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Abstract

Compact engine models often comsist of a set of nonlinear
differential equations which predict the time development of the
mean value of the engine state variables (and perhaps some
internal variables): such models are sometimes called mean value
engine models. Currently a great deal of attention is focused on
constructing such continuous time models and on finding their
parameters. This paper shows, that it is possible to identify an
engine model from a linearized version of a mean value model for
a CFI four—ycle spark ignition (SI) engine. Such an approach is
useful because it preserves a physical understanding of the engine
throughout the identification stage. Afterwards the identification
results are available for general dynamic engine studies.

The identification techniques discussed in this paper include
classical methods (step response) as well as modern statistical
methods (Kalman filtering and Maximum Likelihood estimation).
These techniques have been applied to a four cylinder SI engine.
The results include an identification of the most important
parameters and time constants of the engine. These are of
interest for the construction of engine simulation models, for
control studies and condition monitoring applications.

1. Introduction

In spite of the great interest which exists in identifying the
parameters of engines (and in particular spark ignition engines),
there is very little work of this nature reported in the literature.
This is mainly because
1. an engine is a nonlinear system which is difficult
to describe physically and
2. an mgme is a very noisy control object which
requires the use of advanced dynamic statistical
identification techniques.
These difficulties are reflected in the rather spare collection of
literature references in this area and in the large variety of engine
and engine model types treated in that which is available. The
models identified range from very simple continuous or discrete
transfer function models to linearized continuous mean value
engine models. Mean value engine models are continuous
dynamic models which predict the mean value of important
engine variables several engine cycles.

Among the simplest types of model identified one can mention
those which have appeared in connection with adaptive control
studies. Examples of such models are the work of Olsson, et. al.,
(1981) and Wellstead and Zanker, {1981). Both the models and
the identification techniques in such models are very simple and
unsophisticated as an adaptive algorithm is meant to run on—line,
in parallel with an operating engine. The physical content of the
models and their accuracy is correspondingly limited.

Wellstead, et. al., (1978) have used a simple continuous transfer
function model in their digital frequency response identification of
a turbocharged diesel engine. Frequency response methods were
also used by Chin and Coats, (1986) to identify the dynamics of
an SI engine transformed to the crank shaft domain. Such
investigations are very useful at isolated operating points and
reasonable engine transfer functions can be obtained. The
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procedure is however very time consuming both as regards
experimental time as well as computer analysis.

Time domain identifications have been undertaken by Hopkins
and Borcherts, (1980), Morris, et. al., (1981) and Cao, et. al.,
(1986). The approach of Hopkins and Borcherts (1980) is to use
simplified discrete difference equations and Landau's model
reference adaptive algorithm. This yields reasonable results for a
single engine at different operating points, but yields very little
physical understanding of the mode) obtained or of its parameters.
Morris, et. al.,, (1981) use the same approach but start with a
more physical model. While this does yield results which can be
interpreted physically, the discretization of the engine model
involved collects the desired engine parameters into discrete
transfer function coefficients which are difficult to unravel. Cao,
et. al., (1986) use an RLS algorithm to estimate engine parameters
directly in a discrete model. While this algorithm is useful on
line, the models identified are simple difference equation
approximations to the physical engine.

This paper describes an identification of a continuous time
linearized engine model nnng Maximum Likelihood (ML)
methods. The ML algorithm is used in conjunction with a
Kalman filter to estimate the states and noise covariances
iteratively for the ML algorithm. The identified parameters are
those of a continuous rather than a discrete time model. While
this is a large algorithm whick is used off—line here, it can be
converted into a recursive form. In any case it does yield physical
engine parameters with good accuracy at widely spread operating
points.

2. Model Forumlation

In order to successfully estimate parameters in a model of a
dynamic system, it is very important at the experimental design
stage to define the frequency ranges of the important dynamic
engine subsystems. This has to be done, since for praciical
estimation it is not possible to estimate simultaneously time
constants which differ too widely at the same time. In the table
below, the characteristic frequency ranges of the most important
SI engine subsystems are tabulated.

engine subsystem subsystem bandwidth

temperature changes ~ 001 Hs
rotational dynamics ~ 02 Hz
fuelflow dynamics ~ 2 Hs
manifold filling ~ 20200 Hz
noise from crankshaft rotations ~ 2080 Hz
noise pulses from piston ~ 30-170 Hz
noise from bearings, gear etc. ~ 400600 Hz

Table 1: The characteristic frequency ranges of the most
important subsystems of a SI engine (Collacott, 1977
pp 170~178; Hendricks and Sorensen, 1990).
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For control and condition monitoring applications the fuel flow
and rotational dynamic subsystems are the most important
identification objects. This is because the fuel flow dynamics are
of great significance for air/fuel ratio (A) control, while the crank
shaft dynamics determine an engine's drivability characteristics.
The crank shaft dynamics also reflect the condition of the engine.
Temperature effects will be ignored here.

The model for the crank shaft speed is based on a linearisation
proposed by Cook and Powell (1987). In this continuous mean
value model, it is possible to neglect the injection to power delay.
For a four cylinder, four—stroke engine this delay is Tjp =
30/n[rpm]. At 3000 rpm this delay is ~ 0.01 sec which, when
compared to the time constant for the rotational dynamics 7p ~ 4
sec, is negligible.

The fuel flow dynamic submodel for a CFI engine has been
identified in the literature using classical identification techniques
(Aquino, 1981). It has not yet been the subject of a study using
modern techniques.  For this study Aquino's model (with
modifications) has been used as the basic identification object.
The model is a semi empirical representation of the behavior of
the fuel film in the intake manifold. It is assumed that the intake
manifold is heated by the engine coolant. A block diagram of the
fuel flow subsystem is shown at the top of figure 1.

As indicated on the figure, the injected fuel mass flow, myj,
divides into two contributions: a vapor phase mass flow, m¢y, and

a liquid phase mass flow, mrf (which is the fuel film). The
proportion of the fuel which goes into the fluid phase is X (0 £ X
< 1) while the remaining proportion (1 — X) is entrapped in the
air stream as vapor. The time constant, Tfy, which describes the
dynamics of the entrapment process is expected to be of the same
order as the manifold filling dynamics. The time constant, Tyf,
describes the mean evaporation time for the fuel film flow from
the intake manifold.

In order to complete the fueling dynamics submodel, a model for
the dynamics of the lambda sensor (and its associated electronics)
must be given. Lambda is the air/fuel mass ratio normalized with

the ratio at stoichiometric conditions: A = ma/(mnLtp), where
Lih = 14.67 is the mass ratio for a stoichiometric mixture, m, is

the air mass flow and m¢ is the fuel mas flow at the cylinder
intake valve. The dynamics of the lambda semsor will be
approximated by a pure time delay, At, in this paper for
simplicity. Thus A At is lambda measured by a linear lambda

sensor, delayed the time At, which is the delay time for exhaust
gases to pass through the exhaust valves and down to the lambda
sensor.

Masifold
Filling

Pumping
Feedback

Fig. 1: Block diagram of the overall engine model. All input and
state variables are linearized around their mean values, ie., Az =

z — z (z is the mean value of z). In this block diagram the
process and measurement noises are omitted for clarity. Noise is of
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course included in the state space formulation and considered in
the model estimation.

3. Measurement Setwp

The experiments were conducted on a four cylinder, four—stroke ,
1.1L Ford CFI engine mounted on an eddy current dynamometer.
The engine was fully equipped with sensors for all the relevant
engine input and ocutput variables. The air/fuel ratio was
measured with a NTK Micro Oxivision MO—1000 Air/Fuel Ratio
Meter with its own linear A sensor. All engine inputs and outputs
were connected to a PC—AT based data acquisition system. All
experiments were conducted under open loop conditions.

To keep the engine at the desired identification (operating) point,
the engine was given constant input biases (fuel flow, spark angle
BTDC and throttle angle). For the step response experiments a
deterministic square wave perturbation was superi on the
desired input, with a maximum amplitude of +10% of the relevant
bias level. In the statistical identification experiments a
corresponding PRBS (Pseudo Random Binary Sequence)
perturbation was superimposed. The PRBS signal may switch
between two constant levels only at certain equally spaced time
intervals , t = 0, Tprbs, 2Tprbs .... Its frequency characteristics
are determined by selecting the time period Tprps and the order
of the signal, n. These parameters determine the frequency limits
for the signal. A useful rule of thumb is , that it is possible to
estimate time constants in the interval Tprps/10 < t < 2nTprbs
(Madsen, 1988) given a reasonable sampling period, Ts. For the
experiment to be reviewed, Tprbs = 0.5 sec and n = 6 have been
selected, thus it should be possible to estimate time constants in
the approximate interval 0.05 sec to 6 sec. In order to avoid
aliasing effects, all the data logging channels are prefiltered with
identical fourth order analogue filters, with a bandwidth of 20 Hz.
The sampling frequency was selected as four times this bandwidth,
ie., Tg = 0.0125 sec.

3.1 Classical Identification Experiments

Before initiating a series of experiments aimed at using
complicated identification algorithms, it is always advisable to
attempt to use simpler classical methods. This is desirable in
order to check the feasibility of the basic model and to see what
problems might arise in the use of a more sophisticated method.

J L JE—
¥ L L
2.0 t {(sec)
Fig. 2: The result of a step response test. For comparison the
simulation result from an equivalent deterministic square wave

input is plotted together with the experimental time response.

1.0

The results of a typical classical step response test are displayed
on figure 2. The fuel injector is being driven here by a rather
large manually generated square wave perturbation with an
amplitude which is +10% of the fuel bias amplitude. 1/ is
plotted proportional to the intake valve fuel mass flow. Thus the
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dynamic port fuel flow is being observed directly in this
experiment. For comparison the response of the model of figure 1
(with 7y = 0) to an equivalent square wave input is plotted
together with the experimental results. The time delay At has
been suppressed for clarity. Here the throttle angle is 43.50 and
the crank shaft speed is 3380 rpm. The time constant, T¢f, for
the simulation is 0.25 sec and the proportion of fuel which goes
into the fluid phase, X is 0.22. It may be seen that the agreement
is excellent during the entire experiment except for a small
deviation at the beginning of the lean excursions of the square
wave. This is due to the slight physical differences between rich
and lean evaporation conditions. Figure 2 and a large number of
similar results suggest that the simple model gives a sufficient
description of the physics of the intake manifold. The results of
the step response tests also show that due to noise and the
response time of the A sensor, it is very difficult to obtain
sufficiently accurate parameter estimates in this way. In order to
obtain greater accuracy it is necessary to resort to more advanced
methods.

4. Maximum Likelibood Method for Parameter Estimation

The maximum likelihood method is used to solve the parameter
estimation problem. This section describes how the parameters of
the continuous engine model are found by using discrete
measurements and the maximum likelihood method. As a starting
point the model is reformulated as a linear stochastic state space
model, where the stochastic portion accounts for discrepancies of
the model compared to the true system. Secondly, the discrete
version of the continuous stochastic model is obtained in order to
evaluate the likelihood function. The likelihood function is then
expressed as a product of conditional densities, which are
evaluated by using a Kalman filter. Numerical methods have been
used for the optimization of the likelihood function. The
asymptotic properties of the maximum likelihood estimator make
possible a parallel evaluation of the uncertainty of the estimated
parameters.

4.1 Linear Stochastic Models in State Space

The dynamics of the engine can be parameterived via the
linearized state space model in continuous time

X _Ax+BU (1)

dt
where X is the state—vector and U is the input vector.

Some description of the discrepancies between the model (1), and
the true variation of the states is introduced by adding a noise
term. Then the model of the engine dynamics is described by the
stochastic differential equation

2
where the m'th dimensional stochastic process w(t) is assumed to
be a process with independent increments. With the purpose of

calculating the likelihood function, w(t) will be further restricted
to be a Wiener—process with the incremental covariance Ry'(t)dt.

dX = A X dt + B U dt + dw(t)

In general, the measured or recorded variables are a subeet of the
state variables, and the measurements are encumbered with some
measurement errors. Thus it is assumed that only a linear
combination of the states are measured. Let Y denote the
measured or recorded variables, then the measured variables are
written

@)
where C is a matrix, which specifies which linear combination of

the states that are actually measured. The term e(t) is the
measurement error. It is assumed that e(t) is normal distributed

Y(t) = C X(t) + e(t)
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white noise with zero mean and variance Ry. Furthermore it is
assumed that w(t) and e(t) are mutually independent.

4.2 From Continuous to Discrete Time

The observations are discrete. Hence, the continuous model has
to be evaluated at discrete time intervals in order to calculate the
likelihood function. For the present method, where the system is
assumed to be described by the stochastic differential equation (2)
it is possible analytically to perform an integration, which under
some assumptions exactly specifies the system equation in discrete
time.

For the continuous model (2) the corresponding discrete model is
obtained by integrating the differential equation through the
sample interval [t, t+7]. If U(t) is constant in the sample interval
the sampled version of {2) can be written exactly as the following
discrete model in state space form

X(t+71) = K1) X(t) + (1) U(E) + w(1;7) @
where

T
o=~ 0 I=[MBas
0

t47
vit,r) = | eA(H'T_') dw(s)
t

On the assumption that w(t) is a Wiener process, v(t;7) becomes
normally distributed white noise with sero mean and covariance

r
Ry(7) = Ev(y;7) v(t;7)] = (f) &) Ry’ (s)” ds
If the sampling time is constant, the stochastic difference equation
can be written
X(t+1) = @ X(t) + T U(t) + v(t) 5

where the time scale now is transformed in such a way that the
sampling time becomes equal to one time unit.
4.3 Maxinwmn Likefihood Estimates

In the following it is assumed that the observations are obtained
at regularly spaced time intervals, and hence that the time index t
belongs to the set {0, 1, 2, ..., N}. N is the number of
observations. In order to obtain the likelihood fanction we
introduce

) = [Y(v), Y(t-1), .., Y(1), Y(0)])
ie. ¥(t) is a matrix containing all the observations up to and
including time t. Finally, let # denote a vector of all the unknown
parameters — including the unknown variance and covariance
parameters in R; and Ra.

The likelihood function is the joint probability density of all the
observations assuming that the parameters are known, i.e.

L'(8, Y(N)) = p(YIN)| O)
= p(Yst)l ¥(N-1),0) p(Y(N-1)| &)
= { I pcvo) Ye-12.8] 2¥0)| 8

©)

where successive applications of the rule P(A N B) =
P(A|B) P(B) are used to express the likelihood function as a
product of conditional densities.
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Since both v(t) and e(t) are normally distributed, the conditional
density is also normal. The normal distribution is completely
characterized by the mean and the variance. Hence, in order to
parameterize the conditional distribution, we introduce the
conditional mean and the conditional variance as

Y(t|¢-1) = EY()| Y1), )
R(t|t-1) = V[Y(t)| ¥(t-1),Q ®
respectively. Equation (7) is the one step prediction and (8) the

associated variance. Furthermore, it is convenient to introduce the
one step prediction error (or innovation)

€(t) = Y(t) - Y(t]t=1) (9)

Using (6) — (9) the logarithm of the conditional likelihood
function (conditioned on Y(0)) becomes

N
log L(8: Y(N)) = - 1/2 2 [log det R(t{t-1) +
t=1
€(t)’ R(t\t—l)_lc(t)] + const. (10)

The conditional mean Y(t|t—1) and the conditional variance
R(t|t—1) are calculated recursively by using a Kalman filter (e.g.
Astr(')m, 1970). The Kalman filter requires initial values, which
describe the prior knowledge about the states of the system in
terms of the prior mean and variance

Y(1}0) = BY()] =
P(1]0) = V[Y(1)] = vy

For a given set of parameters, 0, the likelihood function is
evaluated by using the Kalman filter for a calculation of the the
conditional mean and variance. The maximum likelihood estimate

(ML estimate) is the set § which maximizes the likelihood
function. For the optimization of the likelihood function the IMSL
routine DB20NF (1988) was used.

An estimate of the uncertainty of the parameters is obtained by
the fact that the ML estimator is asymptotically normally
distributed with mean # and variance

D= H_l (11)

where the matrix H is given by

thyl=- E[‘a‘gl—a-;p; log L(, Y(N))]

An estimate of D is obtained by equating the observed value with
its expectation and applying

= — [‘331%'0; log L(8; Y(N))] |0=9 (12)

The above equation is thus used for estimating the variance of the
estimates. If an estimated variance is large compared to the actual
estimated value for a parameter, this indicates that probably this
narameter can be eliminated from the model (the parameter is

equal to zero). An asymptolic test can be based on the

The estimated models are evaluated both statistically and
physically. The latter is discussed in the next section. The
statistical methods used for evaluation rely on the fact that if all
the systematic variation is described by a specific model, then the
residuals will be white noise sequences. Both tests in the auto—
and cross correlation functions, and tests in the frequency domain
were carried out. A further description of test procedures is found
in e.g. Box and Jenkins (1976).

5_Results

Since the engine inputs were perturbed one at a time (while the
others were kept constant), it was possible to identify submodels
of the total model one after the other. Most attention was
concentrated on the fuel flow submodel, because of it's great
importance and deficient coverage in the literature.

The parameters of the model were estimated for 6 points in the
normal engine operating region, for varying values of the throttle
angle. In the experiment with perturbations in the injected fuel,
the air flow is assumed to be constant, thus a straight—forward
way of measuring the fuel flow into the cylinder intake valves, was
again just to invert lambda. This value is proportional to the fuel
mass flow.

1/)\At = Lenms e_SAt = const* myf e_SA" , where my ~ const.
mg
The state space formulation of the submodel is

[dlilfv] = [—1/ Tfty 0 ][mfv] di
dmgf 0 —1/7ee [mef

(07704 e 4 [ 400
+ (e + | G2t )
Uhp, =Ko Kel[50~ 281 4 o) 19

where wiy(t) and weg(t) are Wiener—processes, with incremental
variances a¥1 and a‘?z , and e(t) is normal distributed white noise,
with variance 03 (see figure 1).

Table 2: The estimation results are shown with the standard
error of the estimates in brackets. n is the engine speed in rpm, &

is the throttle angle in degrees. The values of the delay, At, and
the two time constants are in seconds. The constant Kp, is in

sec/g and the two process variances are in (g/sec)?.

exp. n a Al v Fre X
fl 2931 295 0.0625 0.0750 0.375 0.175
(245:10%)  (2.79-10%) (8.24-103)
f2 3562 128 0.0375 0.0788 0.338 0.184
(4.19-10%)  (6.94:103) (3.35-102)
f3 2655 24.8 0.0750 0.0902 0.211 0.073
(5.63-107) (6.56-107) (8.05-10°2)
4 3273 29.2 0.0500 0.0916 0.275 0.150
(1.75-102)  (1.82:10%) (1.22-10°)
f1 3201 365 0.0375 0.0799 0.288 0.218
(5:37-10%)  (3.49:109)  (1.45-102)
8 2676  24.7 0.0750 0.0928 0.289 0.067
(4.22-10°%)  (9.98:10%) (6.56-10-4)
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f 0.1098 0.3910 1.2570 0.8421
(2.12:107)  (1.04-10%) (2.84-10%) (1.06-103)

3 1.21%

03591 0.1206 0.7211
(1:66-104) (2.04-10%) (2.31-109) (7.80-10%)

-] 0.0751 1.2010 0.8106 1.1937
(LM-10%)  (4.20-167) (357-10%) (371-10%)
f 01978 24760 0.6732 0.8568
(285-104) (1.46-10°3) (1.44-107) (1.31-10)
1

1.6730 0.2281 0.2091 0.6495
(1.66°10)  (204-10%) (231-109) (7.89-10%)

] 01333 0.6240 0.7682 1.1609
(1.52-107)  (4.24-10%) (L11-108) (1.36-10%)

It can be observed that for some of the parameters a close relation
exists between the parameter values and the operating point. For
example, the delay is less for higher engine speed: this.is shown on
figure 3.

DELAY {sao0)]
0.10

i

.08

0.00
2800 3000 JBO0 4000

N [rpm)
Fig. 3: A plot of the delay,At versus the engine speed. There is
some quantization uncertainty, since the delay can only be
estimated as whole number multipliers of the sampling time, i.e.
At = nTs.

Similarly the X parameter is obviocusly reisted to the throttle
angle. A larger throttle angle implies a larger fraction of hquid
fuel in the manifold, ss shown by figure 4.

W X(a) /
0.3 /

10 20 30 40 50

Fig 4: Tdentification of the function X(@) for the 1.1L Ford CFI
engine. The expressions of Hendricks and Sorenson (———)(1990)
and Wu, et. al.(~———)(1983) are plotted for comparison with the
measured points (x's).

No obvious functional relationships are seen between the two time
constants in the submodel and the opersting point. The
values for the two time constants in the operating region are 7Tty
= 0.085 sec and Tff = 0.296 sec. Both time constants are

sensibly constant from one identification run to another.
Obviously the variance estimates of the process and measurement
noise are varying. This is probably due to the different
realizations of the noise processes from one experiment to another.
In order to illustrate the performance of the model, figure 5 shows
the one step predictions (performed by the Kalman filter) together
with the observed output.

“‘.m = wssasured 1/i

. 104 —emee predicted. 173
e ved K“)“/\ . :A'I.(*! {
r
-8 'l4| '!
ve wd V| & L
| 1 .
- ol Ve Py

Ohearvactios Sunber
Fig. 5: A plot of the one siep predictions and the measured
values of 1/A versns obeervation number. Notice that only a
small part of the time series of observations is shown, otherwise it
would be difficult to distingnish the curves. Sample time is 62.5
msec.

An estimation of the other submodel, descnbmg vanations m
crank shaft speed when the throttle angle is perturbed has been
performed to show the possibility of estimating other model
parameters. The manifold pressure is joined as an output, since
this value was actually measured. The manifold filling dynamics
are very fast and can be neglected (the time constant for the
rotational dynamics is around 4 sec while the time constant for
the manifold filling is less than 0.02 sec). Hence it is less
significant than both of the time constants in the fuel Tlow
submodel. The resulting model in state space form-is then

dN = [-1/Tr —GpKn/IeNdt + [GpKg ~1/14] E’gl] dt + dw(t)
(18)

[Pus] = [l [ )R] + o] o

where w(t) is 8 Wiener process with incremental variance af , and
ey(t) and eo(t) are normal distributed white noise, with the
covariance

_[oh o

r= [ 4,

The estimated parameters are shown below, with the associated
standard :errors-in brackets.

Tr = 4.1358 sec (1.08-10°1)
Je'=0.6028 (Nm s/rpm) (4.00-105)
Gp = 6.3570 (Nm/kPa) (4.20-10°2)
Kn = 0:008746 (kPa/rpm) (2.11-10°6)
Ko = 3.6403 (kPa/o) (1.45-10°2)
o1 = 74.70 (rpm)? (2.17-10°9
0% = 14.43 (rpm)® (9.29-10°%)
32 = 0.6988 (kPa)? (9.12-10°5)
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It is seen, that the time constant for the rotating dynamics has
been estimated to be 7 = 4.1358 sec. It is thus clear that with
the method described here it is possible to estimate some
parameters, that otherwise would be quite difficult to measure.

To demonstrate the overall performance of the model, a plot of
the one step predictions performed by the Kalman filter is shown
on figure 6 together with the observed values. The curves show

very good agreement.

1004
ax (cpm)
— saneured RPN
veee- predicetsd EFM

\M\/ M/\b n /

. Tee 100 ses Y 8. ses

Qbeervatica Wambes

Fig. 6: One step predictions of the engine speed, N and the
measured values of N versus observation number. The sample
time is 62.5 msec.

6. Conclusions

In this paper a procedure has been proposed for the identification
of continuous model for engine dynamics based on discrete time
data. The fact that the model formulation and estimation take
place in continuous time makes it easy to use physical intuition
during the identification process. Thus the model can be
iteratively improved by combining physical knowledge and
statistical data analysis. In addition the accuracy of the
parameters is estimated at the same time as the parameters
themselves. The problem of sufficiency and over parameterization
is readily answered by analyzing the residuals and by considering
the variances of the estimates. The estimates of the noise
variances are useful in constructing Kalman filters for condition
monitoring and control applications.

There are a number of applications for the identification results
themselves. It is clear that in finding the internal variables of an
engine (such as the thermal and volumetric efficiencies), the
algorithm above can be useful for condition monitoring
applications. If the algorithm is written in a recursive form, it is
possible to use it on—line in a microprocessor either at a service
facility or (in a reduced form) in an on—board engine control
Microprocessor.

Currently the algorithm is in use to identify and refine a mean
value engine model developed in part by one of the authors
(Hendricks and Sorenson, (1990)). Here the method has made
accessible some details of engine operation characteristics, which
were only inaccurately known earlier. This has improved the
quality of the nonlinear model for control studies.
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