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Abstract

Compact eni models often consist of a of noninear

differential equationm which predict the time development of the
mean value of the engine state vaiabks (and perhaps some

internal variabls): such modes are sometimes called mean value

engine models. Currently a great deal of attention is focused on

constructing such oontinuous time models and on finding their
parameters. This paper shows, that it is posible to identify an

engine model from a linearized version of a mean value model for
a CFI four-cycle spark ignition (SI) engine. Such an approach is

useful because it preseves a phyical undertanding of the engine

throughout the identification stae. Afterwards the identifriation
results are available for general dynamic engine studies

The identfication techniques diussed in this paper include
casical methods (step response) as well as moden satical
methods (Kalman filtering and Maxmum Likeliood estimation).
These techniqe have been applied to a four cylinder SI engine.
The results include an identfiation of the most important
paraneters and time cntants of the engine. These are of
interest for the construction of engine simulation models, for

control studies and cndition monitoring applications.

1. htreduc&s

In spite of the great interest wbich exists in identifying the
parametes of engi (and in particular s k ignitin engines)
there is very little work of this nature tored in the literature.
This is mainly becae

1. an engine is a nonlnear system which is difficult
to describe physically and

2. an engine is a very noisy control object which

requires the -m of advanced dynamic stati

identification
The difficulties are reflected in the rather spare colltion of

literature refetences this area and in the lare variety of engine

and engine model types treed in that which is available. The

model identified range from very simple continuous or disrte
tafer function modls to lineaized cotinuous mean value

modelt Mean value egine models are continuous

dynamk models which predict the mean value of importat
engne variabes several enge cyces.

Among the simplet types of model idenftified one can metion
thoe which have appeared in acnection with adaptve control
studies. Exampes of such models e the work of Olso, et. al.,
(1981) and WeDatead and Zanker, (1981). Both the models and

the identificatio techniqu in sch mods are very simp and
unsophiicated an adaptive agorithm is meant to run on-line,
in parallel with an operating The physic content of the

models and their accuracy is correspondingly limited.

Welstead, et. al., (1978) have used a simple continuous transfer
function model in their digital frequency response identification of
a turbocharged diesl engine. Frequency respons methods were

also used by Chin and Coats, (1986) to identify the dynamics of
an SI engine transformed to the crank shaft domain. Such
investigations are very usful at isodated operating points and
reasonable engine transer functions can be obtained. The

procedure is however very time consuming both as regards
experimental time a well as computer analysis.

Time domain identifications have been undertien by Hopkins
and Borcherts, (198), Morris, et. al., (1981) and Cao, et. al.,
(1986). The approach of Hopkins and Borcherts (198) is to use

simplified discrete difference equation and Landau's model
reference adaptive algorithm. This yields reasonable results for a

single engine at different operating points, but yields very little
physical understanding of the model obtained or of its parameters.

Morris, et. al., (1981) use the same approach but start with a

more physical model. While this does yield results which can be
interpreted physically, the discretization of the engine model
involved colleets the desired engine parameters into dicrete
transfer function coefficients which are difficult to unravel. Cao,
et. al., (1986) use an RLS algorithm to esimate engine parameters
directly in a discrete model. While this algorithm is useful on

line, the models identified are simple dfference equation

approximations to the physial enge.

This paper describes an identification of a contanuous time
linearized engine model usin Maxmum Likelihood (ML)
methods. The ML algorithm is used in conjnction with a

Kalman filter to estimate the states and noise covauiances
iteratively for the ML algorithm. Te identified parameters are

those of a continuous rather than a discrete time model. While
this is a large agorithm which is used off-line here, it can be

converted into a recursive form. In any case it does yield physical
engine parumeters with good accuracy at widely spread operating
pomts.

Mode Fcutkm

In order to successully im t pameters in a model of a

dynami system, it is very important at the mental deign
stag to define the frequency ranges of the importnt dynamic
enie subsstem. Thi ha to be done, since for practical
estimation it is not posible to simate simulta usy time
constants which differ too widely at the same time. In the table
below, the characteristic equency ranes of the most important
SI engine subsystems are tabulated.

Table 1: The characteristic frequency ranges of the most
important subsrstems of a SI engine (Collacott, 1977
pp 170-178; Hendricks and Sorensen, 1990).
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temperature changes N 0.01 Hz
rotational dynamics Ad 0.2 Hz
fuefiow dynamics N 2. Hz
manifold fillin r' 20-200 Hz
noise from crankshaft rotations 20-0 Hz
noise pule from pisto N 30-ITO HZ
noise from bearings, gear etc. - 400-00 Hz
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For control and condition monitoring applications the fuel flow
and rotational dynamic subsystems are the most important
identification objects. This is because the fuel flow dynamics are
of great significance for air/fuel ratio (A) control, while the crank
shaft dynamics determine an engine's drivability characteristics.
The crank shaft dynamics also reflect the conditio of the engine.
Temperature effects will be ignored here.

The model for the crank shaft speed is based on a lineaization
proposed by Cook and Powell (1987). In this continuous mean
value model, it is possible to neglect the injection to power delay.
For a four cylinder, four-stroke engine this delay is Tip =
30/n[rpm]. At 3000 rpm this delay is - 0.01 sec which, when
compared to the time constant for the rotational dynamics rr - 4
sec, is neg ble.

The fuel flow dynamic submodel for a CF1 engine has been
identified in the literature using clasical identification techniques
(Aquino, 1981). It has not yet been the subject of a study using
modern techniques. For this study Aquino's model (with
modifications) has been used as the basic identification object.
The model is a semi empirical representation of the behavior of
the fuel film in the intake manifold. It is assumed that the intake
manifold is heated by the engine coolant. A block diagram of the
fuel flow subsystem is shown at the top of figure 1.

As indicated on the figure, the injected fuel mass flow, rhfi,
divides into two contributions: a vapor phase mass flow, mifv, and

a liquid phase ma flow, iff (which is the fuel film). The
proportion of the fuel which go into the fluid phase is X (O < X
< 1) while the remaining proportion (1 - X) is entrapped in the
air stream as vapor. The time constant, fv,, which describes the
dynamics of the entrapment process is expected to be of the same
order as the manifold filling dynamics. The time constant, Tff,
describes the mean evaporation time for the fuel film flow from
the intake manifold.

In order to complete the fueling dynamics submodel, a model for
the dynamics of the lambda snsor (and its associated electronics)
must be given. Lambda is the air/fe mass ratio normalized with

the ratio at stoichiometric conditions: A = rha/(rifLth), where

Lth = 14.67 is the mass ratio for a stoichiometrc mixture, ma is

the air mass flow and rhf is the fuel mass flow at the cylinder
intake valve. The dynamics of the lambda sensor wil be
approximated by a pure time delay, At, in this paper for
simplicity. Thus At is lambda measured by a linear lambda

sensor, delayed the time At, which is the delay time for exhaust
gases to pass through the exhaust valves and down to the lambda
sensor.

ifolt tAriliula9 aq Dre"

Fig. 1: Block diagram of the overall engine model. All input and
state variables are linearized around their mean values, i.e., AZ =

- i (i is the mean value of z). In this block diagrm the
process and measurement noises are omitted for clarity. Noise is of

course included in the sate space formulatio and considered in
the model estimation.

3. Mer t Seu

The experiments were conducted on a four cylinder, four-stroke,
1ilL Ford CFI engine mounted on an eddy current dynamometer.
The engine was fully equipped with sensors for all the relvant
engine input and output variables. The air/fuel ratio was
measured wnth a NTK Micro Oxivision MO-lO1O Air/Fuel Ratio
Meter with its own lier A sensor. All engine inputs and outputs
were connected to a PC-AT based data acquisition system. All
experiments were conducted under open loop conditions.

To keep the engine at the desired identification (operating) point,
the engine was given contant input bias (fuel flow, spark angle
BTDC and throttle angle). For the step response experiments a
deterministic square wave perturbation was superimposed on the
desired input, with a maximum amplitude of 110% of the rekvant
bias level. In the statistical identification experiments a
corresponding PRBS (Pseudo Random Binary Sequence)
perturbation was superimposed. The PRBS signal may switch
between two constant levels only at certain equally spaced time
intervals , t = 0, Tprhs, 2Tprbr .... Its frequency characteristics
are determined by seecting the time period Tprbl and the order
of the signal, n. These parameters determine the frequency limits
for the signal. A usful rule of thumb is, that it is possible to
estimate time constants in the interval Tprb,s/l0 < t < 2nTprb,s
(Madsen, 1988) given a reasonable sampling period, Tr. For the
experimnt to be reviewed, Tprbs = 0.5 sec and n = 6 have been
selected, thus it should be possible to estimate time constants in
the approximate interval 0.05 sec to 6 sec. In order to avoid
aliasing effects, all the data logging channels are prefiltered with
identical fourth order analgue filtm, with a bandwidth of 20 Hz.
The sampling frequency was selected as four times this bandwidth,
i.e., Tr, = 0.0125 sec.

3.1 Clacal Identification Exp

Before initiating a series of experirents aimed at using
complicated identification algorithms, it is always advisable to
attempt to use simpler classical methods. This is desirable in
order to check the feasibility of the basic model and to see what
problems might arise in the use of a more sophisticated method.

1i/A '

1.0

1
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Fig. 2: The result of a step response test. For comparisn the
simulation result fromn an equivalent deterministic square wave
input is plotted together with the experimental time resonse.

The results of a typical clasical step response test are displayed
on figure 2. The fuel injector is being driven here by a rather
large manually generated square wave perturbation with an
amplitude which is ±10% of the fuel bias amplitude. I/A is
plotted proportional to the intake valve fuel mass flow. Thus the
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dynamic port fuel flow is being obseved dircy in this
experiment. For comparison the response of the model of figure 1
(with rfv = 0) to an equivalent squate wave input is plotted
together with the experimental results. The time delay At has
been suppresed for clarity. Here the throttle ang is 43*50 and
the crank shaft speed is 3380 rpm. The time constant, rff, for
the simulation is 0.25 sec and the proportion of fuel which goes
into tbe fluid phae, X is 0.22. It may be seen that the agreement
is excellent during the entire experiment except for & smal
deviation at the beginning of the lean excursion of the square
wave. This is due to the sight physical differences between rih
and lean evaportion conditions. Figure 2 and a large number of
similar results suggest that the simple model gives a sufficient
description of the physics of the intake manifold. The results of
the step response tests also show that due to noise and the
response time of the A ensor, it is very difficult to obtain
sufficiently accurate parameter estimates in this way. In order to
obtain greater accuracy it is neceary to resot to more advanced
methods.

4. Maximum Lielihod Metho for Far MAmi&m

The maximum likelihood method is used to solve the parameter
estimation problem. This section describes how the parameters of
the continuous engine model are found by using dicrete
measurements and the maximum ikelihood method. As a starting
point the model is reformulated as a lnear stochtic ste space
model, where the stochastic portion accounts for discepancies of
the model compared to the true sem. Secondly, the disete
version of the continuous stochastic model is obtained in order to
evaluate the likelihood fumction. The likelihood function is then
expressed as a product of condional densities, wich are
evaluated by using a Kalman filter. Nuerical methods have been
used for the optimization of the likeihood fiuction. The
asymptotic! properties of the mauxm likelihood estimator make
possible a parallel evaluation of the uncertainty of the estimated
parameters.

4.1 Linr s Mod in state p

The dynamics of the engin can be par mied via the
linearized sate space model in cotinuou time

dX = A X + B U (1)

wher X is the sate-vector and U is the input vector.

Some description of the discrepancies between the model (1), and
the true variation of the states is introduced by adding a noie
term. Then the model of the engine dynamics is descnrbed by the
stochatic diffeetial equation

dX = A X dt + B U dt + dw(t) (2)
where the m'th dinioal tohstic proces w(t) is um ed to
be a proce with independent incraemnts. With the purpos of
calculatn the likehood function, w(t) will be frther restricted
to be a Wiener-process with the incremental covariance R1'(t)dt.

In general, the measured or recorded variabks are a subset of the
stte variabks, and the measurments are encumbered with some
meawrement erro. Thus it is asumed that only a linea
combination of the ate ae mesred. Let Y denote the
measured or recorded variabls, then the measured variabl are
written

Y(t) = C X(t) + e(t) (3)

where C is a matrix, which specif which linear combination of
the states that are actually measred. Te term e(t) is the
measurement er. It is assmed that e(t) is normal distributed

white noise with zero mean and variance R2. Furthermore it is
assumed that w(t) and e(t) are mutually independent.

4.2 From Continuous to Discrete Time

The observatios are discrete. Hence, the continuous model has
to be evaluated at discrete time intervals in order to calculate the
likelihood function. For the present method, where the system is
assumed to be described by the stochastic differential equation (2)
it is possble analytically to perform an integration, which under
some asumptions exactly specifies the system equation in discrete
time.

For the continuous model (2) the corresponding discrete model is
obtained by integrating the differential equation through the
sample interval [t, t+r]. If U(t) is constant in the sample interval
the sampled version of (2) can be written exactly as the following
discrete model in state space form

X(t+r) = q%(r) X(t) + r(r) U(t) + v(t;r)

where

E(r) = eAr

(4)

r(r) = J e B ds
0

v(t; r) = Jt er(t f) dw(s)
t

On the asumption that w(t) is a Wiener procen, v(t;r) becomes
normally distributed white noise with sero mean and covariance

Ri(T) = E[v(t;r) v(t;r)'] = J i(s) RI' '(s)' ds
0

If the sampling time is constant, the sthastic difference equation
can be written

X(t+l) = t X(t) + r U(t) + v(t) (5)

where the time seale now is trasormd in such a way that the
samplig time becmes equal to one time unit.

4.3 Mauisu mI&fihood r-

In the following it is asumed that the obervations are obtained
at rguarly spaced time intervals, and hence that the time index t
belong to the set 40, 1, 2, ., N). N is the number of
obervations. In order to obtain the lilkeihood function we
introduce

]it) = [Y(t, Y(t01) *..,t Y(1), Y(O)]

i.e. Y(t) is a matrix containig all the obsrvaion up to and
including time t. Finally, let Odenote a vctor of all the unknown
parameters - including the unknown variane and covarianoe
parameters in R1 and R2.

The likelihood function is the joint probability density of all the
observations assming that the parameters are known, i.e.

L'(0, Y(N)) =p(Y(N)IU) (6)
= p(Y(N) Y(N-1),)P( Y(N-1) O)

II[I1 O Y(t-l1t)] P(Y(O) e)

where succesive applications of the rule P(A n B) =

P(AIB) P(B) are used to expre the likelihood function as a
product of conditional densities.

1878

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on November 6, 2009 at 05:16 from IEEE Xplore.  Restrictions apply. 



Since both Y(t) and e(t) are normally distributed, the conditional
density is ala noma. The normal disribution is compltdy
characterized by the mean and the variance. Hence, in order to
parameterize the conditional distnbution, we introduce the
conditional mean and the conditional variance a-

(7)

(8)
respectively. Equation (7) is the one step prediction and (8) the
associated variance. Furthermore, it is convenient to introduce the
one step prediction error (or innovation)

(9)

Using (6) - (9) the logarithm of the conditional likelhood
function (conditioned on Y(O)) becomes

N

log L(B; Y(N)) = - 1/2 ) [log det R(tft-1) +
t=1

c(t)' R(tIt-l) lE(t)J + const. (10)

The conditional mean Y(t Jt-1) and the conditional variance
R(t It-1) are calculated recursively by using a Kalman filter (e.g.
Astr6m, 1970). The Kalman filter requires initial values, which
describe the prior knowledge about the state of the system in
terms of the prior mean and variance

Y(l 0) = E(Y(1)] = Ho

P(1 0) = V[Y(M)J = V0

For a given set of parameters, 0, the likelihood function is
evaluated by using the Kalman filter for a calculation of the the
conditional mean and variance. The maximum likelihood estimate

(ML estimate) is the set 0 which maximizes the likelihood
function. For the optimization of the likelihood function the IMSL
routine DB20NF (1988) was used.

An estimate of the uncertainty of the paraneters is obtained by
the fact that the ML estimator is asymptotically normally
distributed with mean 0 and variance

D = H 1 (11)

equal to zero). An asymptotic test can be baed on the
t-ditribution.

The estimated models are evaluated both statistically and
physically. The latter is d ed in the next section. The
statistical methods used for evaluation rely on the fact that if al
the systematic variation is descibed by a specfic model, then the
residuals willbe white noise sequences. Both tests in the auto-
and cros correlation function, and tests in the frequency domain
were carried out. A further desciption of test procedures is found
in e.g. Box and Jenkins (1976).

Since the engine inputs were perturbed one at a time (while the
others were kept constant), it was posible to identify submodels
of the total model one after the other. Most attention was
concentrated on -the fuel flow submodel, because of it's great
importance and deficient coverage in the literature.

The parameters of the model were estimated for 6 points in the
normal engine operating region, for varying values of the throttle
angle. In the experiment with perturbations in the injected fuel,
the air flow is assumed to be constant, thus a straight-forward
way of measuring the fuel flow into the cylinder intake valves, was
again just to invert lambda. This value is proportional to the fuel
mass flow.

/ LAt e t = cos rmf e ,where mha co.

The state space formulation of the submodel is

Edrhf [.../Tfv 0 l!f dt

dmnff [ -/rffj Lmffj

+ (X)/Trff r]f dt+ [dwf(t)]
lkhff f(t)(1

I/,AAt =- 1Kb Kb 4%7gf( z181) + e(t)

(13)

(14)

where wfy(t) and wrff(t) are Wiener-proceses, with incremental

variances ohi and ai2 , and e(t) is normal distributed white noise,

with variance oi (see figure 1).

Table 2: The estimation results are shown with the standard
error of the estimates in brackets. n is the engine speed in rpm, &t
is the throttle angle in degrees. The values of the delay, At, and
the two time constants are in seconds. The constant Kb is in

sec/g and the two prces variances are in (g/sec)2.

where the matrix H is given by ecp.

{h =-E [ log L(0; Y(N))]

An estimate of D is obtained by equating the observed value with
its expectation and applying

{hlk) - [ log L(0; Y(N)) 0. (12)

The above equation is thus used for estimating the variance of the
estimates. If an estimated variance is large compared to the actual
estiinated value for a parameter, this indicates that probably this
narameter can be eliminated from the model (the parameter is

n a At hy *f X

(1 2931 29.5 0.625 00750 0.375 0.175
(2.45.10-5) (2.79.10-6) (8.24-10-3)

f2 3562 32.8 0.0375 0.0788 0.338 0.184
(4.19-105) (6.94.10-3) (3.3510-2)

f 255 24.8 0.0750 0.0902 0.211 0.073
(5.63-10-2) (6.6-10-2) (8.05410-2)

R 3275 29.2 0.05 0.0916 0.275 0.150
(1.75.10-2) (1.82.10-3) (1.22.10-1)

fY 3201 r.5 0.375 0.09 0.288 0.218
(5.37.10-5) (3.49.10-3) (1.48.10-2)

18 2676 24.7 0.0750 0.0928 0.289 0.067
(4.22.10-5) (9.90 10-5) (6.56-10-4)
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_p. Aj-.w'2 s2iS QI1-4 Kb
fl t10 10 z1o 0.8421

(2.12.10'7) (1.04.104) (2A4-1") (1.06.1")
fz 03591 0.1206 1is19 0.721

(1M .01") (.04-103) (2.31-1") (7S. 10)
13 0.0751 1.3010 "106 1.1937

(1.141"1) (4.20.10-T) (3.7-104) (371.10-')
14 01978 2.476W 0.672 o0

(25.8104) (1.46-10) (1.44 10T7) (1310-)
V 1.im 0.2281 us sn

(1.46610-4) (2.04.104) (2.31}104) (7..-104)
8 IL13 A0.6 0.7W 1.1609

(152.-10-7) (424.108) (1.11-104) (1.3610-4)

It can be obsrved that for some of the parameters a clos relation
exists between the pameter vale and the operating point. For
exanple, the delay is lee for higher engine speed: this -i shown on
figure 3.

rI..AY [med
0.101

0.06

0.04

a

0 6

seibly costant from one identification run to another.
Obviously the variance estimates of the process and measurement
noise are varying. This is probably due to the different
realizatios of the -noise- proces from one experiment to another.
In order to ilustrate the performance of the model, figure 5 shows
the one step predictio- (performed by the Kalman filter) together
with the oberved output.
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Fig. 6: A plot of the one step prediction and the measred
values of I/A ver observation number. Notice that only a
snail part of the time sries of obwrvatiom is shown, otherwise it
would be difficult to distinguish the curves. Sample time is 62.5
mnec.

0.02

2600o soc 26
# [.Pm)

a0_

Fig. 3: A plot of the delay,At versm the engine speed. There is
some quantization uncertainty, -ince the delay ca only be
stimated a whole number multipliers of the sampling time, i.e.
At = nTs.

Simiarly the X parameter is obviusy relaed to the throttle
angle. A larger throttle angle implie a larger fraction of lquid
fuel in the manfold, s-shown by fiu 4.

0.31 (a)

0.1

I

/r X

/ x

o-i
II.

An esimaton of the oiher submocel, describng vanatoa m
crank shaft speed when the throttle angle is perturbed has been
performed to show the pomibility of esimating other model
parameters. The manifold prezre is joined as an output, since
this value was actually measured. The mnifold filling dynamics
ae very fast and can be neglected (the time constant for the
rotational dynamics is around 4 sec while the time constant for
the manifold fillng is le than 0.02 eec). Hence it is le
significant than both of the time constants in the fuel flow
sabmodel. The reslting model in state space form is then

dN = [-A/Tr -GpKn/JeJNdt + [ppGK /Je [t] dt + dw(t)
(15)

[PN r0]
N ) (16)

were-w(t) is a Winer proceswith incr tal vaance i, and
ei(t) and e2(t) are normal distrbuted white noise, with -the
covariace

[= il I2t [0 J

)
ffi0 2 3 40

10 20 30 -40

Fig t- dentificato of the function X(a) for the 1.1L Ford CFI
egine. The cpreasionsf Hendricks and Soren (- 1 )
and Wu, et. al.(--)(1983) we ploted for comparison with the
measured points (x's).

No obvu functoal ion areen between the two time
constans in the submodel and the operating point. 'The nan
valu for the two time constants in the operting regn a rfe
= 0.085 sec and rff = 0o9 sec. Both time constnt are

The etimated- peranum*A are shown

;r =4.llUSSec
Je= 0.6028 (Nm a/rpm)
Gp = 6.3570 (Nm/kPa)
Kn = .008746 (kPa/rpm)
K = 3.603 (kPa/o)

= 74.70 (rpm)2
= 14.43 (rpm)2
=0.69"8 (kpa)2

below, with the aciate

(1.08 10-1)
(4.00' 10-6)
(4.20 10-2)
(2.11 106)
(1.45.10-2)

(2.17' 10-4)
(9.29 10-4)
(9.12 10-5)

law

as I

DAM4 _ _ w ___ _ w_ _
I

* 2e0

.. as
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It is seen, that the time constant for the rotating dynamics has
been estimated to be rr = 4.1358 sec. It is thus clea that with
the method described here it is posblk to estimate some
parameters, that otherwise would be quite difficult to measure

To demonstrate the overall performance of the model, a plot of
the one step predictions performed by the Kalman fiter is shown
on figure 6 together with the observed values. The curves show
very good agreement.
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Fig. 6: One step predictions of the engine speed,
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6. Coclu

In this paper a procedure has been proposed for the
of continuous model for engine dynamics based on
data. The fact that the model formulation and est
place in continuous time makes it easy to use phys'
during the identification proces. Thus the me
iteratively improved by combining physical knc
statistical data analysis. In addition the acca
parameters is estimated at the same time as th4
themselves. The problem of sufficiency and over par;
is readily answered by analyzing the residuals and b;
the variances of the estimates. The estimates (

variances are useful in constructing Kalman filters
monitoring and control applications.

There are a number of applications for the identifi
themselves. It is clear that in finding the internal va
engine (such as the thermal and volumetric effi
algorithm above can be useful for condition
applications. If the algorithm is written in a recursi
possible to use it on-line in a microprocessor either
facility or (in a reduced form) in an on-board et
microprocessor.

Currently the algorithm is in use to identify and r(
value engine model developed in part by one of
(IHendricks and Sorenson, (1990)). Here the methl
accessible some details of engine operation charactei
were only inaccurately known earlier. This has L
quality of the nonlinear model for control studies.
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