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Abstract Probabilistic runoff forecasts generated by

stochastic greybox models can be notably useful for the

improvement of the decision-making process in real-time

control setups for urban drainage systems because the

prediction risk relationships in these systems are often

highly nonlinear. To date, research has primarily focused

on one-step-ahead flow predictions for identifying, esti-

mating, and evaluating greybox models. For control pur-

poses, however, stochastic predictions are required for

longer forecast horizons and for the prediction of runoff

volumes, rather than flows. This article therefore analyzes

the quality of multistep ahead forecasts of runoff volume

and considers new estimation methods based on scoring

rules for k-step-ahead predictions. The study shows that the

score-based methods are, in principle, suitable for the

estimation of model parameters and can therefore help the

identification of models for cases with noisy in-sewer

observations. For the prediction of the overflow risk, no

improvement was demonstrated through the application of

stochastic forecasts instead of point predictions, although

this result is thought to be caused by the notably simplified

setup used in this analysis. In conclusion, further research

must focus on the development of model structures that

allow the proper separation of dry and wet weather

uncertainties and simulate runoff uncertainties depending

on the rainfall input.

Keywords Stochastic greybox model � Skill score �
Real-time control � Urban drainage � Multistep

prediction � Online forecasting

1 Introduction

Real-time control (RTC) often provides a method to effi-

ciently operate sewer systems and reduce spills of sewage

into lakes, rivers, and oceans (combined sewer overflows,

CSOs). This reduces the need to build storage volumes in

the sewer system, which makes the method economically

attractive. A multitude of control systems are in operation

today. The types of setup range from rule-based strategies

that are determined offline (Fuchs and Beeneken 2005;

Seggelke et al. 2012), to online optimizations of storage

volumes (Pabst et al. 2011) and model predictive control

(MPC) (Schütze et al. 2004; Puig et al. 2009).

It is commonly expected that the combination of fore-

cast information and global optimization as applied in

MPC will yield the best control results. This is obscured by

the complex side constraints that result from the opera-

tional requirements in the sewer system and by insufficient

forecast quality. Recently, a new control setup was intro-

duced in the Copenhagen area to minimize the total over-

flow risk from a number of storage basins in the catchment

through the dynamic adjustment of the basin outflows and

the pumping capacities. The decisions in this algorithm for

the global control of the system are based on forecasted

runoff volumes for the catchment of each basin (dynamic

overflow risk assessment) (Vezzaro and Grum 2012; Grum

et al. 2011).
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Forecasts in such a setup need to be available at varying

horizon lengths which makes models that provide multistep

predictions attractive. Furthermore, the forecast uncer-

tainties need to be considered in the decision-making

process because prediction-risk relationships in urban

drainage systems are typically nonlinear (Vezzaro and

Grum 2012). However, no tools for the modeling of pre-

dictive uncertainties in an online setting are available. At

present, the very simplified assumption that forecast

uncertainties can be described by a Gamma distribution

with shape parameters that depend on the predicted runoff

volume is used.

Stochastic greybox models fulfill both requirements

because these provide predictive uncertainties at varying

horizons. For our purposes, stochastic greybox models are

termed simplified models with physically interpretable

parameters that provide a quantification of the model

uncertainties. Several authors have demonstrated the gen-

eral applicability of this class of models to urban drainage

problems. Carstensen et al. (1998) applied ARMAX

models to simulate the inflow to a wastewater treatment

plant. Bechmann et al. (2000) simulated the first flush and

later the pollutant loads (Bechmann et al. 1999) using

stochastic differential equations. Breinholt et al. (2011)

investigated model setups for flow predictions based on

linear reservoir cascades using stochastic differential

equations and took the initial steps required to quantify the

predictive uncertainty. Furthermore, Thordarson et al.

(2012) investigated multistep flow predictions for urban

drainage systems and evaluated these using skill score

criteria.

Previous works on stochastic forecasting of runoff in

urban drainage systems have focused on the prediction of

flows for one or several prediction horizons. However, the

decision-making process in RTC is typically based on the

predicted runoff volume. The quality of the probabilistic

multistep volume predictions obtained from the stochastic

greybox models has not yet been evaluated. Furthermore, it

is unclear whether the currently used parameter estimation

technique, which is based on the maximization of the

likelihood for one-step ahead predictions, also yields a

good model for multistep-ahead forecasts.

Therefore, following the scheme shown in Fig. 1, the

stochastic multistep predictions of the runoff volume are

generated using greybox models. New estimation approa-

ches for stochastic greybox models that focus on multistep

predictions were suggested, and the forecasts from the

resulting models were compared.

A simplified assessment of the ability of the models to

predict the overflow risk was subsequently performed to

evaluate the possible effects of the different forecasts on RTC.

2 Methods

2.1 Data and catchments

We consider two catchments in the Copenhagen area. The

Ballerup catchment has a total area of approximately

1,300 ha and is mainly laid out as a separate system,

although it does have a small combined section. The runoff

in this area is also strongly influenced by rainfall-depen-

dent infiltration.

The Damhusåen catchment is located close to the

Ballerup catchment but drains to a different treatment

plant. We consider the northern part of this catchment,

which has a total area of approximately 3,000 ha. The

catchment is laid out as a combined sewer system, and a

multitude of CSOs are located in the area. Flow measure-

ments are available for both catchments at a 5-min

resolution.

Numerous online rain gauge measurements are available

from the Danish wastewater committee’s (SVK) network in

the considered catchments (Jørgensen et al. 1998). The

gauges marked in Fig. 2 were used as the input for the

runoff forecasting models for the two different catchments.

These are the same gauges used in previous studies on the

Ballerup catchment (Breinholt et al. 2011; Thordarson

et al. 2012) and for radar rainfall calibration and RTC in

the Copenhagen area (Grum et al. 2011). These gauge

measurements are also available with a temporal resolution

of 5 min.

We have selected a 3-month measurement period from

25 June 2010 to 29 September 2010 for this study. The

period contains several summer storms that can be con-

sidered relevant for control applications in urban drainage

systems. A modeling time step of 10 min was adopted and

corresponds to the temporal resolution used in previous

studies (Löwe et al. 2012a, b). The flow and rain gauge

data were averaged to match this time step.

2.2 Stochastic greybox models for runoff prediction

We predicted the runoff at the catchment outlets using

stochastic greybox models, which are briefly described in

this section. The physical part of the models is based on

lumped reservoir approaches that transform the rainfall

input into the flow output. The principal model setup is

described by Breinholt et al. (2011). In this work, we

applied a simple two-reservoir cascade to both catch-

ments. In a state space formulation, we used two coupled

Itô stochastic differential equations, which together form

the following so-called system or state equations
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S1 and S2 correspond to the states of the system, i.e. virtual

storage fillings, A is the sealed area in the catchment, a0

refers to the mean dry weather flow at the catchment outlet,

and K corresponds to the travel time constant. The rainfall

input Pt was determined as the mean area rainfall by

averaging the rain-gauge measurements considered for

every catchment. In the diffusion term, the variance of the

state values was scaled depending on the state value itself

because the model predictions are more uncertain in wet

weather. The scaling was exponential to avoid extreme

increases in the variance in situations with high runoff.

In the observation equation, Qk corresponds to the flow

observation at time step k in discrete time, and Dk describes

the variation of the dry weather flows as a harmonic

function with parameters s1, s2, c1, and c2. A log transform

was used to avoid negative flow predictions. Please refer to

Breinholt et al. (2011) for a detailed derivation and

description of the model structure.

The open source software CTSM (Kristensen and

Madsen 2003) was used for the parameter estimation and

the forecast generation. State-dependent diffusion terms,

such as those in Eq. (1), cannot be modeled in this setup

(Vestergaard 1998). Therefore, a Lamperti transform was

applied to the system equations (1), as described by

Breinholt et al. (2011).

The multistep flow predictions were generated using the

extended Kalman filter with updating. This setup provides

a log-transformed flow prediction Ŷiþkji with variance Ri?k|i

that is assumed to be normally distributed.

2.3 Parameter estimation for stochastic runoff

prediction models

The purpose of the runoff prediction models considered is

to describe the expected runoff volume over a horizon of

variable extent, which is defined by the control scheme.

When estimating the model parameters from historical

data, we need to design the objective function such that the

resulting model is actually optimal for the generation of

predictions for different horizons. Below, we introduce

possible objective functions.

All of the suggested objective functions focus on flow

values rather than runoff or even overflow volumes because

the conversion from stochastic flow to runoff predictions is

computationally demanding. In addition, the models should

be estimated to correctly describe the physical behavior of

Fig. 1 Flow scheme for

comparing model estimation

approaches and evaluation of

multistep forecasts of runoff

volume

Fig. 2 Ballerup (left) and Damhusåen (right) catchments with online

rain-gauge measurements in the area (black dots) and the gauges used

as the input data for the Ballerup (circle) and the Damhusåen

(rectangle) catchments
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the system and thus reduce the risk of overfitting (Weijs et al.

2010). The physical system behavior is captured when

focusing on flow values during the parameter estimation,

whereas focusing on overflow volumes would likely intro-

duce a partial loss of the information provided by the

measurements.

Parameter estimation was performed automatically in all

cases using a genetic algorithm based on the concepts

described by Whitley (1994), Spall (2003) and Hallam (2010).

2.3.1 Maximum likelihood estimation (model A)

The most common approach for the estimation of parameters

in stochastic greybox models is to maximize the likelihood

function for a given series of measurements (Kristensen

et al. 2004; Breinholt et al. 2011). The computation of the

likelihood function is based on the computation of the one-

step prediction errors or innovations under the assumption

that the one-step-ahead conditional densities are Gaussian:

ei ¼ Yi � Ŷiji�1 ð4Þ

This approach may be difficult in the context of the esti-

mation of models for multi-step predictions in the urban

runoff setting. The parameters found may not to be optimal

for multi-step predictions because these are based on the

one-step prediction errors. Furthermore, there is a clear risk

of overfitting if the physical part of the model fails to

completely capture the system behavior. The one-step

predictions are strongly influenced by the updating of the

states in the extended Kalman filter, and we may identify

parameters that are optimal for this updating but do not

actually match the physical system behavior, which would

result in bad forecasts and simulations.

One may argue that, in these situations, the modeler

should attempt to improve the physical part of the model

and make it more suitable to the actual behavior of the

catchment. However, in practical applications, we will

often face the situation that a simple model will be suffi-

cient for the forecasting purpose; moreover, the tailoring of

a model to each new catchment may be too time-con-

suming. This also indicates a need for more robust esti-

mation methods that focus on the forecasting purpose.

2.3.2 Minimizing the error of the predicted runoff volumes

(model B)

The fitting of forecast models in hydrology is typically

performed by minimizing the forecast error variance (see,

e.g., Nash and Sutcliffe 1970). We suggest an objective

function based on the sum of the squared errors between

the predicted and the observed runoff volumes over the

prediction horizon:

SðhÞ ¼
XN

i¼1

Xk

j¼1

Qiþj �
Xk

j¼1

Q̂iþjjiðhÞ
 !2

Dt ð5Þ

At every time step i of length Dt; a k-step ahead flow

prediction Q̂ is generated. The flow values are integrated to

a runoff volume over the prediction horizon and compared

to the observations Q. The minimization of the sum of

these volume differences for all N time steps gives an

objective function for the estimation of the model param-

eter set h.

This objective function optimizes the model to give a

good point forecast of the expected runoff volumes over

the maximum prediction horizon of k steps (e.g. k = 10

steps). Implicitly, we assume that we also obtain good

predictions for shorter horizons.

2.3.3 Estimation based on the interval score (model C)

Minimizing the squared error of the predicted runoff

volumes tunes the forecast models to give good point

predictions of the runoff volume for multistep prediction

horizons. The quality of the forecast uncertainties is not

evaluated in this criterion. However, the forecast objec-

tive in the described setup is to obtain a probabilistic

description of the predicted runoffs. The predictive dis-

tribution should be as narrow (sharp) as possible and at

the same time match the observations (be calibrated or

reliable).

To account for the quality of the probabilistic predic-

tions, we can modify the criterion developed in Sect. 2.3.2.

Assuming normality, we compute a ð1� bÞ � 100 % ¼
95 % prediction interval for forecast horizon j for the log-

transformed flow values as

cuYiþjji ¼ Ŷiþjji þ 1:96 � rŶiþjji

blYiþjji ¼ Ŷiþjji � 1:96 � rŶiþjji

ð6Þ

where rŶiþjji
is the standard deviation of the j-step

predictions.

The quality of this prediction interval can be evaluated

using a number of methods, e.g. the interval score descri-

bed by Gneiting and Raftery (2007), which was applied to

stochastic flow forecasts in urban drainage systems by

Thordarson et al. (2012). The score for the j-step prediction

generated at time step i is

SC
b
i;j ¼ cuYiþjji � blYiþjji þ

2

b
ð blYiþjji � YiþjÞ1fYiþj\ blYiþjjig

þ 2

b
ðYiþj � cuYiþjjiÞ1fYiþj [ cuYiþjjig ð7Þ

In Eq. (8), a reasonable scoring rule based on Eq. (7) is

suggested and accounts for several forecast horizons. More
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weight is placed on the flow forecasts for shorter horizons,

which have a stronger influence on forecasts of runoff

volume because the latter are generated as an integral over

the flow forecasts for different horizons.

SC
b
i ¼

1Pk
j¼1ðk � jþ 1Þ

Xk

j¼1

ðk � jþ 1Þ � SCi;j

 !
ð8Þ

By averaging over all N time steps, we obtain the objective

function for parameter estimation in model C.

SðhÞ ¼ 1

N

XN

i¼1

SC
b
i ð9Þ

2.3.4 Estimation based on continuous ranked probability

score (model D)

The interval score criterion described above was previously

applied to flow forecasts in urban drainage systems, but

focuses on a 95 % prediction interval, i.e., only the tails of

the predictive distribution. This may lead to a dislocation

of the center of the predicted flow distribution. The con-

tinuous ranked probability score (CRPS) is a measure of

the fit of the overall distribution; therefore, we introduce

this score here as the last objective function for parameter

estimation in the stochastic runoff forecasting models.

Gneiting et al. (2005) suggested the use of the CRPS in the

fitting of post-processing models for ensemble predictions

and consider it robust toward extreme events and outliers.

A discussion of the score can be found in the manuscript

published by Gneiting and Raftery (2007).

We obtained the CRPS for the j-step flow prediction

generated at time step i as

CRPSi;j ¼
Z1

�1

ðFðsÞ � 1fs [ YiþjgÞ2ds ð10Þ

where F is the cumulative distribution function for the

(assumed normally distributed) log-transformed flow pre-

diction Ŷiþjji; and Yi?j is the corresponding (i ? j)th value

in the time series of the observations. 1 denotes the

Heaviside function and takes the value 0 when s \ Yi?j and

1 otherwise. There exists a closed-form solution for

Eq. (10) if the predicted value is normally distributed.

However, we do not expect to be able to always rely on this

assumption in practical situations and therefore chose to

evaluate the integral numerically.

As in Eq. (8), we performed a weighting of the CRPS

values derived for different forecast horizons to obtain an

average value for every time step. Ultimately, we averaged

the values for all of the considered time steps as in Eq. (9)

to obtain the value of the objective function. The optimal

parameter set is found by minimizing this value.

2.4 Generating stochastic forecasts of runoff volumes

The applied greybox models provide flow forecasts for

horizons 1 up to k. To derive probabilistic forecasts of the

runoff volume, we used a multivariate sampling approach.

The correlations between the flow forecasts for different

horizons are derived from past forecast errors. The fol-

lowing steps were taken.

– Generate a 10-step forecast at time step i from the

greybox models. We obtained a vector of (assumed

normal) log-transformed flow predictions Ŷi containing

the forecast values for horizons 1 through 10. The

corresponding observations are denoted Yi.

– Find the error covariance contribution from this time

step (Madsen 2008):

Vi ¼ ðYi � ŶiÞ � ðYi � ŶiÞT ð11Þ

– Estimate the overall error covariance structure for time

step i using exponential smoothing. This allows for

time variation of the considered correlations. We

applied k = 0.99.

Ri ¼ k � Ri�1 þ ð1� kÞ � Vi ð12Þ

– Scale Ri to the predictive variances provided by the

greybox model. We obtained a covariance structure with

variances according to those predicted by the model and

correlation values estimated from the forecast errors.

– Create 100,000 multivariate flow samples from the

NðŶi;RS;iÞ distribution [using the R-package MASS

(Venables and Ripley 2002)], each of which represents

a possible flow scenario for horizons 1 through 10.

Integrate each sample into runoff volumes and empir-

ically derive the distribution of the runoff volumes.

2.5 Forecast evaluation

A set of measures was applied to evaluate the quality of the

prediction intervals generated by the stochastic greybox

models. These are described by Thordarson et al. (2012)

and Jin et al. (2010). All of the measures were applied not

to flow predictions as in Thordarson et al. (2012) but to

runoff volume predictions for different forecast horizons.

– Reliability

REL ¼ 1

N

XN

i¼1

n
b
i ð13Þ

where N is the number of observations, b is the significance

level, and nb is an indicator variable with value 1 if an

observation is not contained in the (1 - b)% prediction

interval and 0 otherwise. The measure corresponds to the
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percentage of observations not contained in the (1 - b)%

prediction interval. A reliability bias can be defined as

RB ¼ b� REL ð14Þ

and becomes negative if the prediction bands fail to include

more than b% of the observations (it is otherwise positive).

Ideally, the reliability bias should be 0. The bias is bounded

depending on the significance level.

– Average relative interval length

ARIL ¼ 1

N

XN

i¼1

Ûiþkji � L̂iþkji
Viþkji

ð15Þ

This refers to the average width of a volume prediction

interval with lower bound L̂iþkji and upper bound Ûiþkji
generated for a forecast horizon of k time steps relative to

the observed value Vi?k|i. We consider 95 % prediction

intervals.

– CRPS (10)

In general, a good stochastic forecast will be calibrated,

i.e., generate reliabilities close to the significance level of

the required prediction interval. Given a calibrated model,

the spread of the prediction bounds should of course be as

narrow as possible, which is indicated by low ARIL values.

As an overall criterion, we aim to obtain the minimal CRPS

for the forecasts of runoff volume.

2.6 Evaluating the overflow risk for different forecast

types

To evaluate the effect of the considered forecasting models

on the RTC, a simplified assessment of the model ability to

correctly predict the overflow cost according to Eq. (16)

was used. We assumed a basin at the outlet of both

catchments studied. The basin outlet capacity is fixed. The

outlet capacity and volume were both chosen somewhat

arbitrarily but such that a reasonable amount of overflow is

obtained in the summer period considered. The selected

values are shown in Fig. 3.

We considered a prediction horizon of 10 time steps or

100 min. Evaluating the basin mass balance with the

selected characteristics and the measured time series of

catchment outflows, we determined a series of true ‘pre-

dicted’ overflow volumes over a 100-min horizon at every

time step. Assuming a unit cost of overflow volume, this

amount also corresponds to the true ‘predicted’ overflow

cost Cf,t:

Cf ;t ¼
Z

CðVf Þ � pðVf ÞtdVf ð16Þ

where C(Vf,t) corresponds to the cost value forecasted at

time step t and p(Vf)t is the forecasted probability that a

runoff volume Vf occurs.

Forecasts of the runoff volumes were again derived from

the probabilistic flow forecasts using the sampling

approach described in Sect. 2.5. Each sample forms a time

series of flow predictions for the different horizons. We can

evaluate the basin mass balance for this time series and

compute the predicted overflow cost for each sample.

Ideally, the predicted overflow cost derived from the sto-

chastic models will match the reference derived from the

observations at every time step.

3 Results

3.1 Forecast performance of different objective

functions

3.1.1 Runoff predictions for a number of rain events

Figures 4 and 5 compare the predicted runoff volumes

from the different models to the observed runoff volumes

in the Damhusåen catchment. We also included prediction

intervals that are based on the point prediction of model A,

which describe the uncertainty of the runoff forecasts by a

Gamma distribution, as detailed by Vezzaro and Grum

(2012).

We found that model A satisfactorily captures the

characteristics of the observed runoff curve. The prediction

intervals, however, appear to be rather small. Model B

provides very wide prediction intervals, whereas model C

gives wider prediction intervals than model A. The fore-

casts from model D appear similar to those from model A,

although the 50 % quantile of the forecasts appears to

match the observations slightly better than model A. The

prediction bounds from model D are narrower than those

from model A.

With the exception of model B, all of the models appear

to provide better estimates of forecast uncertainty than the

Gamma distribution.

The estimated model parameters, which are shown in

Table 1, exhibit the following tendency: models estimated

using multistep predictions produce more pronounced runoff

peaks as a result of the smaller K values in the Ballerup

Fig. 3 Simplified model setup used for the evaluation of the

predicted overflow cost for the different models and catchments

510 Stoch Environ Res Risk Assess (2014) 28:505–516
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catchment and the larger effective areas A in the Damhusåen

catchment. Note that the models do not necessarily respect the

mass balance due to the state updating. For all models, we

obtained rather small observation uncertainties re compared

with the uncertainty of the model states (r1, r2). This result

demonstrates, that we consider the information content in the

flow observations to be high and update the model to stay close

to these observations. The different forecast uncertainties

apparent in Figs. 4 and 5 are a result of the different state

uncertainties r1 and r2, which are shown in Table 1.
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3.1.2 Evaluation of the predictive distributions

The first step in this analysis is to study the overall quality

of the predictive distributions. The CRPS was used to

compare the forecasts and the observations. Note that,

other than in the criterion derived for the model estimation

in Sect. 2.3.4, we based the analysis on the predicted runoff

volumes for a given horizon.

The estimation based on the volume prediction errors

(model B) clearly gives the worst CRPS values. For the

other models, we cannot easily identify the differences

based on this criterion. In both catchments, the volume

forecasts generated by models A, C, and D are very similar

with respect to the CRPS.

Table 3 shows the ARIL values for the 95 % prediction

intervals of the runoff volumes for different forecast hori-

zons. Model B yields very wide prediction intervals

because it considers only the point prediction in the model

estimation. Large state uncertainties facilitate the state

updating and, if the quality of the observations is accept-

able, lead to better point predictions. The predicted

uncertainties, however, are too large.

There is less difference between the forecasts generated

by models A and C with respect to ARIL. The forecasts

generated by model D are clearly sharper than those

obtained with the other models. This tendency of the

CRPS-based estimation was also noted by Gneiting et al.

(2005).

Although we assumed that the simple lumped reservoir

model is much less suited to the prediction of the runoff in

the bigger and more complex Damhusåen catchment than

in the Ballerup catchment, we cannot identify a trend

toward relatively larger forecast uncertainties for this

catchment.

We continued this analysis by evaluating the distribution

of the predicted runoff volumes. Figure 6 shows the reli-

ability biases RB of the runoff volume predictions con-

sidering different levels of significance b and prediction

horizons. A significance level of b = 0.05 corresponds to a

1 - 0.05 = 95 % prediction interval.

For model A, we observed small reliability biases for

high coverage rates, i.e., at the tails of the distribution. For

smaller coverage rates, however, we overestimated the

forecast uncertainties, which led to positive reliability

biases. This problem becomes more pronounced for longer

forecast horizons.

As indicated previously, model B clearly overestimates

the forecast uncertainties and yields strongly positive reli-

ability bias values. Model C gives results that are similar to

those of model A, but generates smaller reliability biases at

longer horizons.

Model D yields a slight underestimation of the forecast

uncertainties for high coverage rates. Compared with

Table 1 Parameter estimates for the two catchments obtained with

different estimation approaches

a0 (m3/h) K (h) A (ha) r1 r2 re

Ballerup

A 393 7.52 206 1.61E?00 1.28E-02 6.88E-06

B 400 5.28 55 1.26E?00 5.54E-02 6.76E-07

C 372 3.03 74 4.35E-01 1.82E-02 4.35E-09

D 307 3.63 78 3.62E-01 1.09E-02 6.03E-06

Damhusåen

A 841 1.95 94 1.16E?00 6.79E-03 1.24E-08

B 1,678 2.49 270 7.70E?00 1.29E-01 1.07E-10

C 997 1.88 207 1.34E?00 7.34E-03 6.72E-10

D 933 2.51 122 7.64E-01 5.92E-03 7.24E-10

Table 2 CRPS for volume predictions in m3 considering different

prediction horizons (in time steps, step length = 10 min) and dif-

ferent estimation approaches for the two catchments

Horizon Ballerup Damhusåen

A B C D A B C D

1 2 3 2 2 5 25 5 5

2 5 7 5 5 14 62 14 15

3 8 12 8 8 28 110 29 30

4 12 17 12 11 48 169 48 51

5 16 23 16 15 73 239 73 76

6 21 30 21 20 103 319 103 106

7 27 38 26 25 137 410 137 141

8 33 46 32 30 176 511 176 181

9 39 54 38 36 219 623 218 224

10 46 63 45 42 267 745 264 271

Mean 21 29 20 19 107 321 107 110

Table 3 ARIL for 95 % volume prediction intervals considering

different prediction horizons (in time steps, step length = 10 min)

and different estimation approaches for the two catchments

Horizon Ballerup Damhusåen

A B C D A B C D

1 0.21 0.67 0.22 0.19 0.10 1.65 0.12 0.08

2 0.22 0.75 0.24 0.19 0.14 2.15 0.16 0.10

3 0.24 0.85 0.27 0.20 0.18 2.73 0.20 0.12

4 0.27 0.95 0.30 0.22 0.22 3.38 0.25 0.14

5 0.30 1.04 0.33 0.23 0.26 4.13 0.29 0.16

6 0.33 1.14 0.35 0.25 0.29 4.97 0.34 0.19

7 0.36 1.23 0.38 0.26 0.33 5.93 0.39 0.21

8 0.39 1.31 0.40 0.27 0.37 7.00 0.43 0.23

9 0.42 1.40 0.43 0.29 0.40 8.19 0.48 0.25

10 0.45 1.48 0.45 0.30 0.44 9.50 0.52 0.27

Mean 0.32 1.08 0.34 0.24 0.27 4.96 0.32 0.18
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models A and C, however, the overestimation of the

uncertainties in the center of the distribution is also

reduced. Similar to model C, we observed smaller reli-

ability bias values at longer horizons with model D com-

pared with model A.

Models C and D account for multistep predictions in

model estimation. In both cases, this results in reduced

reliability bias values at longer horizons compared to

model A. The parameter estimation in model C focuses on

95 % prediction intervals. This model consequently pro-

vides the best fit at the tails of the distribution.

For model D, a more balanced behavior can be observed

with a reduced overestimation of the uncertainties at the

center of the distribution but an underestimation at the tails.
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Fig. 6 Reliability bias for

models A (top) through D

(bottom) considering the

prediction intervals for different

levels of significance b and

different forecast horizons for

the Ballerup (left) and

Damhusåen (right) catchments

Stoch Environ Res Risk Assess (2014) 28:505–516 513

123



The latter leads to slightly worse CRPS values of the

forecasts of runoff volume compared with model A.

In general, all of the models result in either an overes-

timation of the forecast uncertainties at the center of the

distribution or an underestimation at the tails. This finding

indicates that the normality assumption used in the multi-

variate sampling approach may not hold.

There is a noticeable difference between the two

catchments. Although we obtained somewhat reliable (or

calibrated) forecasts for the Ballerup catchment, we tended

to overestimate the uncertainties in the Damhusåen catch-

ment because the applied model is less suitable to the

description of the behavior of this system.

In both catchments, the forecast uncertainties during

rain events are clearly underestimated by models A, C, and

D (data not shown). This finding indicates that the applied

model structure is not able to properly distinguish between

dry and wet weather uncertainties.

3.2 Predicted overflow cost for fictive basins

Table 4 shows the overflow cost predicted using the sim-

plified approach described in Sect. 2.6. The values for the

true observations and the runoff predictions generated by

the different models over a horizon of 10 time steps are

shown. The values shown are integrated over the whole

time period of 3 months. To compare the results with the

state-of-the-art method, we included two additional cases:

– Gamma—uses the point prediction from model A and

derives the forecast uncertainty for the runoff volumes

from a Gamma distribution, the shape parameters of

which depend on the point value (Vezzaro and Grum

2012).

– Model A Point—derives the predicted overflow vol-

umes using the point forecast of model A without

considering the forecast uncertainties.

We found that model A produces values close to the true

overflow volumes in the Ballerup catchment and underes-

timates the true cost in the Damhusåen catchment. When

ignoring the forecast uncertainties provided by model A,

we obtained almost the same results (Model A Point),

whereas the description of the forecast uncertainties with a

Gamma distribution results in a clear overestimation of the

overflow volumes. This finding indicates that a correct

point forecast is essential for a good estimation of the

overflow volumes in the simplified setup, whereas too

small or no estimates of forecast uncertainties hardly affect

the estimation of overflow volumes. In contrast, a too large

estimate of the runoff forecast uncertainties, as obtained

from the Gamma distribution, will lead to an overestima-

tion of the overflow risk.

A similar result was obtained with model B, which

generated reasonable results for the Ballerup catchment but

strongly overestimated the overflow risk in the Damhusåen

catchment as a result of the very high estimates of the

forecast uncertainty.

Models C and D exhibit a tendency to underestimate the

overflow volumes. As in model A, this underestimation is

the result of the underestimation of the runoffs by the point

prediction, as observed in Fig. 5.

Considering the RMSE between the true overflow cost

for a 10-step horizon and the predicted overflow cost val-

ues derived from the different models, we obtained a

similar picture. A clear overestimation of the forecast

uncertainties also results in increased RMSE values for the

overflow risk (model A C and model B), whereas

neglecting the forecast uncertainties hardly affects the

estimated overflow cost values (model A Point). Models C

and D provide better point forecasts during the overflow

events in the Damhusåen catchment, which results in

smaller RMSE values for the overflow cost.

In the authors’ view, the most interesting outcome of

this analysis is that no difference was found between the

deterministic prediction of the overflow risk (model A

Point) and the use of forecast uncertainties (model A). Two

possible reasons can be suggested for this result. First, a

linear relationship between the overflow volume and the

overflow cost was used in this simplified analysis. With a

nonlinear relationship that punishes (for example) the start

of an overflow event, forecasts of the overflow risk will

profit more from a proper quantification of the uncertainty

of the runoff predictions.

Second, the analysis performed here was static in the

basin layout. Using the considered dataset, we obtained

Table 4 Predicted overflow cost for 10-step horizon in m3 accumu-

lated over all time steps

Ballerup Damhusåen

True 3.1E?05 6.5E?05

A 3.2E?05 4.2E?05

B 3.8E?05 2.2E?06

C 2.5E?05 4.4E?05

D 2.6E?05 4.6E?05

A C 4.5E?05 8.2E?05

A Point 3.1E?05 4.1E?05

Table 5 RMSE between the true overflow cost and the prediction in

m3 from different models for a 10-step horizon

A B C D A C A Point

Ballerup 37 43 45 40 62 37

Damhusåen 190 672 177 167 194 195
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either only one event with a small overflow volume or

several events with rather large overflow volumes by

choosing different basin dimensions or outlet capacities.

The effect of considering the forecast uncertainties is most

visible in those events where either the basin is close to

being completely filled or where only small overflow vol-

umes are observed. In a predictive RTC system, the sim-

ulated basin outlet is varied in the optimization routine,

which results in strong variations in the simulated basin

filling. A proper description of the forecast uncertainties is

more important in those cases.

4 Conclusions

We have evaluated the quality of probabilistic multistep

runoff volume forecasts generated by stochastic greybox

models and compared the effect of different estimation

methods on the forecast quality. Four methods were com-

pared: a maximum likelihood estimation based on one-

step-ahead predictions (model A), a deterministic method

that minimizes the error of the 10-step-ahead predictions

(model B), and two methods that minimize the interval

score for the 95 % intervals of the multistep flow predic-

tions (model C) or the continuous ranked probability score

(CRPS, model D).

We concluded that, although it focuses on the whole

prediction horizon, the deterministic estimation method

(model B) is unsuitable for estimating the stochastic

models. The quality of the predictive uncertainty is not a

criterion in the objective function for this method. In the

cases considered here, this model results in too large esti-

mates of the uncertainty for the states.

Models A, C, and D provided reasonable estimation

results and multistep forecasts of the runoff volume with

similar skill values. Overfitting by model A was not observed

as a result of the high quality of the considered flow obser-

vations. More noisy measurements will make the parameter

estimation using one-step predictions more difficult and

favor approaches focusing on multistep predictions.

However, the use of multistep predictions in parameter

estimation (models C and D) clearly reduces the overesti-

mation of the uncertainties at longer forecast horizons.

Using the interval score for the parameter estimation

(model C) results in forecasts that are suitable for the 95 %

prediction interval and overestimate the uncertainties in the

center of the distribution. Applying the CRPS as the

objective function (model D) allows the balance of this

effect and gives forecasts that are more evenly calibrated

over the whole distribution.

In the prediction of the overflow risk in a simplified

setup, it was demonstrated that a significant overestimation

of the runoff forecast uncertainties leads to a strong

overestimation of the overflow risk. Consequently, models

A, C, and D all outperform the reference model, which

describes the forecast uncertainties with a simple gamma

distribution.

In the applied setup, it is not possible to show that the

risk of basin overflow can be predicted better through the

dynamic modeling of the uncertainties of the runoff fore-

casts compared to the application of a simple point fore-

cast. However, the analysis applied here is linear and static

in the basin layout. It is expected that the forecast uncer-

tainties will be relevant in a more realistic control setting

that exhibits nonlinear relationships between the forecast

values and the risk and where the basin outflows are

dynamically modified as part of an optimization routine.

In addition, all of the models clearly underestimate the

forecast uncertainties during rain events. This finding

suggests that the model structure should be modified to

allow a proper separation of the dry and the wet weather

uncertainties.

We need to be aware that this study focuses strongly on

the correct prediction of the overflow risk to improve the

RTC of sewer systems. The methods suggested for the

prediction of these risks, however, are also applicable in

other contexts of the urban drainage system, such as the

prediction of the critical operational states at a wastewater

treatment plant, the risk of flooding induced by overloading

of the sewer system, and the risk of microbial pollution as a

result of sewer overflows close to bathing areas.
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