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Abstract—The substantial impact of wind power fluctuations at
large offshore wind farms calls for the development of dedicated
monitoring and prediction approaches. Based on recent findings,
a Local Area Weather Radar (LAWR) was installed at Horns
Rev with the aim of improving predictability, controlability
and potentially maintenance planning. Additional images are
available from a Doppler radar covering the same area. The
parallel analysis of rain events detection and of regime sequences
in wind (and power) fluctuations demonstrates the interest of em-
ploying weather radars for a better operation and management
of offshore wind farms.

Index Terms—Wind Power, Forecasting, Weather Radar, Rain-
fall, Wind variability, Offshore.

I. INTRODUCTION

The benefits of remote sensing tools have long been ac-
knowledged in hydrological sciences [1] [2], whereas ap-
plications of such technologies are relatively new in wind
energy, due to its more recent history. For the time being,
remotely sensed observations have mainly been used for wind
resource assessment purposes [3]. Yet, a new field for potential
applications of these technologies has been pointed out by
recent advances in wind power meteorology.

Indeed, statistical analysis of high frequency wind power
measurements from large offshore wind farms identified sev-
eral regimes of production, characterized by different volatility
levels [4]. At the operational level, this translates into an
increased difficulty for grid integration and may lead to
large losses of resource. Regarding this problem, one of the
noticeable limitations of statistical models is that they are short
of adequate meteorological observations to explain the volatile
nature of the wind field in the neighborhood of offshore wind
farms. Consequently, these models often fails in predicting
sudden and extreme meteorological changes affecting the wind
farm power production.
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Commonly today, high-frequency measurements (with pe-
riods between 1 second and 10 minutes) are available from
nacelle anemometry and SCADA systems. Optimal accounting
of this information in statistical forecasting techniques for
the very short-term was shown to improve forecast accuracy
substantially [5]. However, these anemometers provide very
local and instantaneous observations, within the area delimited
by the wind turbines, and are not informative of upcoming
changes in the weather conditions. In that regard, observations
at the offshore site of Horns Rev have revealed the presence of
convective rain cells as a meteorological indicator for extreme
wind variability and suggested the use of weather radars for
detecting and tracking such phenomena [6]. Advantages of
weather radars are manifold and the meteorological observa-
tions they provide can be employed for different applications:

o development of new Graphical User Interfaces for wind
power applications,

« rapid update cycle of meteorological models,

o detection of specific patterns of high wind variability
and improvement of offshore wind power fluctuation
predictability,

o development of dedicated control strategies for offshore
wind farms.

As a first step towards the optimal usage of weather radar
data, this study presents the results of some exploratory
data analysis which gives evidences of the interest of our
approach. Section 2 introduces the experimental design of
the study. Then, Section 3 presents an applet that allows the
combined visualization of radar images and wind data. Section
4 shows two examples of the early detection of rain for the
anticipation of episodes of high wind speed/power volatility.
Finally, Section 5 delivers concluding remarks and exposes the
lines for future work.

II. EXPERIMENTAL DESIGN

The main data acquisition system is based on a X-band
Local Area Weather Radar (LAWR) which measures rain
reflectivity at high spatio temporal resolutions [7]. The system
is portable and ideal for remote locations such as offshore
wind farms. The LAWR settings can easily be modulated
in order to meet the requirement of specific applications. In
this experiment, the LAWR is operated with a 60km range
and set to generate one image in output every minute, with



a pixel resolution of 500m. The LAWR is installed on the
transformer platform of the Horns Rev 2 wind farm, off
the west coast of Jutland, Denmark. Measurements from the
nearby Rgmg weather radar (C-Band) are also available. That
radar is operated by the Danish Meteorological Institute at a
temporal resolution of 10 minutes. Its range is 240 km with a
pixel resolution of 2km.

These two weather radars have different scanning pro-
cedures due to their respective frequency bands, and their
outputs exhibit many significant differences. However, on-
going investigations to combine observations from these 2
devices concluded on their promising complementarity [8].
Their respective location and coverage area are illustrated on
Figure 1.

Fig. 1. The red dot indicates the location of the Horns Rev 1 wind farm. The
green dot indicates the location the LAWR and the area it covers is shaded
in dark blue. The Rgmg radar location is depicted by the yellow dot and its
area is shaded in light blue.

III. A FIRST STEP - VISUALIZING THE DATA

Weather radars generate tremendous quantities of data, and
the complex spatio temporal variability of the rain reflectivity,
though captured in 3 dimension, is commonly synthetized
into 2 dimensional images. These images constitute a very
rich source of information and their potential is best exploited
through graphical tools for several purposes.

First, the inspection of the image visual features can reveal
(i) to which extent the measurements are contaminated by
undesirable targets (ships, planes, wind turbines), (ii) the influ-
ence of the surrounding environment (mountains, sea) and (iii)
the radar sensitivity to specific weather conditions affecting
the propagation of the radar beam. Some of the problems
encountered with the images generated by the LAWR are
illustrated in [9]. Image post processing turned out to be
necessary in order to separate the information linked to rain
reflectivity from the other sources cited here above. Noise
removal procedures were routinely implemented. There is no
measurement available for south westerly directions due to a
blockage of the radar beam by an obstruction on the platform
hosting it. Measurements within the first 10km were discarded
because of the spurious influence of the sea, completely
masking the reflectivity from rainfall.
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Fig. 2. Example of GUI for simultaneous visualization of weather radar
images and wind data.

Second, each image provides a one minute average of the
weather conditions nearby the wind farm but remains (i)
difficult to interpret if not part of a sequence and (ii) of
limited value if not combined with other measurements. For
this purpose, a Graphical User Interface was developed and
can be seen on Figure 2. Radar images are displayed in the
upper window while a time series (i.e. wind speed or power,
sequence of regimes) is plotted in the lower window. Besides
the type of images and time series to display, the user only
sets the time interval of interest defined by 2 dates/times. An
extra option consists in defining a time step for the images
(i.e. a value of 10 means that one wants to display one image
out of every 10 images produced) and works as fast forward
control. The red line (in the lower window) automatically
scrolls from left to right at the same pace as the images are
updated and indicates the corresponding values on the time
series. A module for spectral analysis of wind speed time
series as in [10] will shortly come to complement this GUIL
Advantages of such tool are straightforward and manifold:

« it provides an automatic and user friendly data manipu-
lation system,

« it allows for a more advanced understanding of the spatial
structure of the rain as well as its scale and motion,

o it allows to highlight the relationship between the pres-
ence of rain and measurements (wind speed and power)
from nearby wind farms,

From Figure 2 in the upper window, one can see a rain
field of high reflectivity crossing the Horns Rev 1 wind farm
(depicted as a white dot) and its neighborhood as observed by
the LAWR. In the mean time, in the lower window, the wind
speed measured by anemometers at Horns Rev 1 exhibits a
growing volatility as the rain front approaches and goes away.
Many other similar phenomena can be identified over the entire
set of observations, from January 2010 to March 2011. This
comes as the first confirmation of the previous observations
on the role of rain as a potential indicator for extreme wind
variability [6].



IV. RAIN: AN INDICATOR OF HIGH WIND SPEED/POWER
VARIABILITY ?

Moving on from visual observations in the previous section,
we propose a simple statistical approach to link the detection
of rain and episodes of high volatility of wind speed and wind
power. For a more detailed description of the models used in
this section, we refer to [11].

First of all, it is worth mentioning that we did not attempt
to convert rain reflectivity observations into rain intensity
values since this conversion is based on an approximation,
the so called Z-R relationship, which requires the raindrop
size distribution to be known or assumed [12]. Instead, we
prefer working on the original reflectivity values. Based on the
common segmentation used in Hydrology and Meteorology,
rain reflectivity values are grouped into 5 different classes with
respect to their dBZ values (decibel of reflectivity):

e class 1 - no rain (<8 dBZ)

o class 2 - light rain (8-24 dBZ)

o class 3 - moderate rain (25-45 dBZ)

e class 4 - heavy rain to thunderstorms (46-65 dBZ)
e class 5 - extreme thunderstorms (>65 dBZ)

Few events depicting dBZ values of class 5 were observed and
after verification, these values were most of the time linked to
contaminated pixels. We used images from the Rgmg radar for
this analysis. A circular area of 60km radius and centered on
the Horns Rev 1 wind farm is defined and only pixels within
that area are considered. For each image, the rate of pixels
falling into one of the 5 classes is computed. That way, we
can detect the presence of rain if the cumulated sum of pixels
in class 2-4 exceeds a given threshold.

A. Wind speed variability

As for modeling the wind speed variability, time series
based methodologies in the frequency domain provide a wide
range of methods of which some are presented in [13]. In
particular, it is shown in [10] that a method based on the
Hilbert-Huang transform is able to highlight specific seasonal
cycles as key features of wind variability. However, this is
beyond the scope of this study and will be investigated at
later times. Instead, we use a general approach based on Au-
toregressive (AR) - Generalized AutoRegressive Conditional
Heteroscedastic (GARCH) models. The AR part of the model
will capture the mean behavior of the wind speed time series
(i.e. the low frequency fluctuations) while the GARCH part
will model the dynamics of the squared errors (i.e. the high
frequency fluctuations). GARCH models are often applied for
time series featuring time-varying variance. For a given time
series of wind speed {y;}, the model is formulated as follows:
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with {h;} the estimated conditional variance at time t and
{e+} a sequence of independently distributed random variables
following a Normal distribution N'(0, 1).

The time series of wind speed was sampled over 10
minute intervals and all observations for the year 2010 were
used to fit the model using Maximum Likelihood Estimation.
Figure 3 depicts a 17 day episode of wind speed observed
at Horns Rev 1 in July 2010 (top window) along with the
estimated conditional variance series {h;} (second window
from the top). The observed peaks correspond to periods of
high wind speed volatility. The corresponding time series of
cumulated coverage rate for classes 3 to 4 (rate of pixels
having dBZ values larger than 25) is also plotted and illustrates
the sequence of rains fronts detected nearby Horns Rev 1.
Interestingly, the 3 periods of highest wind speed volatility
correspond to periods where rain fronts with high reflectivity
are detected nearby Horns Rev 1. On July 3, the peak of
coverage is lagged of a couple of hours when compared to
the peak in the conditional variance potentially indicating
that strong turbulences in the wind field were experienced
as the rain front was approaching. Similar phenomena were
also spotted in several other occasions and make us think that
the change in the wind speed dynamics may not be perfectly
synchronized with the instantaneous detection of rain nearby.
Wind turbulences are experienced a few hours before and after
the rain front hits the wind farm.

B. Wind power variability

The nonlinear conversion from wind to power makes that
periods of high wind speed variability do not necessarily
translate into periods with high wind power variability. It is
therefore important to assess whether the detection of rain
can lead to identify episodes of large wind power fluctuations,
independently of the wind speed variability.

For this purpose, we want to show whether the detection
or rain can be related to different regimes of power produc-
tion following the definition proposed in [4]. That definition
assumes that a wind farm can be modeled as a single system
which switches between different states or regimes, given the
dynamics of its power fluctuations. For the specific case of
Horns Rev 1, it was shown that the mean dynamics were
relatively similar across regimes but that the standard deviation
levels were significantly different.

We extracted a 3 regime sequence based on a time series of
wind power sampled over 10 minute intervals, for the whole
year 2010. Given o(?) is the estimated standard deviations
in regime 4, regimes were ranked with respect to increasing
volatility levels so that o) < ¢(2) < ¢() and ¢V = 3.1074,
o = 0.014, 0 = 0.068. Then, we computed the condi-
tional probabilities of the wind farm being in each of the 3
regimes, given high reflectivity rain (i.e. rain reflectivity of
class 3 or 4) was detected the hour before, and given no rain.
These results are reported in Table I.

Rain (classes 3 and 4) was detected in 17% of the obser-
vations. In both cases, rain and no rain, regime 2 is dominant
with the largest conditional probability. As for regime 1, its
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Fig. 3. From top to bottom: (i) Original wind speed time series, (ii) Estimated
conditional variance, (iii) Coverage rate of pixels in classes 3 and 4.

TABLE I
CONDITIONAL PROBABILITIES OF WIND POWER PRODUCTION REGIME
GIVEN RAIN OR NO RAIN WAS DETECTED. REGIME ARE RANKED BY
INCREASING VOLATILITY.

Reg. 1 Reg.2 Reg.3
rain 0.18 0.43 0.39
no rain 0.08 0.64 0.28

conditional probability is higher when rain is detected. Atfer
verification this is due to a higher rate of wind speeds above
15m.s~! for which the wind power dynamics is smoothed.
However, the most noticeable feature revealed by these results
is that the conditional probability of the wind farm being in
regime 3 (i.e. the regime for which the wind power fluctuations
are the most volatile) is 11% larger when rain is detected
compared to the no rain case. Interestingly, it is this type of
wind power fluctuations that statistical models cannot predict
accurately for the moment. It is shown here that the early
detection of rain fronts can improve the anticipation of these
volatile wind power fluctuations and hence that weather radars
are very useful.
V. CONCLUSION

In this study, we demonstrated that weather radars could be
valuable assets for offshore wind power applications. Through
a binary approach (rain / no rain), we managed to clearly

identify episods of high wind speed variability. In addition,
it was shown that it could also improve the anticipation
of highly volatile wind power fluctuations for which state-
of-the-art forecasts are characterized by large uncertainties.
However, it is clear that a more advanced approach is needed
for an optimal use of the information contained within the
radar images. Improved image segmentation as well as the
extraction of dynamic features such as motion speed and
direction are expected to give more insights on rain events. An
other line of work is to merge the expertise of meteorologists
and statisticians to perform a classification of rain events with
respect their impact on wind speed/power variability.
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