.

Let us consider first the strategies in Table 2 under which only
charging is allowed, we see that there are no observed events of
not having enough charge on the battery to complete a trip. Also,
we notice, as expected, that the optimal charging strategies have
lower costs than the rule-of-thumb policies. The low-price charg-
ing strategy is indeed the rule-of-thumb policy that approximates
closest to the optimal policy in terms of costs and availability. It
yields, however, an average daily cost which is around 12-24%
higher than that obtained from implementing the proposed
decision-support tool.

Table 2
Average daily costs in € and number of events where there is enough charge on
battery to service user driving needs.

Penalty ¢ (€/h) Charging only V2G permitted

Cost (€) Events Cost (€) Events

2 0.170 0 —0.097 12
5 0.174 0 —-0.084 8
10 0.177 0 —-0.061 3
100 0.181 0 —0.047 0
1000 0.188 0 -0.019 0
Naive 0.323 0 - -
Night 0.284 0 - -
Low price 0.210 0 - -
V2G unbounded - - 0.071 11
V2G bounded - - 0.133

When a charging policy allows for V2G operation mode, caution
should be exercised to prevent the vehicle from being fully dis-
charged when the end-user wants to drive. Notice, however, that
as the penalty is increased, the number of events where the user
is not able to drive drops to zero. Introducing a V2G charging
scheme allows for substantially reducing the cost associated with
driving as opposed to charging-only schemes, and may even result
in negative average costs. Observe that the optimal charging policy
developed in this paper clearly outperforms the rule-of-thumb
V2G schemes. In the unbounded case, charging costs are substan-
tially reduced, but multiple out-of-battery events are recorded.
Imposing a lower bound on the discharging solves this problem,
but at the expense of considerably increasing the running cost of
the vehicle, to such an extent that it nearly doubles.

The difference in performance between the optimal charging
strategy and the rule-of-thumb policies can be expected to become
larger for electric vehicles covering higher distances or with lower
battery capacity.

Lastly, we would like conclude this section by pointing out that,
in general, the spot price is not the price observed by the end-user.
Indeed, the end-user faces a price that includes taxes and other
costs on top of the spot electricity price. As an example, consider
a country like Denmark, where the average price of electricity paid
by the end-user, including taxes and fees, is around €300/MW h,
which is 5-10 times the average spot price [24]. In the current
Danish power system, fees and taxes are imposed on the amount
of electricity consumed by the end-user, not on its total cost. This
does not encourage the end-user to switch to a smart consumption
of energy based on variable prices. In fact, if the taxes and fees
were implemented as a function of the total energy cost, the sav-
ings from switching to a smart charging policy in Denmark could
be multiplied by a factor of between five and ten.

5. Conclusion

This paper proposes an algorithm to optimally charge an electric
vehicle that accounts for the uncertainty in the user’s driving pat-
terns. The algorithm is built on an inhomogeneous (hidden) Markov
chain model that provides the probability of the vehicle being in use
at any time of the day and captures the varying trip durations. Sto-
chastic dynamic programming is then used to determine the opti-
mal charging policy depending on the use of the vehicle, the risk
aversion of the end-user, and the electricity price.

The proposed charging model is fitted to a training dataset
spanning approximately two and a half months. An in-sample
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study is first carried out to: (i) investigate the impact of the termi-
nation condition on the resulting charging policy, (ii) highlight the
advantages of a rolling-horizon implementation of the algorithm,
(iii) assess the effect of an unavailability cost on the model output,
and (iv) illustrate the operation of the EV in vehicle-to-grid mode.

The performance of the model is then evaluated out of sample
on a test dataset that spans the two succeeding months. and in-
cludes the electricity prices from the Danish area DK1 of Nordpool.
The out-of-sample study shows that the costs associated with run-
ning the vehicle are decreased significantly when the charging
strategy is determined by the proposed optimization model, with
little or no inconvenience to the end-user. More specifically, the
daily cost savings range from approx. 19-47% with respect to a
variety of rule-of-thumb charging strategies. Running costs can
be reduced even further if the vehicle is permitted to supply power
into the grid. Indeed, our numerical results indicate that running
costs can be turned into net profit under an optimized V2G
scheme, with savings that amount up to 135% with regard to a na-
ive utilization of the V2G functionality for the case in which no
unavailability events are allowed.

The proposed stochastic dynamic programming model for EV
charging is versatile and can easily be adapted to any specific vehi-
cle, thus providing a customized charging policy that enables the
EV-user to save on running costs or even to make profit under a
vehicle-to-grid scheme.

A possible extension would be to apply the proposed model to
data with more Markov states, which could be used to investigate
the benefits of installing more public charging stations as opposed
to home charging, or to capture different driving states such as
“urban”, “rural”, or “highway”. With a view to its practical applica-
tion, the proposed Markov decision model could be upgraded to
handle transition probabilities that are estimated adaptively in
time. Indeed, adaptivity is key to capturing structural changes in
the driving behavior of the EV user, for example, those that could
follow from the EV user buying another vehicle or moving to a
new place.

Further research could be also directed at modeling a fleet of
vehicles by using a mixed-effects model. The optimization scheme
could be applied individually to each vehicle and the total popula-
tion load could be evaluated. This would highlight if and how EVs
could be used to mitigate an increase in peak electricity demand
when switching from combustion-based vehicles to EVs. Other
investigations could focus on the relationship between EVs and
renewable energy sources and how EVs could be used to move
the excess production to time periods of high demand, possibly
making renewables more economically competitive. Finally, it
would also be interesting to assess how the cost estimates pro-
vided in the out-of-sample study in Section 4 are extrapolated to
other electricity market with a different price profile (e.g., one with
a much less seasonal component due to a high penetration of solar
PV capacity).
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