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Abstract—This paper describes two methods for online fore-
casting of power production from PV systems. The methods are
suited for online forecasting in many applications and in this
paper they are used to predict hourly values of solar power for
horizons up to 32 hours. The data used is hourly observations
of solar power from a single PV system located on a rooftop
in a small village in Denmark. One approach is a two-stage
method in which a statistical normalization of the solar power
is obtained using a clear sky model. The clear sky model is
found using statistical smoothing techniques, which ensure that
local phenomena are directly modelled from data, as opposed
to applying a deterministically derived clear sky model. In
the second stage forecasts of the normalized solar power are
calculated using adaptive linear time series models. A second
approach is to apply conditional parametric models with both
autoregressive input and NWPs exogenous input. The results
indicate that for forecasts up to two hours ahead the most
important input is the available observations of solar power, while
for longer horizons NWPs are the most important input. A root
mean square error improvement over a persistence model around
40 % is achieved for 1 and 2 hour horizons and around 35 %
for longer horizons.

Index Terms—Solar power, prediction, forecasting, time series,
photovoltaic, numerical weather predictions, clear sky model

I. INTRODUCTION

The increasing installed solar power capacity rises the chal-
lenges of grid integration. The need for efficient forecasting
methods is evident and the research activities within the
topic is increasing, see for example [1], [2], [3], and [4].
In this paper methods for online forecasting are presented.
The methods are suited for forecasting of solar power for
different systems and here they are applied to forecast the
power production of a single 4 kW-peak PV-system installed
on a rooftop of a single family house. Due to the fluctuating
nature of solar power such forecasts are essential for optimal
grid integration and will be essential for solar power smart
grid technology. The applications include energy trading for
large solar power producers, and diurnal peak-shaving and
cost optimization for smaller systems with storage capacity
in battery packs (e.g. provided in an electrical car). Two
approaches are considered. One is based on a two-stages
approach: first the systematic dependency of the position of
the sun relative to the PV panel are removed with a clear sky
model, and secondly the resulting process is forecasted with
time-adaptive linear time series methods. The clear sky model
is calculated with non-linear statistical techniques, which will
also model the local conditions, such as e.g. shadows from
elements in the surrounding environment and snow cover. In
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the second approach numerical weather predictions (NWPs)
are used as input to conditional parametric non-linear models
[5] to forecast the solar power. Finally, the two approaches
are combined by normalizing the forecast with the clear sky
model, and finally using this as input to the linear forecasting
model, such that an ARX model is formed.

The paper is organized as follows. First the data and how
it is preprocessed is described. The next section contains an
outline of the clear sky model, followed by a section where
all the forecasting models are described. Then an evaluation is
given and the results are presented, followed by a discussion
of the results and ideas for further work. Finally, the paper
ends with a conclusion.

II. DATA

The data used in this study consist of hourly mean values
of solar power from a 4 kW-peak PV-system and NWPs of
global irradiance. The NWPs are provided by the Danish
Meteorological Institute using the HIRLAM mesoscale NWP
model. The data covers the entire year 2006.

The time series of hourly observed solar power is

{P; t=1,...,N} (1)

where N = 8760. The NWPs have a calculation time of 4
hours, which is taken into consideration, such that e.g. the
forecast from 2009-01-01 00:00 are only available from 2009-
01-01 04:00. The NWPs are provided in a time resolution of
3 hours. They are pre-processed into time series of hourly
values, such that the most recent available forecast k hours
ahead is selected each hour. The time series for a given k of
the direct radiation is

{Gnvvp .

R t:l,...,N} )

A. Pre-processing

The solar power data is plotted for each hour of the day
in Figure 1. The solar radiation is zero at night, hence the
observed solar power is also zero. For the current data set
only periods, for a given hour of the day longer than 40 days
in which the solar power is different from zero, are included
for evaluation of the model performance. This is illustrated in
Figure 1, where the non-included periods are grayed out.

III. CLEAR SKY MODEL

Forecasting effectively using linear time series methods calls
for stationarity of the underlying process [6]. The process that
generates the solar power is not stationary, which is seen by
plotting quantiles of the distribution of solar power conditioned
on the time of day, see Figure 2. Clearly the distribution of
solar power is not independent of the time of day.
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Most of this dependency can be removed by a normalization
using a clear sky model

Py
= PtCS
where P, is the observed solar power, Pf® is the estimated
clear sky solar power, and 7; is the normalized solar power.

3)

Tt

A. Statistically estimated clear sky solar power

The clear sky solar power is estimated using a statistical
non-linear and adaptive model. Quantile regression [7] locally
weighted in the day of year and time of day dimension is
applied. This is carried out fully causal, i.e. only past values
are used. The clear sky model is

ptcs:QO.99(P17P2,~--,Ptvhyahtod) S

where qg.g9 is the 99% quantile based on the solar power
values up to time t. The bandwidths hq.y and hioq, are in
the day of year and time of day dimension, respectively. The
bandwidths control how “locally” the model is fitted, i.e. a
lower bandwidth puts more emphasis on data which is close
in the two dimensions. The local weighting function is an
Epanechnikov kernel. The applied bandwidths are

hday = 100 days, (@)

which were found by visual inspection of the fitted clear sky
curve. Finally, it is noted that second-order polynomials were
applied in the time of day dimension to include curvature into
the model. The estimated clear sky solar power is shown in
Figure 3.

hioq = 3 hours

I I
2006-09-01 2006-11-01

The solar power data. The greyed area are not included in the evaluation of the model performance.

One advantage of the normalization is that it will auto-
matically adapt to changes in the system, such as degraded
performance or changes in the surroundings e.g. snow cover
and shadowing effects. It can as well be used for monitoring of
the solar system, since degraded performance from the same
time of year will result in a lower clear sky solar power curve.
Plots of the quantiles of the distribution of normalized solar
power conditional on the time of day are shown in Figure 2,
from which it is seen that the normalized solar power process
is considerably less dependent on the time of day and therefore
a much more stationary process. It is noted that further work
could include physical considerations into the clear sky model.

[t]
IV. FORECASTING MODELS

In this section a description of the applied forecasting
models is given. The models can be divided into models using
linear time series models to forecast the normalized solar
power: autoregressive (AR) and autoregressive with exogenous
inputs (ARX) models - and models which forecast in a single
stage: conditional parametric (CP) models. Each model is fitted
separately for each horizon, such that the same model structure
is used, but the parameters are estimated separately for each
horizon.

A. Reference model

To compare the performance of prediction models, and es-
pecially when making comparisons between different studies,
a common reference model is essential. The reference model
for solar power used in this study is the best performing naive
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Fig. 2. The 0,4%, ..., 100% quantiles of the distribution of the solar power
and the normalized solar power conditioned on the time of day. Values above
1.5 has been clipped, which was the case for 6 values.

predictor for a given horizon. Two naive predictors of solar
power are found to be relevant. Persistence

Di+k|t = Pt T €t+k; (6)

and diurnal persistence

Divk|t = Pt—s(k) T Ct+k (7N
s(k) =244 k mod 24 3

where s(k) ensures that the latest diurnal observation is used,
i.e. the value which, depending on the horizon, is either 24 or
48 hours before the time point that is to be forecasted.

B. Autoregressive models

Autoregressive (AR) models are applied to forecast the
normalized solar power. These models can include either
the latest available observation or the latest available diurnal
observation, or both, as input. The models are fitted with k-step
recursive least squares with forgetting factor [8]. The model
formulated as a k-step AR model

Titklt = M+ Q1T + 24Ty s(k) T €t+k )]
s(k) = 24 + k mod 24 (10)

where the function s(k) ensures that the latest observation
of the diurnal component is included. The model without
the diurnal component, denoted AR, performs best on short
horizons

Teqklt =M+ Q1T + €ryk (11)
and is included in the evaluation. The AR model with only

the diurnal performs better on longer horizons, but is inferior
to the models including the NWPs.
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Fig. 3. The estimated clear sky solar power.

C. Conditional parametric models

Conditional parametric (CP) models where the coefficients
are conditional on the time of day and time of year are applied
with both past solar power observations and NWPs as inputs.
The CP model with the latest solar power observation as input
is

Piyie = m+ a(tday trod, Pr) Py + €1y (12)

where the coefficient function is a non-linear function of the
solar power. It is denoted as CPp. The CP model with NWPs
of global radiation as input is

Py =m+ b(tdayv tiod, G?f,fp) Gilpe tewn  (13)
where G}VP, is the k-hour ahead NWP of global radiation.

This model 1s denoted C'Ppyyp. Finally, the model with both
inputs

Pt+k =m + a(tday7 ttoda Pt)Pt
+ b(taays tioas GYYE ) GIT, + eovn

(14)
(15)

is denoted CPywp,p.

In the following the coefficients dependency of the time
of day for CPywp is elaborated on. It is noted that the
bandwidths are optimized for each horizon. Plots of the fitted

forecasting function b(tday,ttod,G?f:gl .) for k = 24 hours

are shown in Figure 4. It is seen how the slope of the function
is lower in the morning, than in the middle of the day. This
is naturally caused by the higher angle of incidence in the
morning, which cause less horizontal radiation to be absorbed
due to reflection. Likewise for the afternoon. Finally, non-
linearity in the fitted function is seen.

D. Autoregressive model with exogenous input

The AR model is be expanded to include the forecast of
the CP models, thus combining information in past observed
solar power and NWPs. The solar power forecasts from the



2006-07-15 06:00:00 ‘

1500 3000

O Observation

— b(tdayﬂttodvciyz:y)gt) for CPnwp

0

1500 3000

0

Solar Power (W)
1500 3000

0

1500 3000

0

1500 3000

0

0 200 400
Forecasted Irradiance (W/m2)

600 800

Fig. 4. Examples of the function fitted for & = 24 hours forecasting with the NWPs of global radiation at different times of the day on the 15°th of July
2010 with the CPpwp model. For each observation the size of circle indicates the weighting of the observation in the CP models. Thus observations with a

larger circle have more influence on the fitted function.

CP is normalized with the clear sky model by

inp
Anwp t+k|t
Tkt = Do — (16)

PERIETP t—s(k)

S(k) = fspd + k mod fspd a7
where fs,q = 24 is the sample frequency in number of
samples per day. The ARXI model is

Tiok =M+ a7y + bthnf;‘t + ek (18)

V. EVALUATION

The methods used for evaluating the prediction models are
inspired by [9]. The clear sky model, RLS, and CP fitting do
not use any degrees of freedom and the data set is therefore
not divided into a training set and a test set. It is only for the
optimization of the kernel bandwidths and the forgetting factor
that the entire data set is used. The period before 2006-03-01
is considered as a burn-in period and not used for calculating
the error measures.

A. Error measures

The Root Mean Square Error for the £’th horizon is

Nl=

N
1
RMSE), = NE er 19)
t=1

where e, is the k-hourly prediction error. The RMSE), is
used as the main evaluation criterion (EC) for the performance
of the models. The Normalized Root Mean Square Error is
found by

RMSE},

pmax

where pmax 1S the maximum observed solar power output. The
mean value of the RMSE), for a range of horizons

NRMSE), = (20)

1 Kend
Z RMSE, (21)

k=kstart

RMSE,,

Jkend =
st kend - kstart +1
is used as a summary error measure. When comparing the
performance of two models the improvement

EC.s — EC
EOref

is used, where E'C' is the considered evaluation criterion. When
calculating the error measures it is important to consider how
to handle missing values for the solar power forecasts. The
problem is handled by replacing missing forecast values with
forecast values from the reference model Ref.

Inc = 100 - (%) (22)

B. Completeness

In order to evaluate a model for its performance regarding
missing forecast values a measure is defined. It is denoted
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Fig. 5. The upper plot is RMSE}, for the forecasting models. On the right side the NRMSE}, is indicated. The lower plot is completeness Cl.

completeness. The completeness of a forecast for horizon k,
is the ratio of the total sum of solar power and the summed
solar power for time points where the forecasts are not missing

_ X P I(Pyes)
21]5\]:1 By
where I() is the indicator function which is 0 if ]5“,5,,@ is

missing, and 1 if not. Only the included values are used, i.e.
not values during nighttime.

Cy (23)

VI. RESULTS

In this section the results are presented and evaluated. The
RMSEy.,, ... k.. improvements for relevant ranges of horizons
are listed in Table I. For selected models the RMSE, is shown
in the upper plot of Figure 5 and the completeness in the lower.

Considering the improvements it is seen that most of the
models perform very well on either the short horizons or the
longer horizons. Starting with short horizons (1 to 2 hours) the
four models using the latest observed solar power have better
performance than C'Pyywp, which only uses the NWPs. Using
the combination of observed solar power and NWPs improves
the performance, except on longer horizons where using only
NWPs are slightly better. Considering the performance of AR,
CPp, and ARX itis seen that the RMSE), increase really fast

TABLE 1
IMPROVEMENTS IN PERCENT FOR SELECTED RANGES OF HORIZONS.

Model Irwss, .  1rmEEs . TRNEE s 0
AR 34.3 7.4 12.6
CPp 36.7 17 11.5
CPnwp 25 38.4 33.1
CPnwp,p 40.8 37.6 31.4
ARX 40.1 15.9 25

as the horizon increases and reach the reference model around
a horizon of 10 hours. This is simply because the models are
using night values (which are missing) to forecast day values.
This is also seen in the completeness of the AR and ARX
model.

VII. DISCUSSION AND APPLICATIONS

This section contains a short discussion of the results and
ideas for further work, and ends with an outline of applica-
tions.

Considering the improvement achieved over the reference
model the forecasting models are found to perform very well.
Clearly the quality of the NWPs of solar radiation is the most
influential source of error, hence improved NWPs will improve
the performance. Especially using NWPs of direct and diffuse
radiation should be tried. Regarding further improvement of
the forecasting models, it is suggested that the following
should be considered:

« Application of regime models and hidden Markov models
to handle different aspects of forecasting for e.g. low
and high radiation values, and it might be useful to use
different forecasting models for different types of cloud
conditions. This is ideal to apply in the setting of the CP
models.

e For the CP models using higher order polynomials in
the day of year and time of day dimensions should
improve the models. It was tried but didn’t improve the
performance, but as the NWPs are getting better this will
most likely be important.

« A thorough evaluation of the forecast errors to find ideas
for how the models can be improved.

The applications for solar power forecasting include the
integration of PV systems into the electricity grid, especially
for smart grids. The solar power forecasts can be used as
input to model predictive control to optimize the operation



of the PV system. This will enable diurnal peak-shaving and
cost optimization for smaller systems with storage capacity
in battery packs (e.g. provided in an electrical car). For large
solar power producers forecasting is essential for optimized
energy trading.

The method is furthermore well suited for monitoring the
performance of PV systems. Measures of the performance can
be derived from the CP models, with which systems can be
compared on an absolute scale. Sudden high deviation from
the CP forecasting model will allow for very fast detection of
failures in the system. For an individual system the change in
performance over time can also be assessed by monitoring the
clear sky curve for unusual behavior, and compare the change
from year to year.

VIII. CONCLUSION

Two approaches for solar power forecasting are presented
and applied to forecast hourly values for horizons up to 32
hours. Both a method based on a two-stage approach, where
first the solar power is normalized with a statistical clear-sky
model, and a method in which the solar power is forecasted
in a single step. The normalization with a clear sky model
removes most of the non-stationarity caused by the changing
position of the sun relative to the PV panel. This a pre-
requisite for optimal application of linear time series models.
Conditional parametric models are used to include NWPs
of global radiation, and a one-stage approach, solely based
on conditional parametric models, is presented. A root mean
square improvement over a persistence reference model on
short horizons (1 to 2 hours) is in average 40%, and in average
35% on the longer horizons. The method can furthermore be
applied to monitor and check the performance of PV systems.
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