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Abstract: In this paper we apply a robust feedforward-feedback control strategy to people with
type 1 diabetes. The feedforward controller consists of a bolus calculator which compensates
the disturbance coming from meals. The feedback controller is based on a linearized description
of the model describing the patient. We minimize the risk of hypoglycemia by introducing a
time-varying glucose setpoint based on the announced meal size and the physiological model
of the patient. The simulation results are based on a virtual patient simulated by the Hovorka
model. They include the cases where the insulin sensitivity changes, and mismatches in meal
estimation. They demonstrate that the designed controller is able to achieve offset-free control
when the insulin sensitivity change, and that having a time-varying reference signal enables
more robust control of blood glucose in the cases where the meal size is known, but also when
the ingested meal does not match the announced one.

1. INTRODUCTION

The World Health Organization [2009] estimates that more
than 220 million people worldwide have diabetes. This
number is likely to double by 2030. In the USA, the budget
for diabetes represents 10% of the health care budget, i.e.
more than 130 billion dollars (132 billion dollars in 2002).

For healthy people, the blood glucose is tightly held at
around 90 mg/dL (or 5 mmol/L). Diabetes is a chronic dis-
ease characterized by an insufficient production of insulin
and/or a decrease in its effectiveness. Therefore, people
with diabetes tend to have a too high blood glucose level,
also called hyperglycemia. Long periods of hyperglycemia
can lead to complications like nerve diseases, kidney dis-
eases, or blindness. However, the dosing of insulin must be
done carefully, because a too high dosage of insulin may
lead to hypoglycemia, which has immediate effects, such
as insulin shock, coma or even death.

In particular, people with type 1 diabetes must rely on
injection of exogenous insulin to survive. The current
insulin therapy for people with type 1 diabetes consists
of the injection of slow acting insulin once a day and
fast acting insulin several times per day, usually before
mealtimes. The slow acting insulin is used to counteract
the continuous glucose production from the liver. The fast
acting insulin compensates the intake of carbohydrates
(CHO) during the meals. The decision on the amount of
short and fast acting insulin is based on 3-4 blood glucose
measurements per day.

Continuous glucose monitors (CGMs) can improve the
insulin therapy. In addition, insulin pumps can be used
to adjust the insulin infusion rate, and insulin pens can be
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Fig. 1. Closed-loop glucose control. Glucose is measured
subcutaneously using a continuous glucose monitor
(CGM). Insulin is dosed either continuously by an
insulin pump or discretely using an insulin pen.

used to administrate insulin boluses. These devices can
be used in an artificial pancreas, which is described in
Fig. 1. Various research groups work on aspects of control
algorithms integrating the CGM and the insulin pump;
see, e.g. Klonoff et al. [2009], Cobelli et al. [2009] and
Magni et al. [2009].

In this paper we use a feedforward-feedback controller
based on linear MPC. The feedforward controller computes
the optimal bolus size to compensate the CHO ingested
through meals. The feedback controller adjusts the basal
insulin infusion rate.

The paper is structured as follows. Section 2 introduces
the model used to simulate a virtual patient with type
1 diabetes. Section 3 describes the controller used to
compute the optimal closed-loop insulin profiles. Section
4 presents the numerical results in the cases where the
insulin sensitivity changes under fasting conditions, and
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Fig. 2. Diagram of the Hovorka model.

in the case where the patient has one 75g CHO meal.
Conclusions are provided in Section 5.

2. PHYSIOLOGICAL MODELS

Several nonlinear physiological models have been devel-
oped to simulate virtual patients with type 1 diabetes, see
e.g. Bergman et al. [1981], Hovorka et al. [2004], Dalla Man
et al. [2007] and the review article written by Wilinska
and Hovorka [2009]. In this paper, we use the Hovorka
model to simulate people with type 1 diabetes. The models
for CHO absorption, subcutaneous insulin absorption and
the glucose-insulin dynamics for the Hovorka model are
described in Fig. 2.

The delays associated to insulin and CHO absorption and
the nonlinearities of the model limit the control quality,
see e.g. Boiroux et al. [2010a]. Indeed, the time constant
associated to CHO absorption is τG = 40 minutes, while
the one associated to insulin absorption is τI = 55 minutes.
The main source of nonlinearity in the Hovorka model
arises from the bilinear term involving the action of insulin
x1 on glucose transport and the glucose in the main
blood stream Q1. This nonlinearity leads to an inaccurate
description of linear models when the state of the system
is not close to a steady state, e.g. during meals.

An other issue is that these models may be non-identifiable
for some subjects (Pillonetto et al. [2003]).

3. CONTROLLER DESIGN

In this section we describe the feedforward-feedback con-
troller used to compute the optimal insulin administration
profiles. The controller is based on linear MPC, where the
model is a linearized version of the Hovorka model. The
reference signal is time-varying. The states of the system
are estimated using a stationary Kalman filter with an
integrated disturbance.

3.1 Linear model

We consider a system of ordinary differential equations
(ODEs) in the form

ẋ(t) = f(x(t), u(t), d(t)) (1a)

y(t) = g(x(t)) (1b)

in which x(t) ∈ Rnx describes the states of the system,
u(t) ∈ Rnu describes the manipulated variables (insulin
infusion rate) d(t) ∈ Rnd are disturbances (meals), and
y(t) depicts the measured output (blood glucose).

The system (1) can approximated by a linear state space
system at a steady state (xss, uss, dss). In this paper we
choose the target value Ḡ = 5 mmol/L. The linear state
space description in continuous time is

ẋ(t) = Acδx(t) +Bcδu(t) + Ecδd(t) (2a)

δy(t) = Ccδx(t) (2b)

In equation (2), δx(t), δu(t), δd(t) and δy(t) are deviation
variables from the steady state (xss, uss, dss), i.e.

δx(t) = x(t)− xss δu(t) = u(t)− uss (3)

δd(t) = d(t)− dss δy(t) = y(t)− Ḡ(t)

and the time-invariant matrices Ac, Bc, Ec and Cc are

Ac =
∂f

∂x
(xss, uss, dss) Bc =

∂f

∂u
(xss, uss, dss)

Ec =
∂f

∂d
(xss, uss, dss) Cc =

dg

dx
(xss)

(4)

We now assume a zero-order hold parametrization of the
controlled input u and the disturbance d with the sampling
time Ts = 5 min. Under this assumption, the continuous-
time linear state space system (2) is equivalent to the
deterministic linear discrete-time state space description

δxk+1 = Āδxk + B̄δuk + Ēδdk (5a)

yk = C̄xk (5b)

3.2 Time-varying reference signal

Boiroux et al. [2010b] demonstrates that a constant glucose
reference signal usually leads to an overdose of insulin
when the meal size becomes too large. A time-varying glu-
cose setpoint has been extensively used to reduce the risk
of hypoglycemia, see e.g. Marchetti et al. [2006], Garcia-
Gabin et al. [2008] and Eren-Oruklu et al. [2009]. It has
also been noticed that the optimal insulin administration
profile in the case where the meals are announced at
mealtime only is close to a bolus-like profile (see Boiroux
et al. [2010c] and Fig. 3). Consequently, the insulin admin-
istration can be separated between

• The basal insulin, which must compensate for en-
dogenous glucose production. It must be adjusted to
reject disturbances caused by changes in physiologi-
cal parameters, e.g. changes in the insulin sensitivity
(feedback control)



Fig. 3. Glucose profile (top), meal disturbances (middle)
and optimal insulin administration profile (bottom)
with meal announcement at meal time. Most insulin
is taken in bolus like form at meal time.

• Insulin boluses, which are used to limit postprandial
hyperglycemic event. The size of the bolus depends on
the meal size announced by the patient (feedforward
control)

The control strategy described above is a feedforward-
feedback control strategy similar to the one described in
Marchetti et al. [2008]. When a meal is announced to the
controller, the optimal bolus and the optimal postprandial
blood glucose trajectory are computed by solving the
univariate constrained optimization problem

min
ubolus

ψ =
1

2

N−1∑
k=0

‖y0k+1 − Ḡ‖22 (6a)

s.t. ẋ0(t) = f(x0(t), uk, dk) t ∈ [tk, tk+1[ (6b)

x00 = xss (6c)

u00 = uss + ubolus (6d)

u0k = uss, k = 1, 2, . . . , N − 1 (6e)

y0k = Cxk (6f)

y0k ≥ Ḡ (6g)

In other words, we want to find the optimal bolus such
that the reference signal is above the desired glucose target
Ḡ = 5 mmol/L for all times. In this case, the predictions
on the future states of the system are made using the
continuous-time nonlinear model.

The solution of (6) gives the reference insulin profile u0k,
the reference states x0k and the reference blood glucose
setpoint y0k. Thus, we introduce the deviation variables
from the reference state δyk, δxk and δuk such that

yk = y0k + δyk xk = x0k + δxk uk = u0k + δuk (7)
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Fig. 4. Example of time-varying reference signal for the
blood glucose. The meal size is 50g CHO.

Fig. 4 gives an example of reference signal in the case where
the patient has a 50g CHO meal.

3.3 Offset-free MPC

Accordingly to Pannocchia and Rawlings [2003], offset-free
control can be achieved by augmenting the state vector
with an integrated disturbance zk. In a fasting state,
the stochastic linear discrete-time augmented state space
description is

[
δx
z

]
k+1

=

[
Ā Bz

0 I

] [
δx
z

]
k

+

[
B̄
0

]
δuk +

[
ξ
ζ

]
k

(8a)

δyk =
[
C̄ Cz

] [δx
z

]
k

+ wk (8b)

in which Bz ∈ Rnx×nz , and Cz ∈ Rny×nz . The processes
ξk, ζk and wk are zero-mean white noise processes, and we
assume that ξk and ζk are uncorrelated. For convenience,
we will denote

A =

[
Ā Bz

0 I

]
B =

[
B̄
0

]
E =

[
Ē
0

]
C =

[
C̄ Cz

]
xk =

[
δx
z

]
k

(9)

and we define the time-invariant covariance matrices

R1 = Cov

([
ξ
ζ

]
k

)
R2 = Cov (vk) (10)

We set Var[ξk] = 0. Hence, the variances of the white
noise processes ζk and vk are tuning parameters. For the
simulations we set



Var[ζk] = 0.72 R2 = 0.52 (11)

The integrated disturbance process zk can be added either
to the insulin infusion, or to the meal ingestion, or the the
blood glucose measurements. In this paper, we choose to
add the disturbance to the insulin infusion, i.e.

Bz = B̄, Cz = 0 (12)

It must be pointed out that the reference glucose trajec-
tory determined in section 3.2 already includes the effects
of the meal intake and the associated bolus. Consequently,
the one-step ahead prediction for the state vector δx̂k+1|k
is

δx̂k+1|k = Aδx̂k|k +Bδuk (13)

and the filtered state δx̂k+1|k+1 is computed as

ek+1 = δyk+1 − Cδx̂k+1|k (14a)

δx̂k+1|k+1 = δx̂k+1|k +Kek+1 (14b)

in which K is the stationary Kalman gain. The one-step
ahead prediction and the filtering step are expressed in
terms of deviation variables from the reference signal.

3.4 Linear MPC with soft output constraints

At each time sample, it is required to solve an open-
loop constrained optimization problem. Let N be the
prediction horizon length. The linear problem with hard
input constraints and soft output constraints at time tk is
formulated as

min
{ui,vi}N−1

i=0

φ =
1

2

N−1∑
i=0

‖δŷk+i+1|k‖22+

λ‖∆uk+i‖22 + κ‖vi‖22 (15a)

s.t. δx̂k+i+1|k = Aδx̂k+i|k +Buk+i (15b)

δŷk+i|k = Cδx̂k+i|k (15c)

umin ≤ δuk+i ≤ umax (15d)

∆umin ≤ ∆uk+i ≤ ∆umax (15e)

ymin − rk+i − δŷk+i|k ≤ vi (15f)

vi ≥ 0 (15g)

The slack variables vi are introduced to penalize hypo-
glycemia. The hard input constraints (15d-15e) limit the
insulin infusion rate and the increment of the insulin infu-
sion rate respectively. The penalty term κ‖vi‖22 is used
to avoid hypoglycemia and the penalty term λ‖∆ui‖22
prevents the insulin infusion rate from varying too aggres-
sively.

For the simulations we choose N = 120, i.e. a 10 hour
prediction horizon, such that the computed optimal insulin
profile is similar to the one in the case where the prediction
horizon is infinite. Thus, the prediction horizon is not

considered as a tuning parameter. The tuning parameters
of (15) are the weights λ and κ.

For the simulations we choose

umin = −uss
2
, λ = 400, κ = 100 (16)

The choice of umin = −uss
2

instead of umin = −uss does

not allow the controller to switch off the insulin pump.
Instead, switching off the pump can be implemented as a
safety layer in case of an (upcoming) hypoglycemic event.

4. NUMERICAL RESULTS

In this section, we use the Hovorka model and the de-
scribed linear MPC algorithm to compute the optimal
insulin administration profiles for people with type 1 dia-
betes. We consider two cases:

• A 36 hour simulation with a decrease in insulin
sensitivity by 50% under fasting conditions. We both
consider the case where the sensor is noise-free, and
the case where the sensor is affected by white noise.

• A 24 hour simulation with one 75g CHO meal. The
meal is given 6 hours after the beginning of the simu-
lation. We consider the cases where the correct meal
size is announced, the meal size is underestimated by
50%, the meal size is overestimated by 50% and the
meal is not announced at all.

For the first case, the insulin sensitivity is changed by
modifying the insulin sensitivities for the three insulin
action compartments after 1 hour. The insulin sensitivities
are described by the parameters SI,1, SI,2 and SI,3 in the
Hovorka model (the model is described in Hovorka et al.
[2004] and Boiroux et al. [2010b]). A decrease by 33% of
these parameters will give a new insulin infusion basal rate

ũss = 1.5uss (17)

We assume that the noise process of the glucose sensor is
a zero-mean white noise process which follows a Gaussian
distribution with the standard deviation

σ = 0.5 mmol/L (18)

Fig. 5 illustrates the blood glucose and the insulin profiles
in the case where a change in the insulin sensitivity occurs
while the patient is fasting, with and without sensor noise
(5(a) and 5(a)). The insulin infusion rate increases to
reject the disturbance caused by the decrease in insulin
sensitivity. In the uncontrolled case where the basal insulin
infusion rate is not adjusted, the blood glucose tends to a
new steady state in the hyperglycemic range.

Fig. 6 shows the insulin and blood glucose profiles in the
case where the patient has a 75g CHO meal, but the meal
is not announced to the controller. In that case, a severe
hypoglycemia cannot be avoided. A similar hypoglycemic
event occurs if we allow to switch off the insulin pump and
if we use noise-free blood glucose measurements instead
(results not shown).
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(a) Noise-free sensor
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(b) Noisy sensor

Fig. 5. Insulin and blood glucose profile in the case where
the insulin sensitivity decreases by 50% after 1 hour.

Fig. 7 illustrates the blood glucose and the insulin profiles
in the case where the patient has a 75g CHO meal. For
the case where the exact meal size is announced (Fig.
7(a)), the insulin infusion rate remains close to the basal
rate. Consequently, the blood glucose follows tightly the
glucose setpoint. For the case where the meal size is
underestimated (Fig. 7(b)), the basal rate increases after
the mealtime to compensate for the too low bolus. For
the case where the meal size is overestimated (Fig. 7(c)),
the insulin infusion rate is at the minimum after the meal
to compensate for the too high bolus. No hypoglycemic
events occur when a meal is announced. However, the
postprandial blood glucose excursion is bigger when the
meal size is underestimated by the patient.
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Fig. 6. Blood glucose and insulin profiles in the case where
the meal is not announced.

These results show that reasonably good control can be
obtained when a feedforward-feedback strategy is used.
However, the main limitation of this strategy is that a
fairly good nonlinear model description of the patient must
be available.

5. CONCLUSION

In this paper, we described model predictive control based
on a linearized version of the Hovorka model. The state
is augmented with an integrated disturbance to ensure
an offset-free control of the blood glucose. We use an
optimal control algorithm to compute insulin adminis-
tration profiles in the cases where the insulin sensitivity
decreases by 50%, and in the case where the patient has
one 75g CHO meal. In the case where the patient has a
meal, we consider the cases where the correct meal size is
announced, the meal size is underestimated, the meal size
is overestimated, and the meal is not announced at all.
The results demonstrate that the control of blood glucose
can be achieved without offset, and that a feedforward-
feedback control strategy is superior to a feedback control
only, assuming that a good model description of the pa-
tient can be obtained.
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(a) Correct meal size
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(b) Meal size underestimated by 50%
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(c) Meal size overestimated by 50%

Fig. 7. Blood glucose and insulin profiles for the 24 hour
simulations with one 75g CHO meal.


